En-route aircraft wake vortex encounter analysis in a high density air traffic region

Size: px
Start display at page:

Download "En-route aircraft wake vortex encounter analysis in a high density air traffic region"

Transcription

1 En-route aircraft wake vortex encounter analysis in a high density air traffic region Ulrich Schumann 1) and Robert Sharman 2) 1) Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen 2) Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

2 Wake vortex encounters are potential hazards not only near airports but also at cruise altitudes Wake vortex encounters have been observed at upper levels Rossow and James (2000) & Nelson (2006) point out: the frequency of en-route encounters may increase for growing air traffic density, reduced vertical separation minimum, increased disparity of the size of aircraft flying at cruise altitudes Hoogstraten et al. (2013) find severe wake vortex encounters could be expected approximately once every 38 days over Europe Holzäpfel (2014) identifies wind, stratification, turbulence, position, mass, span load factor as critical parameters. Open: how often, for which aircraft sizes, during which flight phases, how dependent on traffic density? 2

3 Here: Wake Vortex Program (WAVOP) with traffic data (ASDI form FAA) and Weather data (WRF-RAP of NOAA) WAVOP: new efficient method to test for possible encounters for all aircraft pairs in high traffic regions. Encounter definition: when the encounter aircraft E comes close to the wake vortex V from a generator aircraft G and when E experiences lift forces L or roll moments RM exceeding given critical limits. Wake vortex model: assumes age-dependent vortex circulation Γ(t), constant descent speed w 0, maximum descent distance z max. Γ(t)/Γ 0, z max, age 1, age 2 from two-phase model of Holzäpfel (2003). Traffic data: waypoints (x, y, z, t) and aircraft type for all movements over the US (12 GByte for 46 days) Aircraft data: span s, mass M, speed U, FL-> wake b 0, Γ 0, t 0, w 0 Meteorology NWP data: Wind, Brunt Vaisaila frequency N, dissipation rate (ε or EDR=ε 1/3 ) from WRF-RAP of NOAA 3

4 Determination of encounter between E (encounter ac) and vortex line (V) behind G (generator ac) For given flight paths, wake descent, and ambient wind fields, the positions are linear functions of time t and vortex age a The distance D between E and any point on V is a function of t and a t and a at encounter are determined by D 2 (a,t) = min This implies a linear system of equations, solved by WAVOP exactly and efficiently 4

5 Wake Vortex decay: Two-Phase model (Holzäpfel (2003) Γ(t)/Γ 0, z max, age 1, age 2 from two-phase model of Holzäpfel (2003) and z max parameterization (Schumann, 2012). for given Brunt Vaisaila frequency N BV, dissipation rate (EDR=ε 1/3 ), and wake scales b 0, w 0, t 0, Γ 0 age 1 age 2 z max N*=N BV t 0 ε * =(ε b 0 ) 1/3 /w 0 5

6 The model approximates observed wake conditions as identified from in-situ trace gas measurements A380 A319 From DLR-Falcon Cockpit-Camera (see Schumann et al., GRL; >discussion)

7 Loads Roll moment coefficient RM C and lift moment coefficient L C are computed for given relative position of E and V behind G, Hallock-Burnham vortex flow model, core radius for G span, R C =0.03 s G versus time t 7

8 Encounter Assessment for encounter assessment we use the maximum values occurring during encounter of the magnitude values of RM C and L C for given encounter angles and distances in vertical and horizontal directions. An encounter is assumed to be critical when RM C > 0.03 or L C > 0.1 8

9 For test and validation, we compare WAVOP results with 1) turbulence peaks derived from automated in-situ EDR measurements. and 2) wake vortex encounters reported by pilots for 1): Automated in-situ turbulence energy dissipation rate (EDR) measurements are obtained from vertical wind measured on Delta Air Lines (DAL) commercial B737 aircraft. The data are recorded routinely every 60 s for a large set of flights (Sharman et al., 2012, 2014). DAL EDR counts over North America in the year

10 An EDR peak was reported from in-situ data of a DAL flight E, e.g. 19 Nov 2010 WAVOP finds time t and vortex age a of minimum approach between encounter E and wake vortex V at a time which coincides with the time of observed EDR peak up to 70 s 10

11 The exact position and encounter time is sensitive to the variations in position data, aircraft mass, and wind speed But the fact that an encounter occurs is robust, at least for this case with nearly parallel flights of two descending aircraft 11

12 Coincidences between in-situ observed EDR peaks and WAVOP-analyzed encounters - found for 17 cases 12

13 The observed positions agree with computed wake descent properties, both for the 17 EDR cases and for 3 PIREPs mean descent speed: 1.5 m/s, both from the model and the observations, with some deviations in single cases GLF4 GCN UUA /OV PGS079045/TM 1902/FL300/TP GLF4/TB SEV/RM DESCENDING TO FL240. (CONTROLLER SUSPECTS WAKE TURBULENCE). AWC-WEB:KZLA D83 SPS UUA /OV SPS/TM 1350/FL310/TP MD83/TB MOD-SEV FL310-FL290/RM ACFT HAD UNCOMMANDED ROLL OF 45 DEGREES. 15 MILES IN TRAIL OF B757 POSSIBLE WAKE TURB AWC-WEB:KZFW B757 LNS UUA /OV LRP180020/TM 1849/FL380/TP B757/TB MOD-SEV SEV/RM POSSIBLE WAKE TURBULENCE 13

14 Traffic from Aircraft Situation Display to Industry (ASDI) and examples of encounters during one hour (full) or one day (open symbols) 14

15 Number of encounters identified in upper air space during 46 days Flights all constant level (10 hft vertical separation) encounters per day with D/s G < critical encounters per day age a/s and standard deviation 104±26 131±27 separation/km 21.2± ±9.0 angle α 20.3 ±32 90 ±55 upper air space in the US: above FL 180 analysis restricted to cases with horizontal separation > 5 nautical miles 15

16 Number of encounters identified in upper air space during 46 days Flights all constant level (10 hft vertical separation) encounters per day with D/s G < critical encounters per day age a/s and standard deviation 104±26 131±27 separation/km 21.2± ±9.0 angle α 20.3 ±32 90 ±55 Sensitivity studies show: 4 times more encounters for zero ambient wind 20 % fewer encounters for doubled vortex wake core radius R C 13 times less encounters for doubled threshold values 16

17 Number of encounters identified in upper air space during 46 days Flights all constant level (10 hft vertical separation) encounters per day with D/s G < critical encounters per day age a/s and standard deviation 104±26 131±27 separation/km 21.2± ±9.0 angle α 20.3 ±32 90 ±55 critical wake vortex encounters may occur up to 26 per day over USA mainly between medium sized ac 17

18 Encounters with distance D<120 m occur typically at 20 km (> 12 nautical miles) horizontal separation between G and E at small relative angle α between flight path E and wake vortex V, at cruise and during ascent/ descent at all flight levels (FL), many with very small wake distance D many with small, but a few with large lift and/or roll moment (magnitude) coefficients The number of critical encounters decreases exponentially with the threshold loads 18

19 Frequency histograms for all encounters identified with distance D<120 m mostly at small vertical separation in wakes from medium and heavy aircraft for N and EDR values typical for tropospheric weather A separate study has been performed for 1000 feet vertical separation See: Schumann and Sharman, paper submitted to J. Aircraft (2014) 19

20 The encounter frequency increases with the square of traffic density 20

21 Conclusions WAVOP, a new method to identify potential wake vortex encounters from given airtraffic and meteorological data, has been applied to radar-observed traffic over North America on 46 days in 2010/11, and validated against PIREPs and automated in-situ turbulence reports. Most upper-level encounters are found for medium-sized aircraft on nearly parallel flight routes during descent. The daily frequency of wake vortex encounters increases with the square of air traffic density. Limitations: mainly from uncertainties in data for traffic, weather, aircraft mass. Further studies should address: traffic at low levels, traffic over Europe, traffic with a larger fraction of heavy aircraft, random traffic, mitigation strategies, etc. The algorithm may be applicable to onboard wake-vortex-encounter detection and avoidance systems 21

22 Thanks to colleagues at NCAR and DLR 22

23 23

24 Wake vortex depth versus plume age t in wake scales for 4 aircraft with different mass M, speed V, and span s small/large circles: c/c wake >0.1 c/c wake >0.5 c = measured NOy mass mixing ratio c wake= m F EI NOx /(ρ A p ) z = z FL z Falcon z = min(w 0 t, z max ), with w 0 = 8 g M /(π 3 s 2 ρ V) z max = (π/4)s [7.68( ε * +5.67ε *2 )(0.79-N * )+1.88] with N * = N BV t 0, ε * = (ε b 0 ) 1/3 /w 0 t max = w 0 / z max, Schumann, Jeßberger, Voigt (GRL, 2013) 24

25 Contrail ice particle formation in the wakes of airliners Ice particles are formed from at least /kg soot particles per burnt fuel mass, ice particle sublimate in sinking and adiabatically heating wake vortex Schumann, Jeßberger, Voigt (GRL, 2013) 25

A Simple Wake Vortex Encounter Severity Metric

A Simple Wake Vortex Encounter Severity Metric A Simple Wake Vortex Encounter Severity Metric Rolling Moment Coefficient due to Encounter of an Aircraft with a Wake Vortex Vincent TREVE (EUROCONTROL) Ivan DE VISSCHER and Grégoire WINCKELMANS (WaPT

More information

Turbulence Avoidance Technologies

Turbulence Avoidance Technologies Turbulence Avoidance Technologies The information contained herein is advisory only in nature. Modification Date: 01NOV2016 Revision: 0.0 Operations Scope: ALL AIRCRACT Briefing Owners: Tenille Cromwell

More information

Automated in-situ Turbulence reports from Airbus aircraft. Axel PIROTH

Automated in-situ Turbulence reports from Airbus aircraft. Axel PIROTH Automated in-situ Turbulence reports from Airbus aircraft Axel PIROTH Context & Background Atmospheric Turbulence is leading to situations somewhat uncomfortable... Page 2 Cost of Turbulence for Air Carriers

More information

Contrail cirrus and their climate impact

Contrail cirrus and their climate impact Contrail cirrus and their climate impact Ulrike Burkhardt DLR Institute for Atmospheric Physics, Oberpfaffenhofen, Germany Wakenet Workshop, 28 June 10 Contrail formation Contrail formation Aircraft engines

More information

Turbulence Measurements. Turbulence Measurements In Low Signal-to-Noise. Larry Cornman National Center For Atmospheric Research

Turbulence Measurements. Turbulence Measurements In Low Signal-to-Noise. Larry Cornman National Center For Atmospheric Research Turbulence Measurements In Low Signal-to-Noise Larry Cornman National Center For Atmospheric Research Turbulence Measurements Turbulence is a stochastic process, and hence must be studied via the statistics

More information

SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS

SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS Kristopher Bedka 1, Wayne Feltz 1, John Mecikalski 2, Robert Sharman 3, Annelise Lenz 1, and Jordan Gerth 1 1 Cooperative

More information

Measuring In-cloud Turbulence: The NEXRAD Turbulence Detection Algorithm

Measuring In-cloud Turbulence: The NEXRAD Turbulence Detection Algorithm Measuring In-cloud Turbulence: The NEXRAD Turbulence Detection Algorithm John K. Williams,, Greg Meymaris,, Jason Craig, Gary Blackburn, Wiebke Deierling,, and Frank McDonough AMS 15 th Conference on Aviation,

More information

Routing options to reduce aviation s climate impact

Routing options to reduce aviation s climate impact www.dlr.de Chart 1 Routing options to reduce aviation s climate impact Volker Grewe DLR-Institut für Physik der Atmosphäre & Chair for Climate Effects of Aviation, TU Delft Aerospace Engineering www.dlr.de

More information

Global aviation turbulence forecasting using the Graphical Turbulence Guidance (GTG) for the WAFS Block Upgrades

Global aviation turbulence forecasting using the Graphical Turbulence Guidance (GTG) for the WAFS Block Upgrades Global aviation turbulence forecasting using the Graphical Turbulence Guidance (GTG) for the WAFS Block Upgrades R. Sharman 1, J.-H. Kim 2, and C. Bartholomew 3 National Center for Atmospheric Research,

More information

Robert Sharman*, Jamie Wolff, Tressa L. Fowler, and Barbara G. Brown National Center for Atmospheric Research, Boulder, CO USA

Robert Sharman*, Jamie Wolff, Tressa L. Fowler, and Barbara G. Brown National Center for Atmospheric Research, Boulder, CO USA J1.8 CLIMATOLOGIES OF UPPER-LEVEL TURBULENCE OVER THE CONTINENTAL U.S. AND OCEANS 1. Introduction Robert Sharman*, Jamie Wolff, Tressa L. Fowler, and Barbara G. Brown National Center for Atmospheric Research,

More information

UMWELTGERECHTE FLUGROUTENOPTIMIERUNG

UMWELTGERECHTE FLUGROUTENOPTIMIERUNG UMWELTGERECHTE FLUGROUTENOPTIMIERUNG Hermann Mannstein, Klaus Gierens, Kaspar Graf, Ulrich Schumann, Margarita Vázquez-Navarro, Bernhard Mayer (DLR) Andreas Waibel, Stefanie Meilinger, (DLH) Axel Seifert,

More information

Probabilistic Wake Vortex Decay Model Predictions Compared with Observations of Four Field Measurement Campaigns

Probabilistic Wake Vortex Decay Model Predictions Compared with Observations of Four Field Measurement Campaigns Probabilistic Wake Vortex Decay Model Predictions Compared with Observations of Four Field Measurement Campaigns Frank Holzäpfel Institut für Physik der Atmosphäre,, DLR Oberpfaffenhofen,, Germany P2P

More information

A Comparison of Wake-Vortex Models for Use in Probabilistic Aviation Safety Analysis

A Comparison of Wake-Vortex Models for Use in Probabilistic Aviation Safety Analysis In Proceedings of the 25th International System Safety Conference, eds. A. G. Boyer and N. J. Gauthier, Baltimore, A Comparison of Wake-Vortex Models for Use in Probabilistic Aviation Safety Analysis J.

More information

Future Aeronautical Meteorology Research & Development

Future Aeronautical Meteorology Research & Development Future Aeronautical Meteorology Research & Development Matthias Steiner National Center for Atmospheric Research (NCAR) Boulder, Colorado, USA msteiner@ucar.edu WMO Aeronautical Meteorology Scientific

More information

Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis 985592 Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis Dan D. Vicroy NASA Langley Research Center Paul M. Vijgen, Heidi M. Reimer, Joey L. Gallegos and Philippe

More information

Is the assumption of straight vortices valid for encounter hazard assessment?

Is the assumption of straight vortices valid for encounter hazard assessment? Is the assumption of straight vortices valid for encounter hazard assessment? Dennis Vechtel DLR Institute of Flight Systems Brétigny-sur-Orge, May 13 th, 2014 WakeNet-Europe 2014 Workshop Technology,

More information

system & Royal Meteorological Society Meeting at Imperial College, London 15 Jan 2014 Robert Sharman NCAR/RAL Boulder, CO USA

system & Royal Meteorological Society Meeting at Imperial College, London 15 Jan 2014 Robert Sharman NCAR/RAL Boulder, CO USA The Graphical Turbulence Guidance (GTG) system & recent high-resolution modeling studies Aviation & Turbulence in the Free Atmosphere Royal Meteorological Society Meeting at Imperial College, London 15

More information

Weather Technology in the Cockpit (WTIC) Shortfall Analysis of Weather Information in Remote Airspace Friends and Partners of Aviation Weather Summer

Weather Technology in the Cockpit (WTIC) Shortfall Analysis of Weather Information in Remote Airspace Friends and Partners of Aviation Weather Summer Weather Technology in the Cockpit (WTIC) Shortfall Analysis of Weather Information in Remote Airspace Friends and Partners of Aviation Weather Summer Meeting Tim Myers Metron Aviation August 26, 2015 2

More information

Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration

Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration Federal Aviation Administration Provided to: Turbulence Impact Mitigation Workshop 3 By: Eldridge Frazier, WTIC Program, ROMIO Demo

More information

Probabilistic Analysis of Wake Vortex Hazards for Landing Aircraft Using Multilateration Data

Probabilistic Analysis of Wake Vortex Hazards for Landing Aircraft Using Multilateration Data Shortle and Jeddi 1 Probabilistic Analysis of Wake Vortex Hazards for Landing Aircraft Using Multilateration Data * Corresponding author Word Count: 4,876 Number of Figures: 1 Submission Date: 11/15/6

More information

Short-Term Weather Forecasting for Probabilistic Wake-Vortex Prediction

Short-Term Weather Forecasting for Probabilistic Wake-Vortex Prediction Short-Term Weather Forecasting for Probabilistic Wake-Vortex Prediction Frank Holzäpfel Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany Summary

More information

Wake vortex severity assessment a core element of the safety case. German Aerospace Center DLR

Wake vortex severity assessment a core element of the safety case. German Aerospace Center DLR Wake vortex severity assessment a core element of the safety case German Aerospace Center DLR Carsten Schwarz, Klaus-Uwe Hahn - Institute of Flight Systems Frank Holzäpfel, Thomas Gerz - Institute of Atmospheric

More information

Properties of young contrails a parametrisation based on large-eddy simulations

Properties of young contrails a parametrisation based on large-eddy simulations doi:10.5194/acp-16-2059-2016 Author(s) 2016. CC Attribution 3.0 License. Properties of young contrails a parametrisation based on large-eddy simulations Simon Unterstrasser Deutsches Zentrum für Luft-

More information

In-Flight Wake Encounter Prediction with the Wake Encounter Avoidance and Advisory System (WEAA)

In-Flight Wake Encounter Prediction with the Wake Encounter Avoidance and Advisory System (WEAA) In-Flight Wake Encounter Prediction with the Wake Encounter Avoidance and Advisory System (WEAA) Tobias Bauer, Fethi Abdelmoula Institute of Flight Systems, German Aerospace Center (DLR) WakeNet-Europe

More information

Volcanic, Weather and Climate Effects on Air Transport

Volcanic, Weather and Climate Effects on Air Transport Volcanic, Weather and Climate Effects on Air Transport Ulrich Schumann German Aerospace Center Institute of Atmospheric Physics Oberpfaffenhofen, Germany Content: - Volcanic ash hazard avoidance by improved

More information

Advances in weather and climate science

Advances in weather and climate science Advances in weather and climate science Second ICAO Global Air Navigation Industry Symposium (GANIS/2) 11 to 13 December 2017, Montreal, Canada GREG BROCK Scientific Officer Aeronautical Meteorology Division

More information

Aviation Weather Hazards Nowcasting Based on Remote Temperature Sensing Data

Aviation Weather Hazards Nowcasting Based on Remote Temperature Sensing Data Aviation Weather Hazards Nowcasting Based on Remote Temperature Sensing Data Mikhail Kanevsky*, Evgeny Miller**, Nikolay Baranov*** *International Aeronavigation Systems, kanevsky@ians.aero, **RPO ATTEX,

More information

Modeling of Radar Signatures of Wake Vortices in Rainy weather

Modeling of Radar Signatures of Wake Vortices in Rainy weather Modeling of Radar Signatures of Wake Vortices in Rainy weather Directeur de thèse: VINCENT François (ISAE, France), JEANNIN Nicolas (ONERA, France) LIU Zhongxun 27 th May, 213 1 Outline 1. Introduction

More information

REMOTE DETECTION AND REAL-TIME ALERTING FOR IN-CLOUD TURBULENCE

REMOTE DETECTION AND REAL-TIME ALERTING FOR IN-CLOUD TURBULENCE 9.4 REMOTE DETECTION AND REAL-TIME ALERTING FOR IN-CLOUD TURBULENCE Jason A. Craig*, John K. Williams, Gary Blackburn, and Seth Linden National Center for Atmospheric Research, Boulder, Colorado Rocky

More information

Overview on project activities with regard to thunderstorms

Overview on project activities with regard to thunderstorms Overview on project activities with regard to thunderstorms Arnold Tafferner Co-workers: C. Forster, H. Mannstein, T. Zinner, M. Hagen, T. Gerz, DLR Institut für Physik der Atmosphäre (IPA) Wetter&Fliegen

More information

8.7 Calculation of windshear hazard factor based on Doppler LIDAR data. P.W. Chan * Hong Kong Observatory, Hong Kong, China

8.7 Calculation of windshear hazard factor based on Doppler LIDAR data. P.W. Chan * Hong Kong Observatory, Hong Kong, China 8.7 Calculation of windshear hazard factor based on Doppler LIDAR data P.W. Chan * Hong Kong Observatory, Hong Kong, China Paul Robinson, Jason Prince Aerotech Research 1. INTRODUCTION In the alerting

More information

FPAW October Pat Murphy & David Bright NWS Aviation Weather Center

FPAW October Pat Murphy & David Bright NWS Aviation Weather Center FPAW October 2014 Pat Murphy & David Bright NWS Aviation Weather Center Overview Ensemble & Probabilistic Forecasts What AWC Is Doing Now Ensemble Processor What s In Development (NOAA Aviation Weather

More information

Evaluation of CIT Avoidance Guidelines. Turbulence PDT Task FY 2005 Year-End Progress Report

Evaluation of CIT Avoidance Guidelines. Turbulence PDT Task FY 2005 Year-End Progress Report Evaluation of CIT Avoidance Guidelines Turbulence PDT Task 05.7.3.13 FY 2005 Year-End Progress Report Deliverable 05.7.3.13.E1 Submitted by The National Center for Atmospheric Research Introduction In

More information

10.2 RESULTS FROM THE NCAR INTEGRATED TURBULENCE FORECASTING ALGORITHM (ITFA) FOR PREDICTING UPPER-LEVEL CLEAR-AIR TURBULENCE

10.2 RESULTS FROM THE NCAR INTEGRATED TURBULENCE FORECASTING ALGORITHM (ITFA) FOR PREDICTING UPPER-LEVEL CLEAR-AIR TURBULENCE 10.2 RESULTS FROM THE NCAR INTEGRATED TURBULENCE FORECASTING ALGORITHM (ITFA) FOR PREDICTING UPPER-LEVEL CLEAR-AIR TURBULENCE Robert Sharman*, Claudia Tebaldi, Jamie Wolff, and Gerry Wiener National Center

More information

FLYSAFE meteorological hazard nowcasting driven by the needs of the pilot

FLYSAFE meteorological hazard nowcasting driven by the needs of the pilot FLYSAFE meteorological hazard nowcasting driven by the needs of the pilot R. W. Lunnon, Met Office, Exeter, EX1 3PB, United Kingdom., Thomas Hauf, Thomas Gerz, and Patrick Josse. 1. Introduction The FLYSAFE

More information

Advanced Weather Technology

Advanced Weather Technology Advanced Weather Technology Tuesday, October 16, 2018, 1:00 PM 2:00 PM PRESENTED BY: Gary Pokodner, FAA WTIC Program Manager Agenda Overview Augmented reality mobile application Crowd Sourcing Visibility

More information

Supplement of Long-lived contrails and convective cirrus above the tropical tropopause

Supplement of Long-lived contrails and convective cirrus above the tropical tropopause Supplement of Atmos. Chem. Phys., 17, 2311 2346, 2017 http://www.atmos-chem-phys.net/17/2311/2017/ doi:10.194/acp-17-2311-2017-supplement Author(s) 2017. CC Attribution 3.0 License. Supplement of Long-lived

More information

Weather Technology in the Cockpit (WTIC) Program Program Update. Friends/Partners of Aviation Weather (FPAW) November 2, 2016

Weather Technology in the Cockpit (WTIC) Program Program Update. Friends/Partners of Aviation Weather (FPAW) November 2, 2016 Weather Technology in the Cockpit (WTIC) Program Program Update Friends/Partners of Aviation Weather (FPAW) November 2, 2016 Presented by Gary Pokodner, WTIC Program Manager Phone: 202.267.2786 Email:

More information

Subject: Clear Air Turbulence Avoidance Date: 3/22/16 AC No: 00-30C Initiated by: AFS-400 Change:

Subject: Clear Air Turbulence Avoidance Date: 3/22/16 AC No: 00-30C Initiated by: AFS-400 Change: U.S. Department of Transportation Federal Aviation Administration Advisory Circular Subject: Clear Air Turbulence Avoidance Date: 3/22/16 AC No: 00-30C Initiated by: AFS-400 Change: 1 PURPOSE. This advisory

More information

Oceanic Weather Product Development Team

Oceanic Weather Product Development Team Oceanic Weather Product Development Team Cathy Kessinger, Ted Tsui, Paul Herzegh, Earle Williams, Gary Blackburn, Gary Ellrod ASAP Science Review 13-14 April 2005 2005 NASA ASAP Science Meeting, Boulder,

More information

RECAT-EU proposal, validation and consultation

RECAT-EU proposal, validation and consultation RECAT-EU proposal, validation and consultation WakeNet-EU 2014 Vincent TREVE Frederic ROOSELEER ATM Airport Unit 13 May 2014 RECAT-EU Proposal RECAT-EU RECAT-EU was developed on the basis of the joint

More information

Flight and Orbital Mechanics. Exams

Flight and Orbital Mechanics. Exams 1 Flight and Orbital Mechanics Exams Exam AE2104-11: Flight and Orbital Mechanics (23 January 2013, 09.00 12.00) Please put your name, student number and ALL YOUR INITIALS on your work. Answer all questions

More information

Aircraft Wake Vortex State-of-the-Art & Research Needs

Aircraft Wake Vortex State-of-the-Art & Research Needs WakeNet3-Europe EC Grant Agreement No.: ACS7-GA-2008-213462 Aircraft Wake Vortex Compiled by:... F. Holzäpfel (DLR) et al. Date of compilation:... (for a complete list of contributors see page 3) Dissemination

More information

Aircraft level assessment of contrail mitigation

Aircraft level assessment of contrail mitigation Aircraft level assessment of contrail mitigation Jean-Charles Khou Weeded Ghedhaifi, Xavier Vancassel Emmanuel Montreuil, François Garnier 8th November 2016 Objectives Simulation tool Improving the characterization

More information

Friends & Partners in Aviation Weather: Part 135

Friends & Partners in Aviation Weather: Part 135 Friends & Partners in Aviation Weather: Part 135 Thursday, October 12, 2017 Jason E. Herman, CAM Chairman, NBAA Part 135 Subcommittee Part 135 On-Demand Operations A mix of many different operational environments

More information

Volcanic Ash Cloud Observations with the DLR- Falcon over Europe during Air Space Closure

Volcanic Ash Cloud Observations with the DLR- Falcon over Europe during Air Space Closure Volcanic Ash Cloud Observations with the DLR- Falcon over Europe during Air Space Closure Ulrich Schumann, Bernadett Weinzierl, Oliver Reitebuch, Andreas Minikin, Hans Schlager, Stephan Rahm, Monika Scheibe,

More information

GROUND-BASED AND AIR-BORNE LIDAR FOR WAKE VORTEX DETECTION AND CHARACTERISATION

GROUND-BASED AND AIR-BORNE LIDAR FOR WAKE VORTEX DETECTION AND CHARACTERISATION GROUND-BASED AND AIR-BORNE LIDAR FOR WAKE VORTEX DETECTION AND CHARACTERISATION A. Wiegele, S. Rahm, I. Smalikho Institut für Physik der Atmosphäre Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen,

More information

The Ice Crystal Weather Threat to Engines

The Ice Crystal Weather Threat to Engines Jeanne Mason Boeing Commercial Airplanes The Ice Crystal Weather Threat to Engines BOEING is a trademark of Boeing Management Company. Filename.ppt 1 Agenda Introduction Recognition of engine power-loss

More information

The International AMDAR Program

The International AMDAR Program Aircraft Meteorological DAta Relay The International AMDAR Program Improving Weather Forecasts With AMDAR data are used operationally to support a wide range of meteorological applications and are considered

More information

Calculates CAT and MWT diagnostics. Paired down choice of diagnostics (reduce diagnostic redundancy) Statically weighted for all forecast hours

Calculates CAT and MWT diagnostics. Paired down choice of diagnostics (reduce diagnostic redundancy) Statically weighted for all forecast hours 1 Major Upgrades All diagnostics mapped to Eddy Dissipation Rate ADDS now displays EDR values CAT diagnostic extended down to 1000 feet MSL & forecast hours 15 and 18 New Mountain Wave diagnostic CAT diagnostics

More information

Wake vortex severity criteria The search for a single metric

Wake vortex severity criteria The search for a single metric Wake vortex severity criteria The search for a single metric The potential of equivalent roll rate Peter van der Geest WakeNet3_Europe, 4th Major & Final Workshop Wake Turbulence in Current Operations

More information

How to issue SIGMET. SIGMET Seminar for Asia/Pacific Region Bangkok, Thailand, July 2007

How to issue SIGMET. SIGMET Seminar for Asia/Pacific Region Bangkok, Thailand, July 2007 How to issue SIGMET SIGMET Seminar for Asia/Pacific Region Bangkok, Thailand, 11-13 July 2007 Shikembaru, Toru 志堅原透 Japan Meteorological Agency (JMA) 日本気象庁 Japan Meteorological Agency 1 Contents of lecture

More information

Friends and Partners of Aviation Weather Fall Meeting Turbulence Session

Friends and Partners of Aviation Weather Fall Meeting Turbulence Session Friends and Partners of Aviation Weather Fall Meeting Turbulence Session October 24, 2013 Facilitators: Bob Sharman, National Center for Atmospheric Research Tammy Farrar, Federal Aviation Administration

More information

7.1 The Schneider Electric Numerical Turbulence Forecast Verification using In-situ EDR observations from Operational Commercial Aircraft

7.1 The Schneider Electric Numerical Turbulence Forecast Verification using In-situ EDR observations from Operational Commercial Aircraft 7.1 The Schneider Electric Numerical Turbulence Forecast Verification using In-situ EDR observations from Operational Commercial Aircraft Daniel W. Lennartson Schneider Electric Minneapolis, MN John Thivierge

More information

Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes NASA Contractor Report 4767 Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes J. Allen Zak ViGYAN, Inc. Hampton, Virginia William G. Rodgers, Jr. Lockheed Martin Engineering

More information

Michael F. Stringfellow

Michael F. Stringfellow Michael F. Stringfellow Thermals Columns or bubbles of warm air that rise from the ground when it is heated by the sun Soaring Sustained engineless flight using natural sources of lift Boundary or mixing

More information

The DLR Project WETTER & FLIEGEN. Simulated Lidar Signals for Wake-Vortex Detection ahead of the Aircraft

The DLR Project WETTER & FLIEGEN. Simulated Lidar Signals for Wake-Vortex Detection ahead of the Aircraft The DLR Project WETTER & FLIEGEN Final Colloquium, 14.03.2012 Simulated Lidar Signals for Wake-Vortex Detection ahead of the Aircraft Markus Hirschberger, Institute PA, Lidar division 1 Aircraft moves

More information

Issue of SIGMET/AIRMET warning part II

Issue of SIGMET/AIRMET warning part II Issue of SIGMET/AIRMET warning part II 1 SIGMET SIGMET is warning information and hence it is of highest priority amongst other types of meteorological information provided to the aviation users. This

More information

Do Vortices Behave Differently Under Non-Lidar-Friendly Weather?

Do Vortices Behave Differently Under Non-Lidar-Friendly Weather? Do Vortices Behave Differently Under Non-Lidar-Friendly Weather? David C. Burnham and Frank Y. Wang WakeNet-Europe 2014, May 13-14, 2014 EUROCONTROL Experimental Centre (EEC) Brétigny-sur-Orge, France

More information

Aviation in a dual role: Mitigation

Aviation in a dual role: Mitigation Aviation in a dual role: Contributing both to Climate Change and its Mitigation Presentation to The ICAO Workshop on Aviation and Carbon Markets by Gilles Fournier WMO AMDAR Panel 1 THE FACTS OF CLIMATE

More information

4.7 GENERATION OF TURBULENCE AND WIND SHEAR ALERTS: ANATOMY OF A WARNING SYSTEM

4.7 GENERATION OF TURBULENCE AND WIND SHEAR ALERTS: ANATOMY OF A WARNING SYSTEM 4.7 GENERATION OF TURBULENCE AND WIND SHEAR ALERTS: ANATOMY OF A WARNING SYSTEM C. S. Morse *, S. G. Carson, D. Albo, S. Mueller, S. Gerding, and R. K. Goodrich Research Applications Program National Center

More information

INTEGRATED TURBULENCE FORECASTING ALGORITHM 2001 METEOROLOGICAL EVALUATION

INTEGRATED TURBULENCE FORECASTING ALGORITHM 2001 METEOROLOGICAL EVALUATION INTEGRATED TURBULENCE FORECASTING ALGORITHM 2001 METEOROLOGICAL EVALUATION Jeffrey A. Weinrich* Titan Systems Corporation, Atlantic City, NJ Danny Sims Federal Aviation Administration, Atlantic City, NJ

More information

STUDY UNIT SEVENTEEN GRAPHICAL AIRMAN S METEOROLOGICAL ADVISORY (G-AIRMET)

STUDY UNIT SEVENTEEN GRAPHICAL AIRMAN S METEOROLOGICAL ADVISORY (G-AIRMET) STUDY UNIT SEVENTEEN GRAPHICAL AIRMAN S METEOROLOGICAL ADVISORY (G-AIRMET) 341 (10 pages of outline) 17.1 Product Description....................................................... 341 17.2 Issuance...............................................................

More information

The Assessment of Aviation Cloudiness in IPCC Climate Change The Physical Science Basis

The Assessment of Aviation Cloudiness in IPCC Climate Change The Physical Science Basis The Assessment of Aviation Cloudiness in IPCC Climate Change 2007 - The Physical Science Basis I. Introduction II. IPCC Science Assessment III. Aviation cloudiness - linear contrails - contrail (induced)

More information

Detection of young contrails selected results from the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign

Detection of young contrails selected results from the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign TAC-2 Proceedings, June 22 nd to 25 th, 2009, Aachen and Maastricht 57 Detection of young contrails selected results from the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign C. Voigt *, **, U. Schumann,

More information

AOPA. Mitigating Turbulence Impacts in Aviation Operations. General Aviation Perspective

AOPA. Mitigating Turbulence Impacts in Aviation Operations. General Aviation Perspective AOPA Mitigating Turbulence Impacts in Aviation Operations General Aviation Perspective Rune Duke Senior Director, Airspace & Air Traffic Services Aircraft Owners & Pilots Association AOPA Air Safety Institute

More information

NUMERICAL SIMULATION OF A CONVECTIVE TURBULENCE ENCOUNTER

NUMERICAL SIMULATION OF A CONVECTIVE TURBULENCE ENCOUNTER NUMERICAL SIMULATION OF A CONVECTIVE TURBULENCE ENCOUNTER Fred H. Proctor and David W. Hamilton NASA Langley Research Center Hampton Virginia 23681-2199 and Roland L. Bowles AeroTech Research, Inc. Hampton,

More information

Mechanical Turbulence Wind forms eddies as it blows around hanger, stands of trees or other obstructions

Mechanical Turbulence Wind forms eddies as it blows around hanger, stands of trees or other obstructions Turbulence Low-level Turbulence below 15,000 feet consists of Mechanical Turbulence Convective Turbulence Frontal Turbulence Wake Turbulence Mechanical Turbulence Wind forms eddies as it blows around hanger,

More information

Traffic and Weather. Soaring Safety Foundation. Tom Johnson CFIG

Traffic and Weather. Soaring Safety Foundation. Tom Johnson CFIG Traffic and Weather Soaring Safety Foundation Tom Johnson CFIG Weather Contents Weather Gathering Sources Weather Acquisition Enroute Weather Analysis Weather Hazards Weather in the Landing Pattern Basic

More information

Global Response of Clear-Air Turbulence to Climate Change. Professor Paul D. Williams University of Reading, UK

Global Response of Clear-Air Turbulence to Climate Change. Professor Paul D. Williams University of Reading, UK Global Response of Clear-Air Turbulence to Climate Change Professor Paul D. Williams University of Reading, UK Climate change impacts on aviation Rising sea levels and storm surges threaten coastal airports

More information

A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS) NASA Technical Memorandum 110343 A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS) David A. Hinton Langley Research Center, Hampton, Virginia

More information

Answer Key. Page 1 of 5

Answer Key. Page 1 of 5 Answer Key Name: Score: [1] When telephoning a weather briefing facility for preflight weather information, pilots should state A. whether they intend to fly VFR only. B. the full name and address of the

More information

Aircraft Wake Vortex State-of-the-Art & Research Needs

Aircraft Wake Vortex State-of-the-Art & Research Needs WakeNet3-Europe EC Grant Agreement No.: ACS7-GA-2008-213462 Compiled by:... F. Holzäpfel (DLR) et al. Date of compilation:... (for a complete list of contributors see page 3) Dissemination level:... Public

More information

Transitioning NCAR s Aviation Algorithms into NCEP s Operations

Transitioning NCAR s Aviation Algorithms into NCEP s Operations Transitioning NCAR s Aviation Algorithms into NCEP s Operations Hui-Ya Chuang 1, Yali Mao 1,2, and Binbin Zhou 1,2 1. EMC/NCEP/NOAA, College Park MD 2. I.M. System Group, Inc. AMS 18th Conference on Aviation,

More information

Simulations of contrail-to-cirrus transition: Study of the radiative impact on contrail evolution S. Unterstraßer, K. Gierens

Simulations of contrail-to-cirrus transition: Study of the radiative impact on contrail evolution S. Unterstraßer, K. Gierens Simulations of contrail-to-cirrus transition: Study of the radiative impact on contrail evolution S. Unterstraßer, K. Gierens Folie 1 Standardfoliensatz >24.4.2006 Personal Introduction Simon Unterstrasser

More information

Advances in Weather Technology

Advances in Weather Technology Advances in Weather Technology Dr. G. Brant Foote National Center for Atmospheric Research 16 May 2001 NCAR Research Results in Aviation Weather Built on the foundation of the nation s long-standing investment

More information

WAFC London Research and Development (R&D) Plans for algorithm development UK Met Office

WAFC London Research and Development (R&D) Plans for algorithm development UK Met Office SUMMARY OF PRESENTATIONS GIVEN TO THE WORLD AREA FORECAST CENTRE SCIENCE COORDINATION MEETING/4 (26 27 February 2013, College Park, Maryland, United States) INTRODUCTION World Area Forecast Centres (WAFC)

More information

Radar 3D Monitoring of Wake-Vortex Hazards, Circulation and EDR Retrieval/Calibration

Radar 3D Monitoring of Wake-Vortex Hazards, Circulation and EDR Retrieval/Calibration Radar 3D Monitoring of Wake-Vortex Hazards, Circulation and EDR Retrieval/Calibration SESAR P12.2.2. and FP7 UFO Sensors Trials at Paris-CDG & Toulouse Airports Frederic BARBARESCO, Patrick BRUCHEC, David

More information

Deputy Director for Science NCAR Aviation Applications Program

Deputy Director for Science NCAR Aviation Applications Program Icing: Ad Astra Per Aspera Marcia K. Politovich Deputy Director for Science NCAR Aviation Applications Program For ATC Workshop, Washington, DC 18 November 2014 NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

More information

Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems

Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems Randall J. Alliss and Billy Felton Northrop Grumman Corporation, 15010 Conference Center Drive, Chantilly,

More information

A Simple Wake Vortex Encounter Severity Metric

A Simple Wake Vortex Encounter Severity Metric Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015) A Simple Wake Vortex Encounter Severity Metric Rolling Moment Coefficient due to Encounter of an Aircraft with a Wake

More information

Prediction of Top of Descent Location for Idle-thrust Descents

Prediction of Top of Descent Location for Idle-thrust Descents Prediction of Top of Descent Location for Idle-thrust Descents Laurel Stell NASA Ames Research Center Background 10,000 30,000 ft Vertical profile from cruise to meter fix. Top of Descent (TOD) idle thrust

More information

Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region

Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region Suborbital Research in the Mesosphere and Lower Thermosphere a New Window on the Turbopause Region Michael E. Summers George Mason University Mesosphere-Lower Thermosphere (MLT) Next-Gen Reusable Suborbital

More information

Deutscher Wetterdienst

Deutscher Wetterdienst WakeNet3-Greenwake Workshop Wake Vortex & Wind Monitoring Sensors in all weather conditions DWD s new Remote Wind Sensing Equipment for an Integrated Terminal Weather System (ITWS) Frank Lehrnickel Project

More information

S-Wake Assessment of Wake Vortex Safety Publishable Summary Report

S-Wake Assessment of Wake Vortex Safety Publishable Summary Report Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR NLR-TP-2003-243 S-Wake Assessment of Wake Vortex Safety Publishable Summary Report A.C. de Bruin (with input from partners)

More information

Towards Climate-Optimised Routing of Trans-Atlantic Flights. Emma Irvine Keith Shine, Brian Hoskins (University of Reading) Bob Lunnon (Met Office)

Towards Climate-Optimised Routing of Trans-Atlantic Flights. Emma Irvine Keith Shine, Brian Hoskins (University of Reading) Bob Lunnon (Met Office) Towards Climate-Optimised Routing of Trans-Atlantic Flights Emma Irvine Keith Shine, Brian Hoskins (University of Reading) Bob Lunnon (Met Office) Outline Motivation for climate-optimised routing The climate

More information

Doppler Weather Radars and Weather Decision Support for DP Vessels

Doppler Weather Radars and Weather Decision Support for DP Vessels Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 14-15, 2014 RISK SESSION Doppler Weather Radars and By Michael D. Eilts and Mike Arellano Weather Decision Technologies, Inc.

More information

Wake Evolution of High-Lift Configuration from Roll-Up to Vortex Decay

Wake Evolution of High-Lift Configuration from Roll-Up to Vortex Decay Wake Evolution of High-Lift Configuration from Roll-Up to Vortex Decay Takashi Misaka, Frank Holzäpfel and Thomas Gerz Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Oberpfaffenhofen, Germany The

More information

WIND PREDICTION TO SUPPORT REDUCED WAKE SEPARATION STANDARDS FOR CLOSELY SPACED PARALLEL RUNWAY DEPARTURES

WIND PREDICTION TO SUPPORT REDUCED WAKE SEPARATION STANDARDS FOR CLOSELY SPACED PARALLEL RUNWAY DEPARTURES Proceedings of the 11 th Conference on Aviation, Range and Aerospace Meteorology, Hyannis, MA 24 P2.1 WIND PREDICTION TO SUPPORT REDUCED WAKE SEPARATION STANDARDS FOR CLOSELY SPACED PARALLEL RUNWAY DEPARTURES

More information

Translating Meteorological Observations into Air Traffic Impacts in Singapore Flight Information Region (FIR)

Translating Meteorological Observations into Air Traffic Impacts in Singapore Flight Information Region (FIR) Translating Meteorological Observations into Air Traffic Impacts in Singapore Flight Information Region (FIR) Michael Robinson The MITRE Corporation Approved for Public Release; Distribution Unlimited.

More information

Strengthening the CDM triad: A view from the cockpit

Strengthening the CDM triad: A view from the cockpit Strengthening the CDM triad: A view from the cockpit Captain Rocky Stone Chief Technical Pilot United Airlines Friends and Partners in Aviation Weather October 21, 2010 NextGen weather concept Current

More information

Explosive volcanic eruptions in the North Pacific: Interactions between the Alaska Volcano Observatory and Volcanic Ash Advisory Centers

Explosive volcanic eruptions in the North Pacific: Interactions between the Alaska Volcano Observatory and Volcanic Ash Advisory Centers Explosive volcanic eruptions in the North Pacific: Interactions between the Alaska Volcano Observatory and Volcanic Ash Advisory Centers David Schneider U.S. Geological Survey Alaska Volcano Observatory

More information

Dr. Ananthakrishna Sarma, Senior Scientist, SAIC, 1710 SAIC Dr., McLean, VA 22102

Dr. Ananthakrishna Sarma, Senior Scientist, SAIC, 1710 SAIC Dr., McLean, VA 22102 Dr. Ananthakrishna Sarma, Senior Scientist, SAIC, 1710 SAIC Dr., McLean, VA 22102 Presented at the Airships to the Arctic Conference of the Van Horne Institute 5-6 December 2011 Introduction Weather hazards

More information

Prediction of cirrus clouds in GCMs

Prediction of cirrus clouds in GCMs Prediction of cirrus clouds in GCMs Bernd Kärcher, Ulrike Burkhardt, Klaus Gierens, and Johannes Hendricks DLR Institut für Physik der Atmosphäre Oberpfaffenhofen, 82234 Wessling, Germany bernd.kaercher@dlr.de

More information

The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China

The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China Lei Li, 1 Pak Wai Chan, 2 Honglong Yang, 1 Rong Zong, 1 Xia Mao, 1 Yin Jiang 1 and Hongbo Zhuang

More information

ENSTROM 480B OPERATOR S MANUAL AND FAA APPROVED ROTORCRAFT FLIGHT MANUAL SUPPLEMENT GARMIN GDL 69AH XM WX SATELLITE WEATHER/RADIO RECEIVER

ENSTROM 480B OPERATOR S MANUAL AND FAA APPROVED ROTORCRAFT FLIGHT MANUAL SUPPLEMENT GARMIN GDL 69AH XM WX SATELLITE WEATHER/RADIO RECEIVER ENSTROM 480B OPERATOR S MANUAL AND FAA APPROVED ROTORCRAFT FLIGHT MANUAL SUPPLEMENT GARMIN GDL 69AH XM WX SATELLITE WEATHER/RADIO RECEIVER * * * * * REPORT NO. 28-AC-062 HELICOPTER SERIAL NO. HELICOPTER

More information

WMO AMDAR Programme Overview

WMO AMDAR Programme Overview WMO AMDAR Programme Overview Bryce Ford - presenting on behalf of WMO and NOAA FPAW Nov 1, 2012 The WMO AMDAR Program AMDAR Programme Current Status WMO World Meteorological Organization (http://www.wmo.int)

More information

DETERMINING THE INFLUENCE OF OUTSIDE AIR TEMPERATURE ON AIRCRAFT AIRSPEED

DETERMINING THE INFLUENCE OF OUTSIDE AIR TEMPERATURE ON AIRCRAFT AIRSPEED Doris Novak Tomislav Radišić Izidor Alfirević ISSN 333-4 DETERMINING THE INFLUENCE OF OUTSIDE AIR TEMPERATURE ON AIRCRAFT AIRSPEED Summary UDC: 656.7.00.5:69.735.07 Errors that occur in conventional measurement

More information

Radar/Lidar Sensors for Wind & Wake-Vortex Monitoring on Airport: First results of SESAR P XP0 trials campaign at Paris CDG Airport

Radar/Lidar Sensors for Wind & Wake-Vortex Monitoring on Airport: First results of SESAR P XP0 trials campaign at Paris CDG Airport www.thalesgroup.com Radar/Lidar Sensors for Wind & Wake-Vortex Monitoring on Airport: First results of SESAR P12.2.2 XP0 trials campaign at Paris CDG Airport F. Barbaresco, Thales Air Systems 2 / Synthesis

More information

WILL CLIMATE CHANGE AFFECT CONTRAIL OCCURRENCE? JAKE GRISTEY UNIVERSITY OF READING

WILL CLIMATE CHANGE AFFECT CONTRAIL OCCURRENCE? JAKE GRISTEY UNIVERSITY OF READING WILL CLIMATE CHANGE AFFECT CONTRAIL OCCURRENCE? JAKE GRISTEY UNIVERSITY OF READING Submitted in partial fulfillment of the requirements of the degree of Master of Meteorology, Meteorology and Climate with

More information