Pertubation10 Page 1

Size: px
Start display at page:

Download "Pertubation10 Page 1"

Transcription

1 Pertubation10 Page 1 Singular Perturbation Theory for Algebraic Equations Monday, February 22, :58 PM Readings: Holmes, Sec. 1.5 Hinch, Secs. 1.2 & 1.3 Homework 1 due Thursday, February 25. Again we will consider some exactly solvable algebraic equations to see what can go wrong with regular perturbation theory and how to fix it. These techniques will have much more useful analogs that will carry over to the more interesting differential equation context. Consider trying to solve the following algebraic equation with regular perturbation theory: Quadratic equation gives exact solution, but suppose we don't know that. Try regular perturbation theory to find the roots: This looks like a fine solution, but we're supposed to get two for a quadratic solution. Metaprinciple (not necessarily rigorous but usually true): When perturbation theory fails, you can often detect it from the approximation it gives you. Here we see that the perturbation theory only produced one solution where there should have been two, so clearly one solution is not being approximated. Let's look at the exact solution to see what went wrong with the perturbation method: Let's expand this in a power series in to see what a perturbation

2 Pertubation10 Page 2 theory might have been capable of doing. Well at least the regular perturbation theory did get one of the roots right. But the reason it couldn't find the second root is that the asymptotic expansion for the second root is inconsistent with the assumption of regular perturbation theory. In particular, the second root grows unboundedly as becomes smaller, and this violates the implicit assumption that x 0, x 1 are order unity quantities. How do we fix this deficiency of the regular perturbation expansion. Well we could have instead tried: and this would work but not entirely satisfying because how do we know how many negative powers of we would need in a given calculation? A more efficient way to modify regular perturbation theory is to begin with consideration of dominant balance. This arises when we realize that a solution we're looking for is not actually order unity. This gives a good reason for why regular perturbation theory doesn't find it because regular perturbation theory is implicitly assuming the base solution (x 0) is order unity. A simple idea is to rescale the problem by an appropriate factor so that the missing solution is order unity in terms of the new rescaled variable.

3 Pertubation10 Page 3 Want the solution you're trying to approximate be order unity in terms of X. For our case, this would mean: And it's clear a regular perturbation theory could get this. But how would we have guessed this without knowing the exact solution? Make the rescaling in the equation, without presupposing the appropriate choice of. And remember that we want Principle of dominant balance: If you consider the magnitudes of each term in an equation, there cannot be one nontrivial term that has a larger order of magnitude than all other terms. So when each term is given an order of magnitude, there must be two or more nontrivial terms of the dominant (most important) order. So what one can do is to see what possible balances can be struck in the equation through appropriate choices of and check whether those are dominant balances. If they're not dominant, forget it, if they are dominant, might be useful. In our equation, we have three terms, so have 3 possible pairwise balances to check.

4 Pertubation10 Page 4 We've found two good dominant balances. The second one clearly corresponds to the solution already found by regular perturbation theory. The first one suggests how to find the missing root: Try a regular perturbation theory on the rescaled variable: Clean up the negative powers: The zero root corresponds to the one we already found, and to some extent we are not correctly scaled to find it (though we could with harder work). This hints that another rescaling would be appropriate to approximate this small root, which is of course equivalent to what we did before. Continuing just with the new root for which we have properly rescaled.

5 Pertubation10 Page 5 in this way, combining this result with the one from regular perturbation theory, we obtain the approximations to the solutions of the original quadratic equation: Another singular perturbation problem for algebraic equations Try regular perturbation theory:

6 Pertubation10 Page 6 These can be shown to be formally consistent with the exact solution. But notice that the coefficients of the higher order terms are large. This may cause us to worry because a fundamental premise of the perturbatoin theory is that these coefficients are order unity. Formally speaking, 100 and 101 are order unity since they don't involve the small parameter. However, the utility of the perturbation approximation will clearly degrade if higher order terms aren't getting smaller. In particular, while this regular perturbation expansion will work very well for but would be very bad for And going to higher order wouldn't help, the terms would keep getting bigger. Saying this more generally, suppose we had the problem: where is treated as an order unity constant. Repeating the regular perturbation expansion for fixed meaning we assume it is order unity) and smal would give the following: This is a good approximation when but becomes horrific when The point is that one way in which regular perturbation theory can give bad results is if the underlying problem has a hidden small parameter. That is, there are constants that are being treated as order unity but in

7 Pertubation10 Page 7 fact are small enough to be comparable with the parameter that is explicitly assumed to be small and this interferes with the perturbation expansion. what is the hidden small parameter here? It's not just seeing a.01 at the end of the number. The real hidden small parameter is the separation between the roots. We run into trouble when the small parameter is comparable to this separation between the roots because in some sense one is blurring over qualitatively distinct features. So we see that the perturbation can fundamentally change the nature of the problem (i.e. the base problem) if it is comparable in size to the separation of the roots. The perturbation could cause the roots to collide, bifurcate, etc. which really means the original base problem is not close to the perturbed problem in a computationally meaningful way. How do we fix this? If is small but finite, then perhaps it should be linked to the explicit small parameter, i.e., This gets complicated and we'll come back to it in a later lecture under the guise of distinguished limits. The metapriniciple is that it is usually impossible to develop a asymptotic expansion with respect to two independent small parameters. This is why one typically make linkages between small parameters and develop results separately for various asymptotic regimes of interest. More on this later in the course. If then we have a more fundamental problem. In this case, the base problem has multiple roots, and not coincidentally, the pertubation expansion produces infinities. How does one deal with this problem? Rescaling the equation won't help because clearly the roots should still be order unity. Let's look at the exact solution to see what goes wrong: Quadratic equation:

8 Pertubation10 Page 8 So the equation was properly scaled, but the appropriate expansion parameter was not in terms of integer powers of the small parameter. This suggests modifying the asymptotic expansion in terms of a more general gauge functions. Clearly looking at the exact solution suggests we should have expanded in half-integral powres of the small parameter but how could we have seen this without the exact solution? First of all recognize that regular perturbation theory broke down, and that the rescaling trick (finding another dominant balance) wouldn't help. Try a more general asymptotic expansion: are the "gauge functions" The gauge functions need to be determined on the fly but let's sort this out as best we can without making special assumptoins yet.

9 Pertubation10 Page 9 Hard to order these all at once but can attack the most important piece. If one wanted to estimate the actual size of the error, one would have to go to higher order terms to see how big should be to create a balance with the most important uncancelled term.

MITOCW ocw f99-lec23_300k

MITOCW ocw f99-lec23_300k MITOCW ocw-18.06-f99-lec23_300k -- and lift-off on differential equations. So, this section is about how to solve a system of first order, first derivative, constant coefficient linear equations. And if

More information

MITOCW ocw f99-lec09_300k

MITOCW ocw f99-lec09_300k MITOCW ocw-18.06-f99-lec09_300k OK, this is linear algebra lecture nine. And this is a key lecture, this is where we get these ideas of linear independence, when a bunch of vectors are independent -- or

More information

Stochastic Integration (Simple Version)

Stochastic Integration (Simple Version) Stochastic Integration (Simple Version) Tuesday, March 17, 2015 2:03 PM Reading: Gardiner Secs. 4.1-4.3, 4.4.4 But there are boundary issues when (if ) so we can't apply the standard delta function integration

More information

MITOCW ocw f99-lec17_300k

MITOCW ocw f99-lec17_300k MITOCW ocw-18.06-f99-lec17_300k OK, here's the last lecture in the chapter on orthogonality. So we met orthogonal vectors, two vectors, we met orthogonal subspaces, like the row space and null space. Now

More information

is any vector v that is a sum of scalar multiples of those vectors, i.e. any v expressible as v = c 1 v n ... c n v 2 = 0 c 1 = c 2

is any vector v that is a sum of scalar multiples of those vectors, i.e. any v expressible as v = c 1 v n ... c n v 2 = 0 c 1 = c 2 Math 225-4 Week 8 Finish sections 42-44 and linear combination concepts, and then begin Chapter 5 on linear differential equations, sections 5-52 Mon Feb 27 Use last Friday's notes to talk about linear

More information

MITOCW watch?v=vu_of9tcjaa

MITOCW watch?v=vu_of9tcjaa MITOCW watch?v=vu_of9tcjaa The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To

More information

MITOCW watch?v=rf5sefhttwo

MITOCW watch?v=rf5sefhttwo MITOCW watch?v=rf5sefhttwo The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To

More information

MITOCW MITRES_18-007_Part3_lec5_300k.mp4

MITOCW MITRES_18-007_Part3_lec5_300k.mp4 MITOCW MITRES_18-007_Part3_lec5_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4

MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4 MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4 Remember, consult the Homework Guidelines for general instructions. GRADED HOMEWORK: 1. Give direct proofs for the two following its. Do not use

More information

MITOCW ocw f99-lec01_300k

MITOCW ocw f99-lec01_300k MITOCW ocw-18.06-f99-lec01_300k Hi. This is the first lecture in MIT's course 18.06, linear algebra, and I'm Gilbert Strang. The text for the course is this book, Introduction to Linear Algebra. And the

More information

We will begin by first solving this equation on a rectangle in 2 dimensions with prescribed boundary data at each edge.

We will begin by first solving this equation on a rectangle in 2 dimensions with prescribed boundary data at each edge. Page 1 Sunday, May 31, 2015 9:24 PM From our study of the 2-d and 3-d heat equation in thermal equlibrium another PDE which we will learn to solve. Namely Laplace's Equation we arrive at In 3-d In 2-d

More information

MATH 115, SUMMER 2012 LECTURE 12

MATH 115, SUMMER 2012 LECTURE 12 MATH 115, SUMMER 2012 LECTURE 12 JAMES MCIVOR - last time - we used hensel s lemma to go from roots of polynomial equations mod p to roots mod p 2, mod p 3, etc. - from there we can use CRT to construct

More information

MITOCW ocw feb k

MITOCW ocw feb k MITOCW ocw-18-086-13feb2006-220k INTRODUCTION: The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare

More information

MITOCW Lec 15 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 15 MIT 6.042J Mathematics for Computer Science, Fall 2010 MITOCW Lec 15 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality

More information

But, there is always a certain amount of mystery that hangs around it. People scratch their heads and can't figure

But, there is always a certain amount of mystery that hangs around it. People scratch their heads and can't figure MITOCW 18-03_L19 Today, and for the next two weeks, we are going to be studying what, for many engineers and a few scientists is the most popular method of solving any differential equation of the kind

More information

MITOCW watch?v=y6ma-zn4olk

MITOCW watch?v=y6ma-zn4olk MITOCW watch?v=y6ma-zn4olk PROFESSOR: We have to ask what happens here? This series for h of u doesn't seem to stop. You go a 0, a 2, a 4. Well, it could go on forever. And what would happen if it goes

More information

What if the characteristic equation has a double root?

What if the characteristic equation has a double root? MA 360 Lecture 17 - Summary of Recurrence Relations Friday, November 30, 018. Objectives: Prove basic facts about basic recurrence relations. Last time, we looked at the relational formula for a sequence

More information

I'm not going to tell you what differential equations are, or what modeling is. If you still are uncertain about those

I'm not going to tell you what differential equations are, or what modeling is. If you still are uncertain about those MITOCW 18-03_L1d OK, let's get started. I'm assuming that, A, you went recitation yesterday, B, that even if you didn't, you know how to separate variables, and you know how to construct simple models,

More information

Proof: If (a, a, b) is a Pythagorean triple, 2a 2 = b 2 b / a = 2, which is impossible.

Proof: If (a, a, b) is a Pythagorean triple, 2a 2 = b 2 b / a = 2, which is impossible. CS103 Handout 07 Fall 2013 October 2, 2013 Guide to Proofs Thanks to Michael Kim for writing some of the proofs used in this handout. What makes a proof a good proof? It's hard to answer this question

More information

MITOCW MITRES18_006F10_26_0602_300k-mp4

MITOCW MITRES18_006F10_26_0602_300k-mp4 MITOCW MITRES18_006F10_26_0602_300k-mp4 FEMALE VOICE: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

MITOCW ocw f07-lec37_300k

MITOCW ocw f07-lec37_300k MITOCW ocw-18-01-f07-lec37_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

MITOCW ocw f99-lec30_300k

MITOCW ocw f99-lec30_300k MITOCW ocw-18.06-f99-lec30_300k OK, this is the lecture on linear transformations. Actually, linear algebra courses used to begin with this lecture, so you could say I'm beginning this course again by

More information

III. What Are the Prices in 7-11?

III. What Are the Prices in 7-11? III. What Are the Prices in 7-11? There are many ways to search for the answer to a problem. To be effective, particularly when the domain of possible solutions is very large, you have to organize the

More information

MITOCW watch?v=nw4vp_upvme

MITOCW watch?v=nw4vp_upvme MITOCW watch?v=nw4vp_upvme The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

3: Linear Systems. Examples. [1.] Solve. The first equation is in blue; the second is in red. Here's the graph: The solution is ( 0.8,3.4 ).

3: Linear Systems. Examples. [1.] Solve. The first equation is in blue; the second is in red. Here's the graph: The solution is ( 0.8,3.4 ). 3: Linear Systems 3-1: Graphing Systems of Equations So far, you've dealt with a single equation at a time or, in the case of absolute value, one after the other. Now it's time to move to multiple equations

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R Roussel October 19, 2005 1 Introduction When we apply the steady-state approximation (SSA) in chemical kinetics, we typically argue that some of the intermediates are

More information

MITOCW ocw feb k

MITOCW ocw feb k MITOCW ocw-18-086-24feb2006-220k NARRATOR: The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare in general

More information

MITOCW ocw f99-lec16_300k

MITOCW ocw f99-lec16_300k MITOCW ocw-18.06-f99-lec16_300k OK. Here's lecture sixteen and if you remember I ended up the last lecture with this formula for what I called a projection matrix. And maybe I could just recap for a minute

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

MITOCW ocw-18_02-f07-lec02_220k

MITOCW ocw-18_02-f07-lec02_220k MITOCW ocw-18_02-f07-lec02_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

εx 2 + x 1 = 0. (2) Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives x 1 = 0,

εx 2 + x 1 = 0. (2) Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives x 1 = 0, 4 Rescaling In this section we ll look at one of the reasons that our ε = 0 system might not have enough solutions, and introduce a tool that is fundamental to all perturbation systems. We ll start with

More information

MITOCW MITRES_18-007_Part5_lec3_300k.mp4

MITOCW MITRES_18-007_Part5_lec3_300k.mp4 MITOCW MITRES_18-007_Part5_lec3_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources

More information

MITOCW watch?v=pqkyqu11eta

MITOCW watch?v=pqkyqu11eta MITOCW watch?v=pqkyqu11eta The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

MITOCW MIT18_02SCF10Rec_61_300k

MITOCW MIT18_02SCF10Rec_61_300k MITOCW MIT18_02SCF10Rec_61_300k JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been learning about the divergence theorem, also known as Gauss's theorem, and flux, and all that good stuff.

More information

Asymptotic Analysis Cont'd

Asymptotic Analysis Cont'd Cont'd Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Announcements We have class this Wednesday, Jan 18 at 12:30 That is, we have two sessions this Wednesday: at

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

this, you take the matrix and then you calculate something called eigenvalues and eigenvectors. Do you know what those are? I didn't think you did,

this, you take the matrix and then you calculate something called eigenvalues and eigenvectors. Do you know what those are? I didn't think you did, MITOCW 18-03_L29 We are going to need a few facts about fundamental matrices, and I am worried that over the weekend this spring activities weekend you might have forgotten them. So I will just spend two

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Main topics for the First Midterm Exam

Main topics for the First Midterm Exam Main topics for the First Midterm Exam The final will cover Sections.-.0, 2.-2.5, and 4.. This is roughly the material from first three homeworks and three quizzes, in addition to the lecture on Monday,

More information

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1.

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Stationary Distributions Monday, September 28, 2015 2:02 PM No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Homework 1 due Friday, October 2 at 5 PM strongly

More information

MATH 521, WEEK 2: Rational and Real Numbers, Ordered Sets, Countable Sets

MATH 521, WEEK 2: Rational and Real Numbers, Ordered Sets, Countable Sets MATH 521, WEEK 2: Rational and Real Numbers, Ordered Sets, Countable Sets 1 Rational and Real Numbers Recall that a number is rational if it can be written in the form a/b where a, b Z and b 0, and a number

More information

We are going to start studying today, and for quite a while, the linear second-order differential equation with

We are going to start studying today, and for quite a while, the linear second-order differential equation with MITOCW 18-03_L9 We're going to start. We are going to start studying today, and for quite a while, the linear second-order differential equation with constant coefficients. In standard form, it looks like,

More information

Induction. Announcements. Overview. Defining Functions. Sum of Squares. Closed-form expression for SQ(n) There have been some corrections to A1

Induction. Announcements. Overview. Defining Functions. Sum of Squares. Closed-form expression for SQ(n) There have been some corrections to A1 Induction There have been some corrections to A1 Check the website and the newsgroup Announcements Upcoming topic: Recursion Lecture 3 CS 211 Fall 2005 Overview Recursion a programming strategy that solves

More information

MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4

MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4 MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4 PROFESSOR: OK, this lecture is about the slopes, the derivatives, of two of the great functions of mathematics: sine x and cosine x. Why do I say great

More information

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality Math 336-Modern Algebra Lecture 08 9/26/4. Cardinality I started talking about cardinality last time, and you did some stuff with it in the Homework, so let s continue. I said that two sets have the same

More information

Sum of Squares. Defining Functions. Closed-Form Expression for SQ(n)

Sum of Squares. Defining Functions. Closed-Form Expression for SQ(n) CS/ENGRD 2110 Object-Oriented Programming and Data Structures Spring 2012 Thorsten Joachims Lecture 22: Induction Overview Recursion A programming strategy that solves a problem by reducing it to simpler

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Homework 2 due Friday, October 11 at 5 PM.

Homework 2 due Friday, October 11 at 5 PM. Complex Riemann Surfaces Monday, October 07, 2013 2:01 PM Homework 2 due Friday, October 11 at 5 PM. How should one choose the specific branches to define the Riemann surface? It is a subjective choice,

More information

This chapter covers asymptotic analysis of function growth and big-o notation.

This chapter covers asymptotic analysis of function growth and big-o notation. Chapter 14 Big-O This chapter covers asymptotic analysis of function growth and big-o notation. 14.1 Running times of programs An important aspect of designing a computer programs is figuring out how well

More information

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 GILBERT STRANG: OK, today is about differential equations. That's where calculus really is applied. And these will be equations that describe growth.

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

CH 73 THE QUADRATIC FORMULA, PART II

CH 73 THE QUADRATIC FORMULA, PART II 1 CH THE QUADRATIC FORMULA, PART II INTRODUCTION W ay back in Chapter 55 we used the Quadratic Formula to solve quadratic equations like 6x + 1x + 0 0, whose solutions are 5 and 8. In fact, all of the

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

Last Update: March 1 2, 201 0

Last Update: March 1 2, 201 0 M ath 2 0 1 E S 1 W inter 2 0 1 0 Last Update: March 1 2, 201 0 S eries S olutions of Differential Equations Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections

More information

MITOCW ocw f07-lec39_300k

MITOCW ocw f07-lec39_300k MITOCW ocw-18-01-f07-lec39_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Lesson 6: Algebra. Chapter 2, Video 1: "Variables"

Lesson 6: Algebra. Chapter 2, Video 1: Variables Lesson 6: Algebra Chapter 2, Video 1: "Variables" Algebra 1, variables. In math, when the value of a number isn't known, a letter is used to represent the unknown number. This letter is called a variable.

More information

MITOCW MIT18_01SCF10Rec_24_300k

MITOCW MIT18_01SCF10Rec_24_300k MITOCW MIT18_01SCF10Rec_24_300k JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been doing related rates problems. I've got another example for you, here. So this one's a really tricky one.

More information

MITOCW R11. Double Pendulum System

MITOCW R11. Double Pendulum System MITOCW R11. Double Pendulum System The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

Gauss's Law -- Conceptual Solutions

Gauss's Law -- Conceptual Solutions Gauss's Law Gauss's Law -- Conceptual Solutions 1.) An electric charge exists outside a balloon. The net electric flux through the balloon is zero. Why? Solution: There will be the same amount of flux

More information

MITOCW watch?v=ed_xr1bzuqs

MITOCW watch?v=ed_xr1bzuqs MITOCW watch?v=ed_xr1bzuqs The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

the system. Instead, it is something we observe from outside. The only reason this second meaning is at all interesting to us is because of the last r

the system. Instead, it is something we observe from outside. The only reason this second meaning is at all interesting to us is because of the last r Formal Systems II: Godel's Proof Nathan Albin November 2, 2005 Mathematical meaning in formal systems. with the LT-system. Symbols: Axioms: Rules: fl; T; og foltoog Rule I: If xlty is a theorem, then so

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

Announcements. Problem Set 6 due next Monday, February 25, at 12:50PM. Midterm graded, will be returned at end of lecture.

Announcements. Problem Set 6 due next Monday, February 25, at 12:50PM. Midterm graded, will be returned at end of lecture. Turing Machines Hello Hello Condensed Slide Slide Readers! Readers! This This lecture lecture is is almost almost entirely entirely animations that that show show how how each each Turing Turing machine

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: Piecewise-Defined Functions; Limits and Continuity in Calculus 1.6: Combining Functions

More information

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S.

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S. 1 Notation For those unfamiliar, we have := means equal by definition, N := {0, 1,... } or {1, 2,... } depending on context. (i.e. N is the set or collection of counting numbers.) In addition, means for

More information

Separable First-Order Equations

Separable First-Order Equations 4 Separable First-Order Equations As we will see below, the notion of a differential equation being separable is a natural generalization of the notion of a first-order differential equation being directly

More information

Limits and Continuity

Limits and Continuity Chapter Limits and Continuity. Limits of Sequences.. The Concept of Limit and Its Properties A sequence { } is an ordered infinite list x,x,...,,... The n-th term of the sequence is, and n is the index

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture Separation of variables In the previous lecture we found that integrating both sides of the equation led to an integral dv = 3 8v (.1) dt 8 v(t) dt whose value we couldn t compute because v(t)

More information

A Note on Turing Machine Design

A Note on Turing Machine Design CS103 Handout 17 Fall 2013 November 11, 2013 Problem Set 7 This problem explores Turing machines, nondeterministic computation, properties of the RE and R languages, and the limits of RE and R languages.

More information

MITOCW watch?v=k3ofb7rlbve

MITOCW watch?v=k3ofb7rlbve MITOCW watch?v=k3ofb7rlbve The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

LECTURE 3. RATIONAL NUMBERS: AN EXAMPLE OF MATHEMATICAL CONSTRUCT

LECTURE 3. RATIONAL NUMBERS: AN EXAMPLE OF MATHEMATICAL CONSTRUCT ANALYSIS FOR HIGH SCHOOL TEACHERS LECTURE 3. RATIONAL NUMBERS: AN EXAMPLE OF MATHEMATICAL CONSTRUCT ROTHSCHILD CAESARIA COURSE, 2011/2 1. Rational numbers: how to define them? Rational numbers were discovered

More information

Since the logs have the same base, I can set the arguments equal and solve: x 2 30 = x x 2 x 30 = 0

Since the logs have the same base, I can set the arguments equal and solve: x 2 30 = x x 2 x 30 = 0 LOGARITHMIC EQUATIONS (LOGS) 1 Type 1: The first type of logarithmic equation has two logs, each having the same base, set equal to each other, and you solve by setting the insides (the "arguments") equal

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

Complex Matrix Transformations

Complex Matrix Transformations Gama Network Presents: Complex Matrix Transformations By By Scott Johnson Gamasutra May 17, 2002 URL: http://www.gamasutra.com/features/20020510/johnson_01.htm Matrix transforms are a ubiquitous aspect

More information

Lecture 35 Minimization and maximization of functions. Powell s method in multidimensions Conjugate gradient method. Annealing methods.

Lecture 35 Minimization and maximization of functions. Powell s method in multidimensions Conjugate gradient method. Annealing methods. Lecture 35 Minimization and maximization of functions Powell s method in multidimensions Conjugate gradient method. Annealing methods. We know how to minimize functions in one dimension. If we start at

More information

Solving with Absolute Value

Solving with Absolute Value Solving with Absolute Value Who knew two little lines could cause so much trouble? Ask someone to solve the equation 3x 2 = 7 and they ll say No problem! Add just two little lines, and ask them to solve

More information

Sequences and Series

Sequences and Series Sequences and Series What do you think of when you read the title of our next unit? In case your answers are leading us off track, let's review the following IB problems. 1 November 2013 HL 2 3 November

More information

Unit 3 - Solubility of Ionic Substances. 1. How to use the Solubility Table to develop a scheme for identification of an unknown ion in a solution.

Unit 3 - Solubility of Ionic Substances. 1. How to use the Solubility Table to develop a scheme for identification of an unknown ion in a solution. In Tutorial 3 you will be shown: 1. How to use the Solubility Table to develop a scheme for identification of an unknown ion in a solution. 2. How to use the Solubility Table to outline a procedure to

More information

What is calculus? Consider the way that Archimedes figured out the formula for the area of a circle:

What is calculus? Consider the way that Archimedes figured out the formula for the area of a circle: What is calculus? Consider the way that Archimedes figured out the formula for the area of a circle: Calculus involves formally describing what happens as a value becomes infinitesimally small (or large).

More information

What is calculus? Consider the way that Archimedes figured out the formula for the area of a circle:

What is calculus? Consider the way that Archimedes figured out the formula for the area of a circle: What is calculus? Consider the way that Archimedes figured out the formula for the area of a circle: Calculus involves formally describing what happens as a value becomes infinitesimally small (or large).

More information

UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH / LeClair Fall Circuits Exercises

UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH / LeClair Fall Circuits Exercises UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 106-4 / LeClair Fall 008 Circuits Exercises 1. Are the two headlights of a car wired in series or in parallel? How can you tell? Have you ever

More information

Nonregular Languages

Nonregular Languages Nonregular Languages Recap from Last Time Theorem: The following are all equivalent: L is a regular language. There is a DFA D such that L( D) = L. There is an NFA N such that L( N) = L. There is a regular

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two Recap from Last Time Old MacDonald Had a Symbol, Σ-eye-ε-ey, Oh! You may have noticed that we have several letter- E-ish symbols in CS103, which can get confusing! Here s a quick

More information

Weierstrass Products and More on Analytic Continuation

Weierstrass Products and More on Analytic Continuation Weierstrass Products and More on Analytic Continuation Thursday, December 05, 2013 1:58 PM Hard deadline for Homework 4: Wednesday, December 11 at 5 PM. rapid grading on or after Friday, December 6 Final

More information

Instructor (Brad Osgood)

Instructor (Brad Osgood) TheFourierTransformAndItsApplications-Lecture14 Instructor (Brad Osgood):Okay. Let me circulate, starting over this side of the room this time, the sign-up sheet for the midterm exams. So remember, next

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

MITOCW MITRES18_006F10_26_0601_300k-mp4

MITOCW MITRES18_006F10_26_0601_300k-mp4 MITOCW MITRES18_006F10_26_0601_300k-mp4 ANNOUNCER: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

1 General Tips and Guidelines for Proofs

1 General Tips and Guidelines for Proofs Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout Page 1 of 5 1 General Tips and Guidelines for Proofs Proofs, or really any question that asks you to justify or explain something, are a huge

More information

MITOCW big_picture_derivatives_512kb-mp4

MITOCW big_picture_derivatives_512kb-mp4 MITOCW big_picture_derivatives_512kb-mp4 PROFESSOR: OK, hi. This is the second in my videos about the main ideas, the big picture of calculus. And this is an important one, because I want to introduce

More information

Math 9 Notes. Grade 6 8 Review. Multiplication and Division: Slide show and Table. M9 Intro Notes 2017.notebook. June 12, 2017.

Math 9 Notes. Grade 6 8 Review. Multiplication and Division: Slide show and Table. M9 Intro Notes 2017.notebook. June 12, 2017. Math 9 Notes Grade 6 8 Review Sep 11:32 AM Multiplication and Division: Slide show and Table Sep 11:34 AM 1 Long Division 11 Sept Sep 11:34 AM Find the first number that 6 divides into Divide 6 into 41

More information

Mathematics for Intelligent Systems Lecture 5 Homework Solutions

Mathematics for Intelligent Systems Lecture 5 Homework Solutions Mathematics for Intelligent Systems Lecture 5 Homework Solutions Advanced Calculus I: Derivatives and local geometry) Nathan Ratliff Nov 25, 204 Problem : Gradient and Hessian Calculations We ve seen that

More information

MITOCW ocw f99-lec05_300k

MITOCW ocw f99-lec05_300k MITOCW ocw-18.06-f99-lec05_300k This is lecture five in linear algebra. And, it will complete this chapter of the book. So the last section of this chapter is two point seven that talks about permutations,

More information

Warm-up Simple methods Linear recurrences. Solving recurrences. Misha Lavrov. ARML Practice 2/2/2014

Warm-up Simple methods Linear recurrences. Solving recurrences. Misha Lavrov. ARML Practice 2/2/2014 Solving recurrences Misha Lavrov ARML Practice 2/2/2014 Warm-up / Review 1 Compute 100 k=2 ( 1 1 ) ( = 1 1 ) ( 1 1 ) ( 1 1 ). k 2 3 100 2 Compute 100 k=2 ( 1 1 ) k 2. Homework: find and solve problem Algebra

More information

VIDEO Intypedia008en LESSON 8: SECRET SHARING PROTOCOL. AUTHOR: Luis Hernández Encinas. Spanish Scientific Research Council in Madrid, Spain

VIDEO Intypedia008en LESSON 8: SECRET SHARING PROTOCOL. AUTHOR: Luis Hernández Encinas. Spanish Scientific Research Council in Madrid, Spain VIDEO Intypedia008en LESSON 8: SECRET SHARING PROTOCOL AUTHOR: Luis Hernández Encinas Spanish Scientific Research Council in Madrid, Spain Hello and welcome to Intypedia. We have learned many things about

More information

TMA 4195 Mathematical Modelling December 12, 2007 Solution with additional comments

TMA 4195 Mathematical Modelling December 12, 2007 Solution with additional comments Problem TMA 495 Mathematical Modelling December, 007 Solution with additional comments The air resistance, F, of a car depends on its length, L, cross sectional area, A, its speed relative to the air,

More information