CHAPTER 1: Functions

Size: px
Start display at page:

Download "CHAPTER 1: Functions"

Transcription

1 CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: Piecewise-Defined Functions; Limits and Continuity in Calculus 1.6: Combining Functions 1.7: Symmetry Revisited 1.8: x = f ( y) 1.9: Inverses of One-to-One Functions 1.10: Difference Quotients 1.11: Limits and Derivatives in Calculus Functions are the building blocks of precalculus. In this chapter, we will investigate the general theory of functions and their graphs. We will study particular categories of functions in Chapters 2, 3, 4, and even 9.

2 SECTION 1.1: FUNCTIONS (Section 1.1: Functions) LEARNING OBJECTIVES Understand what relations and functions are. Recognize when a relation is also a function. Accurately use function notation and terminology. Know different ways to describe a function. Find the domains and/or ranges of some functions. Be able to evaluate functions. PART A: DISCUSSION WARNING 1: The word function has different meanings in mathematics and in common usage. Much of precalculus covers properties, graphs, and categorizations of functions. A relation relates inputs to outputs. A function is a relation that relates each input in its domain to exactly one output in its range. We will investigate the anatomy of functions (a name such as f, a function rule, a domain, and a range), look at examples of functions, find their domains and/or ranges, and evaluate them at an input by determining the resulting output.

3 (Section 1.1: Functions) PART B: RELATIONS A relation is a set of ordered pairs of the form ( input, output), where the input is related to ( yields ) the output. WARNING 2: If a is related to b, then b may or may not be related to a. Example 1 (A Relation) Let the relation R = {( 1, 5), (,5), ( 5,7) }. ( 1, 5) R, so 1 is related to 5 by R. Likewise, is related to 5, and 5 is related to 7. R can be represented by the arrow diagram below. PART C: FUNCTIONS A relation is a function Each input is related to ( yields ) exactly one output. A function is typically denoted by a letter, most commonly f. Unless otherwise specified, we assume that f represents a function. The domain of a function f is the set of all inputs. It is the set of all first coordinates of the ordered pairs in f. We will denote this by Dom( f ), although this is not standard. The range of a function f is the set of all resulting outputs. It is the set of all second coordinates of the ordered pairs in f. We will denote this by Range( f ). We assume both sets are nonempty. (See Footnote 1 on terminology.)

4 (Section 1.1: Functions) Example 2 (A Relation that is a Function; Revisiting Example 1) Again, let the relation R = {( 1, 5), (,5), ( 5,7) }. Determine whether or not the relation is also a function. If it is a function, find its domain and its range. Refer to the arrow diagram in Example 1. Each input is related to ( yields ) exactly one output. Therefore, this relation is a function. Its domain is the set of all inputs: { 1,,5}. Its range is the set of all outputs: { 5, 7}. Do not write { 5, 5, 7}. WARNING 3: Although a function cannot allow one input to yield multiple outputs, a function can allow multiple inputs (such as 1 and in Example 2) to yield the same output (5). However, such a function would not be one-to-one (see Section 1.9). Example 3 (A Relation that is Not a Function) Repeat Example 2 for the relation S, where S = {( 5, 1), ( 5, ),( 7,5) }. S can be represented by the arrow diagram below. An input (5) is related to ( yields ) two different outputs (1 and ). Therefore, this relation is not a function.

5 (Section 1.1: Functions) TIP 1: Think of a function button on a basic calculator such as the x 2 or button, which represent squaring and square root functions, respectively. If a function is applied to the input 5, the calculator can never imply, The outputs are 1 and. Example 4 (Ages of People) For a relation R, The set of inputs is the set of all living people. The outputs are ages in years. ( a, b) R Person a is b years old. Is this relation a function? Yes, R is a function, because a living person has only one age in years. Example 5 (Colors on Paintings) For a relation S, The set of inputs is the set of all existing paintings. The outputs are colors. ( a, b) S Painting a has color b. Is this relation a function? No, S is not a function, because there are paintings with more than one color.

6 PART D: EVALUATING FUNCTIONS (THE BASICS) (Section 1.1: Functions) If an input x Dom( f ), then its output is a well-defined (i.e., single) value, denoted by f ( x). We refer to x here as the argument of f. We refer to f x f x ( ) as the function value at x, or the image of x. ( ) is read as f of x or f at x. ( ) does not mean f times x. WARNING 4: f x A function can be modeled by an input-output machine such as: x f f ( x) When we evaluate a function at an input, we determine the resulting output and express it in simplified form. A function is defined (or it exists) only on its domain. If x Dom( f ), then f ( x) is undefined (or it does not exist). Example 6 (Evaluating a Function; Revisiting Examples 1 and 2) Let the function f = {( 1, 5), (,5), ( 5,7) }. a) Evaluate f ( 5). b) Evaluate f ( 6). a) ( 5, 7) f, so 5 Dom( f ), and f ( 5)= 7. b) 6 Dom( f ), so f ( 6) is undefined.

7 (Section 1.1: Functions) Example 7 (Failure to Evaluate a Non-Function; Revisiting Example 3) Let the relation S = {( 5, 1), ( 5, ),( 7,5) }. If we had erroneously identified S as a function and renamed it f, we would see that f 5 ( ) is not well-defined. It is unclear whether its value should be 1 or. A function rule describes how a function assigns an output to an input. It is typically given by a defining formula such as f x ( )= x 2. Example 8 (Squaring Function: Evaluation) Let f ( x)= x 2 on. This means that we are defining a function f f ( x)= x 2, with Dom( f )=. by the rule The rule could have been given as, say, f ( u)= u 2. Either way, f squares its input. Evaluate f ( 3). We substitute 3 ( ) for x, and we square it. f ( x)= x 2 f ( 3)= ( 3) 2 = 9 3 f 9 WARNING 5: Be prepared to use grouping symbols whenever you perform a substitution; only omit them if you are sure you do not need them. Note that f ( 3) is not equal to 3 2, which equals 9.

8 (Section 1.1: Functions) WARNING 6: As a matter of convenience, some sources refer to f ( x) as a function, but this convention is often rejected as non-rigorous. One advantage to the f x variable. The notation f x, y ( ) notation is that it indicates that f is a function of one ( ) indicates that f is a function of two variables. A function can be determined by a domain and a function rule. Together, the domain and the function rule determine the range of the function. (See Footnote 1.) Two functions with the same rule but different domains are considered to be different. Piecewise-defined functions will be discussed in Section 1.5. Such a function applies different rules to disjoint (non-overlapping) subsets of its domain (subdomains). For example, consider the function f, where: f ( x)= x2, 2 x < 1 x + 1, 1 x 2 PART E: POLYNOMIAL, RATIONAL, AND ALGEBRAIC FUNCTIONS Review Section 0.6 on polynomial, rational, and algebraic expressions. f is a polynomial function on f can be defined by: f ( x)= (a polynomial in x), which implies that Dom( f )=. See Footnote 2 on whether polynomial functions can be defined on another domain. x could be replaced by another variable. f is a rational function f can be defined by: f x ( )= (a rational expression in x). f is an algebraic function f can be defined by: f x ( )= (an algebraic expression in x). Example 9 (Polynomial, Rational, and Algebraic Functions) a) Let f ( x)= x 3 + 7x 5/7. Then, f is an algebraic function. 3 x x t 3 1 b) Let g()= t. Then, g is both rational and algebraic. t 2 + 7t 2 c) Let h( x)= x 7 + x 2 3. Then, h is polynomial, rational, and algebraic.

9 (Section 1.1: Functions) PART F: REPRESENTATIONS OF FUNCTIONS Ways to Represent a Function Rule The domain of the function could be the implied domain (see Part G). In Parts B and C, we determined the domain from a set of ordered pairs or an arrow diagram. For our examples in 1) through 8), we will let f be our squaring function from Example 8, with Dom f ( )=. A function rule can be represented by 1) a defining formula: 2) an input-output model (machine): f ( x)= x 2 x f x 2 3) a verbal description: This function squares its input, and the result is its output. 4) a table of input-output pairs: Input x Output f x ( ) Since Dom f ( )=, a complete table is impossible to write. However, a partial table such as this can be useful, especially for graphing purposes.

10 5) a set of ( input x, output f ( x) ) ordered pairs: The table in 4) yields ordered pairs such as ( 2, 4). Since Dom( f )=, the set is an infinite set. (Section 1.1: Functions) ) a graph consisting of points corresponding to the ordered pairs in 5); see Section 1.2: The graph of f below represents the set x, x 2 {( ) x }. We assume that the graph extends beyond the figure as expected. 7) an equation: The equations y = x 2 and y x 2 = 0 describe y as the same function of x (explicitly so in the first equation; implicitly in the second). Their common graph is in 6). See Section ) an arrow diagram: A partial arrow diagram for f is below. 9) an algorithm. Perhaps the output is computed by some computer code. 10) a series. (See Footnote 3.)

11 (Section 1.1: Functions) PART G: IMPLIED (OR NATURAL) DOMAIN Implied (or Natural) Domain If f is defined by: f ( x)= (an expression in x), then the implied (or natural) domain of f is the set of all real numbers (x values) at which the value of the expression is a real number. x could be replaced by another variable. Dom( f ) is assumed to be the implied domain of f, unless otherwise specified or implied by the context. In some applications (including geometry), we may restrict inputs to nonnegative and/or integer values (rounding may be possible). Implied Domain of an Algebraic Function If a function is algebraic, then its implied domain is the set of all real numbers except those that lead to (the equivalent of) 1) dividing by zero, or 2) taking the even root of a negative-valued radicand. The list of restrictions will grow when we discuss non-algebraic functions. Example 10 (Implied Domain of an Algebraic Function) a) If f ( x)= 1 x all real numbers except 0. ( or x 1 ), then the implied domain of f is \{}, 0 the set of b) If g( x)= x ( or x 1/2 ), then the implied domain of g is 0, ), the set of all nonnegative real numbers. WARNING 7: The implied domain of g includes 0. Observe that 0 = 0, a perfectly good real number. WARNING 8: We will define 1, for example, as an imaginary number in Section 2.1. However, 1 will never be a real value.

12 (Section 1.1: Functions) PART H: FINDING DOMAINS AND/OR RANGES Example 11 (Squaring Function: Finding Domain and Range) Let f ( x)= x 2. Describe the domain and the range of f using set-builder, graphical, and interval forms. x 2 is a polynomial, so we assume that Dom( f )=. The symbol is used in place of set-builder form. The graph of is the entire real number line: In interval form, is (, ). The resulting range of f is the set of all nonnegative real numbers, because every such number is the square of some real number. For example, 7 is the square of 7 : f ( 7 )= 7. Also: WARNING 9: Squares of real numbers are never negative. In set-builder form, the range is: { y y 0}, or { y : y 0}. (We could have used x instead of y, but we tend to associate y with outputs, and we should avoid confusion with the domain.) The graph of the range is: In interval form, the range is: 0, ).

13 (Section 1.1: Functions) Example 12 (Finding a Domain) Let f ( x)= x 3. Find Dom( f ), the domain of f. x 3 is a real output x 3 0 x 3. WARNING 10: We solve the weak inequality x 3 0, not the strict inequality x 3 > 0. Observe that 0 = 0, a real number. The domain of f in set-builder form is: { x x 3}, or x : x 3 { } in graphical form is: in interval form is: 3, ) Range( f )= 0, ). Ranges will be easier to determine once we learn how to graph these functions in Section 1.4. If the rule for f had been given by f ()= t t 3, we still would have had the same function with the same domain and range. The domain could be written as { t t 3}, { x x 3}, etc. It s the same set of numbers. Example 13 (Finding a Domain) Let f ( x)= 1 x 3. Find Dom( f ). This is similar to Example 12, but we must avoid a zero denominator. We solve the strict inequality x 3 > 0, which gives us x > 3. The domain of f in set-builder form is: { x x > 3}, or { x : x > 3} in graphical form is: in interval form is: ( 3, )

14 (Section 1.1: Functions) Example 14 (Finding a Domain) 4 Let f ( x)= 3 x. Find Dom( f ). Solve the weak inequality: 3 x 0. Method 1 Method 2 3 x 0 Now subtract 3 from both sides. x 3 Now multiply or divide both sides by 1. x 3 WARNING 11: We must then reverse the direction of the inequality symbol. 3 x 0 Now add x to both sides. 3 x Now switch the left side and the right side. x 3 WARNING 12: We must then reverse the direction of the inequality symbol. The domain of f in set-builder form is: { x x 3}, or x : x 3 in graphical form is: { } in interval form is: (,3 Example 15 (Finding a Domain) 3 Let f ( x)= x 3 Dom( f )=, because:. Find Dom( f ). The radicand, x 3, is a polynomial, and WARNING 13: The taking of odd roots (such as cube roots) does not impose any new restrictions on the domain. Remember that the cube root of a negative real number is a negative real number.

15 (Section 1.1: Functions) Example 16 (Finding a Domain) Let g()= t 3t + 9 2t t. Find Dom( g). WARNING 14: Don t get too attached to f and x. Be flexible. The square root operation requires: 3t t 9 t 3 We forbid zero denominators, so we also require: 2t t 0 2t( t+ 10) 0 t 0 and t t 0 and t 10 WARNING 15: We use the connective and here, not or. (See Footnote 4.) We already require t 3, so we can ignore the restriction t 10. The domain of g in set-builder form is: { t t 3 and t 0}, or { t : t 3 and t 0} in graphical form is: in interval form is: 3, 0) ( 0, ) (See Footnote 5 on our future study of domain and range.)

16 PART I: EVALUATING FUNCTIONS (THE MECHANICS) (Section 1.1: Functions) In practice, we often evaluate a function at an input without finding the domain. 3t + 9 We immediately attempt to evaluate the defining expression, such as 2t t below, at the input. As we simplify, if we obtain an expression that is clearly undefined as a real value, we determine that the function value is undefined. Example 17 (Evaluating a Function; Revisiting Example 16) Let g()= t 3t + 9 2t t. Evaluate g (), 1 g ( ), g ( 0), and g ( 4). We write: g ()= 1 21 = ()+ 9 () () 1 = = 3 11 WARNING 16: Your answer must be in simplified form. g ( )= , or ( ) ( ) We also write (informally, as it turns out): g ( 0)= 20 = 9 0 g ( 4)= 30 ( )+ 9 ( ) ( 0) 2 4 ( Undefined) 3( 4)+ 9 ( ) ( 4) = 3 48 (Undefined as a real value) We saw in Example 16 that Dom( g)= 3, 0) ( 0, ). 1 and are in Dom( g), so g () 1 and g 0 and 4 are not in Dom( g), so g 0 ( ) are defined. ( ) and g ( 4) are undefined.

17 Example 18 (Evaluating a Function at a Non-numeric Input) Let f ( x)= 3x 2 2x + 5. Evaluate f ( x+ h). ( ) is often not equivalent to f x WARNING 17: f x+ h f ( x)+ f ( h). Instead, think: Substitution. (Section 1.1: Functions) ( )+ h or To evaluate f ( x+ h), we take 3x 2 2x + 5, and we replace all occurrences of x with ( x + h). This may seem awkward, because we are replacing x with another expression containing x. f ( x)= 3x 2 2x + 5 f ( x+ h)= 3( x + h) 2 2( x + h)+ 5 = 3( x 2 + 2xh + h 2 ) 2x 2h + 5 WARNING 18: Be careful when squaring binomials and when applying the Distributive Property when an expression is being subtracted. = 3x 2 + 6xh + 3h 2 2x 2h + 5 We will see much more of the notation f x+ h ( ) when we cover difference quotients and derivatives in Sections 1.10, 1.11, and 5.7.

18 (Section 1.1: Functions) PART J: APPLICATIONS In this chapter, we will discuss the following functions: Function s position or height (in Section 1.2) Input t = the time elapsed (in seconds) after a coin is dropped from the top of a building Output (Function Value) st ()= the height (in feet) of the coin t seconds after it is dropped f temperature conversion (in Section 1.9) x = the temperature using the Celsius scale f ( x)= the Fahrenheit equivalent of x degrees Celsius P profit (in Sections 1.10, 1.11) x = the number of widgets produced and sold by a company P x ( )= the resulting profit when x widgets are produced and sold

19 (Section 1.1: Functions) FOOTNOTES 1. Terminology. When defining a function f, some sources require: a domain (a set containing all of the inputs in the ordered pairs making up the function, but nothing else), Some sources attempt to define the domain and the range of a relation, but there is disagreement as to how to define the domain (and also the range, as discussed below). Some sources allow the domain to include elements that are not inputs for any of the ordered pairs in the relation. a codomain (a set containing all of the outputs and perhaps other elements that are not outputs), and a function rule, perhaps obtained from the statement of f as a set of ordered pairs, relating each (input) element of the domain to exactly one (output) element of the codomain. We can then write f : X Y, meaning that f maps the domain X to the codomain Y. Let f ( x)= x 2, also denoted by f : x x 2, where the domain is and the codomain is. We can then write f :. This is because f relates each real number input in the domain to exactly one real number output, which is an element of the codomain. The range, which is the set of all assigned outputs, is a subset of the codomain. In the example above, the range is a proper subset of the codomain, because not every real number in the codomain is assigned. Specifically, the negative reals are not assigned. What we call the codomain some sources call the range, and what we call the range some authors call the image of the function. 2. Definition of a polynomial function. If f ( x)= x2 x, then f ( x )= x ( x 0). Is f a polynomial function? In his book Polynomials (New York: Springer-Verlag, 1989), E.J. Barbeau implies that it is. Other sources imply otherwise due to the fact that Dom( f ). It depends on whether or not one views Dom( f )= as a defining characteristic of a polynomial function f for now. In Chapter 2, we will see cases where Dom( f )=.

20 (Section 1.1: Functions) Series expansions of [defining expressions of] functions. Let f ( x)= 1. In Section x and in calculus, you will see that f ( x) has the infinite series expansion 1+ x + x 2 + x , provided that 1 < x < 1. In calculus, you will consider series expansions for sin x, cos x, e x, etc. 4. The Zero Factor Property and inequalities. According to the Zero Factor Property, if ab = 0 for real numbers a and b, then a = 0 or b = 0. If we were solving the equation 2t( t+ 10)= 0, we could use the Zero Factor Property. 2t( t+ 10)= 0 ( t = 0) or ( t = 10) In Example 16, we essentially solved the inequality 2t( t+ 10) 0. ~ denotes negation ( not ). 2t( t+ 10) 0 ~ ( t = 0) or ( t = 10) ~ ( t = 0) and ~ ( t = 10) by DeMorgan's Laws of logic (see below) ( ) and ( t 10) t 0 By DeMorgan s Laws of logic, ~ p or q. For example: If I am an American, then (I am an Alabaman) or (I am an Alaskan) or. If I am not an American, then (I am not an Alabaman) and (I am not an Alaskan) and. ( ) is logically equivalent to ( ~ p) and ( ~ q) A Zero Factor Property for inequalities: If ab 0 for real numbers a and b, then a 0 and b Revisiting domain and range. In Section 1.2, we will relate domains and ranges to graphs. We will study domains and ranges of basic functions in Section 1.3; more complicated functions in Sections 1.4, 1.5, and 1.6; inverse functions in Section 1.9 (and Section 4.10); and various types of functions in Chapters 2, 3, and 4. The topic of solving nonlinear inequalities in Section 2.11 will be relevant, particularly when finding domains of algebraic functions. In Section 9.2, we will study sequences, which are functions with domains consisting of only integers. Ranges will be better understood as we discuss graphs in further detail.

21 (Section 1.2: Graphs of Functions) SECTION 1.2: GRAPHS OF FUNCTIONS LEARNING OBJECTIVES Know how to graph a function. Recognize when a curve or an equation describes y as a function of x, and apply the Vertical Line Test (VLT) for this purpose. Recognize when an equation describes a function explicitly or implicitly. Use a graph to estimate a function s domain, range, and specific function values. Find zeros of a function, and relate them to x-intercepts of its graph. Use a graph to determine where a function is increasing, decreasing, or constant. PART A: DISCUSSION In Chapter 0, we graphed lines and circles in the Cartesian plane. If f is a function, then its graph in the usual Cartesian xy-plane is the graph of the equation y = f ( x), and it must pass the Vertical Line Test (VLT). In Section 1.8, we will consider the graph of x = f ( y). In this section, we will sketch graphs of functions. We will investigate how their behaviors reflect the behaviors of their underlying functions, as well as the information that they contain about those functions. For example, the real zeros of a function f correspond to the x-intercepts of its graph in the xy-plane. If it exists, f ( 0) gives us the y-intercept. Also, a function increases and decreases according to the rising and falling of its graph. After this section, we will specialize and focus on particular functions and categories of functions, as well as their corresponding graphs.

22 (Section 1.2: Graphs of Functions) PART B: THE GRAPH OF A FUNCTION The graph of a function f in the xy-plane is the graph of the equation y = f ( x). It consists of all points of the form ( x, f ( x) ), where x Dom( f ). In Example 13, we will graph the function s in the th-plane by graphing h = st (). Remember that, as a set of ordered pairs, f = x, f ( x) ( ) Here, as we typically assume, {( ) x Dom f }. x is the independent variable, because it is the input variable. y is the dependent variable, because it is the output variable. Its value (the function value) typically depends on the value of the input x. Then, it is customary to say that y is a function of x, even though y is a variable here and not a function. The form y = f x ( ) implies this. In Section 1.8, we will switch the roles of x and y. Basic graphs, such as the ones presented in Section 1.3, and methods of manipulating them, such as the ones presented in Section 1.4, are to be remembered. The Point-Plotting Method presented below will help us develop basic graphs, and it can be used to refine our graphs by identifying particular points on them. It is also available as a last resort if memory fails us. The Point-Plotting Method for Graphing a Function f in the xy-plane Choose several x values in Dom( f ). For each chosen x value, find f ( x), its corresponding function value. Plot the corresponding points x, f x ( ( )) in the xy-plane. Try to interpolate (connect the points, though often not with line segments) and extrapolate (go beyond the scope of the points) as necessary, ideally based on some apparent pattern. Ensure that the set of x-coordinates of the points on the graph is, in fact, Dom f ( ).

23 PART C: GRAPHING A SQUARE ROOT FUNCTION Let f ( x)= x. We will sketch the graph of f in the xy-plane. This is the graph of the equation y = f ( x), or y = x. (Section 1.2: Graphs of Functions) TIP 1: As usual, we associate y-coordinates with function values. When point-plotting, observe that: Dom( f )= 0, ). For instance, if we choose x = 9, we find that f ( 9)= 9 = 3, which means that the point ( 9, f ( 9) ), or ( 9, 3), lies on the graph. On the other hand, f ( 9) is undefined, because 9 Dom( f ). Therefore, there is no corresponding point on the graph with x = 9. A (partial) table can help: Below, we sketch the graph of f : x ( ) Point ( ) ( ) ( ) ( ) f x 0 0 0, , , , 3 WARNING 1: Clearly indicate any endpoints on a graph, such as the origin here. The lack of a clearly indicated right endpoint on our sketch implies that the graph extends beyond the edge of our figure. We want to draw graphs in such a way that these extensions are as one would expect. WARNING 2: Sketches of graphs produced by graphing utilities might not extend as expected. The user must still understand the math involved. Point-plotting may be insufficient. The x between the 4 and the 9 on the x-axis represents a generic x-coordinate in Dom f ( ). We could use x 0 ( x sub zero or x naught ) to represent a particular or fixed x-coordinate.

24 PART D: THE VERTICAL LINE TEST (VLT) (Section 1.2: Graphs of Functions) The Vertical Line Test (VLT) A curve in a coordinate plane passes the Vertical Line Test (VLT) There is no vertical line that intersects the curve more than once. An equation in x and y describes y as a function of x Its graph in the xy-plane passes the VLT. Then, there is no input x that yields more than one output y. Then, we can write y = f ( x), where f is a function. A curve could be a straight line. Example 1 (Square Root Function and the VLT; Revisiting Part C) The equation y = x explicitly describes y as a function of x, since it is of the form y = f ( x). f is the square root function from Part C. Observe that the graph of y = x passes the VLT. Each vertical line in the xy-plane either misses the graph entirely, meaning that the corresponding x value is not in Dom f ( ), or intersects the graph in exactly one point, meaning that the corresponding x value yields exactly one y value as its output.

25 Example 2 (An Equation that Does Not Describe a Function) (Section 1.2: Graphs of Functions) Show that the equation x 2 + y 2 = 9 does not describe y as a function of x. (Method 1: VLT) The circular graph of x 2 + y 2 = 9 below fails the VLT, because there exists a vertical line that intersects the graph more than once. For example, we can take the red line ( x = 2) below: Therefore, x 2 + y 2 = 9 does not describe y as a function of x. (Method 2: Solve for y) This is also evident if we solve x 2 + y 2 = 9 for y: x 2 + y 2 = 9 y 2 = 9 x 2 y =± 9 x 2 Any input value for x in the interval ( 3, 3) yields two different y outputs. For example, x = 2 yields the outputs y = 5 and y = 5.

26 (Section 1.2: Graphs of Functions) PART E: IMPLICIT FUNCTIONS and CIRCLES Example 3 (An Equation that Describes a Function Implicitly) The equation xy = 1 implicitly describes y as a function of x. This is because, if we solve the equation for y, we obtain: y = 1 x. This is of the form y = f ( x), where f is the reciprocal function. Example 4 (Implicit Functions and Circles; Revisiting Example 2) As it stands, the equation x 2 + y 2 = 9 does not describe y as a function of x; we saw this in Example 2. However, it does provide implicit functions if we impose restrictions on x and/or y and consider smaller pieces of its graph. If we impose the restriction y 0 and solve the equation x 2 + y 2 = 9 for y, we obtain y = 9 x 2. (See Example 2.) Its graph is the upper half of the circle, and it passes the VLT, so y = 9 x 2 does describe y as a function of x. If we impose the restriction y 0 and solve the equation x 2 + y 2 = 9 for y, we obtain y = 9 x 2. Its graph is the lower half of the circle, and it passes the VLT, so y = 9 x 2 does describe y as a function of x. This helps us graph entire circles on graphing utilities.

27 (Section 1.2: Graphs of Functions) PART F: ESTIMATING DOMAIN, RANGE, and FUNCTION VALUES FROM A GRAPH The domain of f is the set of all x-coordinates of points on the graph of y = f x ( ). (Think of projecting the graph onto the x-axis.) The range of f is the set of all y-coordinates of points on the graph of y = f x ( ). (Think of projecting the graph onto the y-axis.) Domain Think: x f Range Think: y Example 5 (Estimating Domain, Range, and Function Values from a Graph) Let f ( x)= x Estimate the domain and the range of f based on its graph below. Also, estimate f (). 1 Apparently, Dom( f )=, or (, ), and Range( f )= 1, ). It also appears that the point ( 1, 2) lies on the graph and thus f ()= 1 2. Finding the range of a function will become easier as you learn how to graph functions in precalculus and calculus. WARNING 3: Graph analyses can be imprecise. The point 1, ( ), for example, may be hard to identify on a graph. Not all coordinates are integers.

28 PART G: ZEROS (OR ROOTS) and INTERCEPTS (Section 1.2: Graphs of Functions) The real zeros (or roots) of f are the real solutions of f ( x)= 0, if any. They correspond to the x-intercepts of the graph of y = f ( x). WARNING 4: The number 0 may or may not be a zero of f. In this sense, the term zero may be confusing. On the other hand, the term root might be confused with square roots and such. The graph of y = f x infinitely many, depending on f. ( ) can have any number of x-intercepts (possibly none), or We typically focus on real zeros, though we will discuss imaginary zeros in Chapters 2 and 6. The y-intercept of the graph of y = f ( x), if it exists, is given by f ( 0) or by the point ( 0, f ( 0) ). The graph of y = f x ( ) can have at most one y-intercept. Example 6 (Finding Zeros and Intercepts) Find the zeros (or roots) of f, where f ( x)= x 2 9, and find the x-intercepts of the graph of y = f ( x). Solve f ( x)= 0: x 2 9 = 0 x 2 = 9 x =±3 The zeros of f are 3 and 3. They are both real, so they correspond to x-intercepts of the graph of y = x 2 9. Some prefer to write the x-intercepts as ( 3, 0) and ( 3, 0). WARNING 5: Do not confuse the process of finding zeros, which involves solving the equation f ( x)= 0, with the process of evaluating at 0, which involves substituting ( 0) for x and finding f ( 0). Here, f ( 0)= 9. In fact, 9, or the point ( 0, 9), is the y-intercept.

29 (Section 1.2: Graphs of Functions) The graph of f is below. We will informally refer to zeros of the defining expression for a function, in particular zeros of radicals and fractions. Zeros of a Radical n g( x) = 0 g( x)= 0 ( n = 2, 3, 4,...) That is, the zeros of a radical are the zeros of its radicand. Example 7 (Finding Zeros of a Radical ) Find the zeros (or roots) of f, where f ( x)= x 2 9. The zeros are the same as those for x 2 9, namely 3 and 3. The graph of f is below. Why does the graph disappear on the x-interval ( 3, 3)?

30 (Section 1.2: Graphs of Functions) Zeros of a Fraction If f ( x) is of the form numerator N x denominator D x ( ) ( ), then the zeros of f are the zeros of N that are in Dom( f ) (WARNING 6). In particular, a zero of f cannot make any denominator undefined or equal to 0. Example 8 (Finding Zeros of a Fraction ) Find the zeros (or roots) of f, where f ( x)= x2 9 x + 7. Solve f ( x)= 0: x 2 9 x + 7 = 0 x 2 9 = 0 ( x 7) Again, the zeros of f are 3 and 3. The graph of f here has features we will discuss in Chapter 2. Example 9 (Finding Zeros of a Fraction ) If f ( x)= x2 9, the only zero of f is 3, because 3 is not in x 3 Dom( f ). (3 yields a zero denominator.)

31 (Section 1.2: Graphs of Functions) Example 10 (Finding Zeros) Find the zeros (or roots) of g, where g()= t 3t 2 t 4. t 3 Observe that 3 is excluded from Dom( g), because it yields a zero denominator. Dom( g) also excludes values of t that yield negative values for the radicand, 3t 2 t 4. We don t have to worry about this, though, because we only care about values of t that make that radicand zero in value, anyway. Solve g()= t 0 : Method 1: Factoring 3t 2 t 4 = 0 t 3 3t 2 t 4 = 0 t 3 ( ) ( ) 3t 2 t 4 = 0 t 3 ( 3t 4) ( t + 1)= 0 ( t 3) By the Zero Factor Property, 3t 4 = 0 t = 4 3 or t + 1 = 0 t = 1 WARNING 7: If we had obtained 3, we would have had to eliminate it. The zeros of g are 4 3 and 1.

32 Method 2: Quadratic Formula We need to solve: 3t 2 t 4 = 0 ( t 3). (Section 1.2: Graphs of Functions) For the Quadratic Formula, a = 3, b = 1, and c = 4. WARNING 8: It helps to identify what a, b, and c are. Sign mistakes are common. Apply the Quadratic Formula. t = b ± b2 4ac 2a = 1 ( )± 1 = 1± ± 49 = 6 = 1± 7 6 ( ) 2 43 ( )( 4) 23 ( ) Using + : Using : t = = 8 6 = 4 3 t = = 6 6 = 1 WARNING 9: Again, if we had obtained 3, we would have had to eliminate it. Again, the zeros of g are 4 3 and 1.

33 (Section 1.2: Graphs of Functions) PART H: INTERVALS OF INCREASE, DECREASE, AND CONSTANT VALUE We may have an intuitive sense of what it means for a function to increase (respectively, decrease, or stay constant) on an interval. In Examples 11 and 12, we will formalize this intuition. Example 11 (Intervals of Increase and Intervals of Decrease from a Graph) Let f( x)= x 3 3x + 2. The graph of f is below. Give the intervals of increase and the intervals of decrease for f. It is assumed that we give the largest intervals in the sense that no interval we give is a proper subset of another appropriate interval. f increases on the interval (, 1. Why? Graphically: If we only consider the part of the graph on the x-interval (, 1, any point must be higher than any point to its left. The graph rises from left to right. Numerically: Any x-value in the interval (, 1 yields a greater function value f x ( ) than any lesser x-value in the interval does. f increases on an interval I x 2 > x 1 implies that f ( x 2 )> f ( x 1 ), x 1, x 2 I.

34 f decreases on the interval 1, 1. Why? (Section 1.2: Graphs of Functions) Graphically: If we only consider the part of the graph on the x-interval 1, 1, any point must be lower than any point to its left. The graph falls from left to right. Numerically: Any x-value in the interval 1, 1 yields a lesser function value f x ( ) than any lesser x-value in the interval does. f decreases on an interval I x 2 > x 1 implies that f ( x 2 )< f ( x 1 ), x 1, x 2 I. f increases on the interval 1, ). Example 12 (Intervals of Constant Value from a Graph) The graph of g below implies that g is constant on the interval 1, 1, because the graph is flat there. f is constant on an interval I f ( x 2 )= f ( x 1 ), x 1, x 2 I. In calculus, you will reverse this process. You will first determine intervals where a function is increasing / decreasing / constant, and then you will sketch a graph. You will locate turning points such as the ones indicated on the graph of f in Example 11. The point 1, 4 The point 1, 0 ( ) is called a local (or relative) maximum point. ( ) is called a local (or relative) minimum point. Derivatives, which are key tools, will be previewed in Section 1.11.

35 (Section 1.2: Graphs of Functions) PART I: USING OTHER NOTATION WARNING 10: Don t get too attached to y, f, and x. Be flexible. Example 13 (Falling Coin) You drop a coin from the top of a building. Let t be the time elapsed (in seconds) since you dropped the coin. Let h be the height (in feet) of the coin. Let s be a position function such that h = st (). We ignore what happens after the coin hits the ground. Instead of graphing y = f ( x), we graph h = st (). t, not x, is the independent variable. h, not y, is the dependent variable. s, not f, is the function. the th-plane, not the xy-plane, is the coordinate plane containing the graph of the function s. The graph of s, or the graph of h = st (), in the th-plane is given below. As a set of ordered pairs, s = ( t, st ()) t Dom() s { }. WARNING 11: The horizontal and vertical axes are scaled differently here. We typically try to avoid this unless necessary. The reader can analyze this graph, including the indicated points, in the Exercises.

CHAPTER 1: Review (See also the Precalculus notes at

CHAPTER 1: Review (See also the Precalculus notes at CHAPTER 1: Review (See also the Precalculus notes at http://www.kkuniyuk.com) TOPIC 1: FUNCTIONS (Chapter 1: Review) 1.01 PART A: AN EXAMPLE OF A FUNCTION Consider a function f whose rule is given by f

More information

SECTION 1.4: FUNCTIONS. (See p.40 for definitions of relations and functions and the Technical Note in Notes 1.24.) ( ) = x 2.

SECTION 1.4: FUNCTIONS. (See p.40 for definitions of relations and functions and the Technical Note in Notes 1.24.) ( ) = x 2. SECTION 1.4: FUNCTIONS (Section 1.4: Functions) 1.18 (See p.40 for definitions of relations and functions and the Technical Note in Notes 1.24.) Warning: The word function has different meanings in mathematics

More information

SECTION 1.8 : x = f LEARNING OBJECTIVES

SECTION 1.8 : x = f LEARNING OBJECTIVES SECTION 1.8 : x = f (Section 1.8: x = f ( y) ( y)) 1.8.1 LEARNING OBJECTIVES Know how to graph equations of the form x = f ( y). Compare these graphs with graphs of equations of the form y = f ( x). Recognize

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software Practical Algebra A Step-by-step Approach Brought to you by Softmath, producers of Algebrator Software 2 Algebra e-book Table of Contents Chapter 1 Algebraic expressions 5 1 Collecting... like terms 5

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER : Functions SECTION.: FUNCTIONS (Answers for Chapter : Functions) A.. f x 2) f x 3) = x = x 4) Input x Output f x 3 0 4 5 2 6 5 5 + 4 π π + 4 0/3 22/3 4.7 8.7 c c + 4 a + h a + h + 4 Input x Output

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2014 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

SECTION 2.7: NONLINEAR INEQUALITIES

SECTION 2.7: NONLINEAR INEQUALITIES (Section 2.7: Nonlinear Inequalities) 2.77 SECTION 2.7: NONLINEAR INEQUALITIES We solved linear inequalities to find domains, and we discussed intervals in Section 1.4: Notes 1.24 to 1.30. In this section,

More information

MATH 1130 Exam 1 Review Sheet

MATH 1130 Exam 1 Review Sheet MATH 1130 Exam 1 Review Sheet The Cartesian Coordinate Plane The Cartesian Coordinate Plane is a visual representation of the collection of all ordered pairs (x, y) where x and y are real numbers. This

More information

Equations and Inequalities

Equations and Inequalities Algebra I SOL Expanded Test Blueprint Summary Table Blue Hyperlinks link to Understanding the Standards and Essential Knowledge, Skills, and Processes Reporting Category Algebra I Standards of Learning

More information

CHAPTER 0: Preliminary Topics

CHAPTER 0: Preliminary Topics (Exercises for Chapter 0: Preliminary Topics) E.0.1 CHAPTER 0: Preliminary Topics (A) means refer to Part A, (B) means refer to Part B, etc. (Calculator) means use a calculator. Otherwise, do not use a

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

Math ~ Exam #1 Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying

Math ~ Exam #1 Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying Math 1050 2 ~ Exam #1 Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying General Tips for Studying: 1. Review this guide, class notes, the

More information

Topics Covered in Math 115

Topics Covered in Math 115 Topics Covered in Math 115 Basic Concepts Integer Exponents Use bases and exponents. Evaluate exponential expressions. Apply the product, quotient, and power rules. Polynomial Expressions Perform addition

More information

North Carolina State University

North Carolina State University North Carolina State University MA 141 Course Text Calculus I by Brenda Burns-Williams and Elizabeth Dempster August 7, 2014 Section1 Functions Introduction In this section, we will define the mathematical

More information

1.1.1 Algebraic Operations

1.1.1 Algebraic Operations 1.1.1 Algebraic Operations We need to learn how our basic algebraic operations interact. When confronted with many operations, we follow the order of operations: Parentheses Exponentials Multiplication

More information

Equations and Inequalities

Equations and Inequalities Equations and Inequalities 2 Figure 1 CHAPTER OUTLINE 2.1 The Rectangular Coordinate Systems and Graphs 2.2 Linear Equations in One Variable 2.3 Models and Applications 2.4 Complex Numbers 2.5 Quadratic

More information

Natural Numbers Positive Integers. Rational Numbers

Natural Numbers Positive Integers. Rational Numbers Chapter A - - Real Numbers Types of Real Numbers, 2,, 4, Name(s) for the set Natural Numbers Positive Integers Symbol(s) for the set, -, - 2, - Negative integers 0,, 2,, 4, Non- negative integers, -, -

More information

Study Guide for Math 095

Study Guide for Math 095 Study Guide for Math 095 David G. Radcliffe November 7, 1994 1 The Real Number System Writing a fraction in lowest terms. 1. Find the largest number that will divide into both the numerator and the denominator.

More information

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION 2.25 SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION PART A: LONG DIVISION Ancient Example with Integers 2 4 9 8 1 In general: dividend, f divisor, d We can say: 9 4 = 2 + 1 4 By multiplying both sides

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

1 Numbers, Sets, Algebraic Expressions

1 Numbers, Sets, Algebraic Expressions AAU - Business Mathematics I Lecture #1, February 27, 2010 1 Numbers, Sets, Algebraic Expressions 1.1 Constants, Variables, and Sets A constant is something that does not change, over time or otherwise:

More information

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Chapter R Review of basic concepts * R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Ex: Write the set of counting numbers

More information

ALGEBRA 2 Summer Review Assignments Graphing

ALGEBRA 2 Summer Review Assignments Graphing ALGEBRA 2 Summer Review Assignments Graphing To be prepared for algebra two, and all subsequent math courses, you need to be able to accurately and efficiently find the slope of any line, be able to write

More information

Rational Numbers. a) 5 is a rational number TRUE FALSE. is a rational number TRUE FALSE

Rational Numbers. a) 5 is a rational number TRUE FALSE. is a rational number TRUE FALSE Fry Texas A&M University!! Math 150!! Chapter 1!! Fall 2014! 1 Chapter 1A - - Real Numbers Types of Real Numbers Name(s) for the set 1, 2,, 4, Natural Numbers Positive Integers Symbol(s) for the set, -,

More information

Chapter 7 Quadratic Equations

Chapter 7 Quadratic Equations Chapter 7 Quadratic Equations We have worked with trinomials of the form ax 2 + bx + c. Now we are going to work with equations of this form ax 2 + bx + c = 0 quadratic equations. When we write a quadratic

More information

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B}

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B} Functions Functions play an important role in mathematics as well as computer science. A function is a special type of relation. So what s a relation? A relation, R, from set A to set B is defined as arb

More information

Solving Linear and Rational Inequalities Algebraically. Definition 22.1 Two inequalities are equivalent if they have the same solution set.

Solving Linear and Rational Inequalities Algebraically. Definition 22.1 Two inequalities are equivalent if they have the same solution set. Inequalities Concepts: Equivalent Inequalities Solving Linear and Rational Inequalities Algebraically Approximating Solutions to Inequalities Graphically (Section 4.4).1 Equivalent Inequalities Definition.1

More information

MA094 Part 2 - Beginning Algebra Summary

MA094 Part 2 - Beginning Algebra Summary MA094 Part - Beginning Algebra Summary Page of 8/8/0 Big Picture Algebra is Solving Equations with Variables* Variable Variables Linear Equations x 0 MA090 Solution: Point 0 Linear Inequalities x < 0 page

More information

Part 2 - Beginning Algebra Summary

Part 2 - Beginning Algebra Summary Part - Beginning Algebra Summary Page 1 of 4 1/1/01 1. Numbers... 1.1. Number Lines... 1.. Interval Notation.... Inequalities... 4.1. Linear with 1 Variable... 4. Linear Equations... 5.1. The Cartesian

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

Miller Objectives Alignment Math

Miller Objectives Alignment Math Miller Objectives Alignment Math 1050 1 College Algebra Course Objectives Spring Semester 2016 1. Use algebraic methods to solve a variety of problems involving exponential, logarithmic, polynomial, and

More information

Algebra 1 Standards Curriculum Map Bourbon County Schools. Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) 1-19 Unit 1

Algebra 1 Standards Curriculum Map Bourbon County Schools. Days Unit/Topic Standards Activities Learning Targets ( I Can Statements) 1-19 Unit 1 Algebra 1 Standards Curriculum Map Bourbon County Schools Level: Grade and/or Course: Updated: e.g. = Example only Days Unit/Topic Standards Activities Learning Targets ( I 1-19 Unit 1 A.SSE.1 Interpret

More information

Algebra II. Key Resources: Page 3

Algebra II. Key Resources: Page 3 Algebra II Course This course includes the study of a variety of functions (linear, quadratic higher order polynomials, exponential, absolute value, logarithmic and rational) learning to graph, compare,

More information

Pre AP Algebra. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra

Pre AP Algebra. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra Pre AP Algebra Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra 1 The content of the mathematics standards is intended to support the following five goals for students: becoming

More information

Pre Algebra. Curriculum (634 topics)

Pre Algebra. Curriculum (634 topics) Pre Algebra This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular needs.

More information

College Algebra Through Problem Solving (2018 Edition)

College Algebra Through Problem Solving (2018 Edition) City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College Winter 1-25-2018 College Algebra Through Problem Solving (2018 Edition) Danielle Cifone

More information

Chapter 1: January 26 January 30

Chapter 1: January 26 January 30 Chapter : January 26 January 30 Section.7: Inequalities As a diagnostic quiz, I want you to go through the first ten problems of the Chapter Test on page 32. These will test your knowledge of Sections.

More information

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition STUDY GUIDE Math 0 To the students: To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition When you study Algebra, the material is presented to you in a logical sequence.

More information

2. FUNCTIONS AND ALGEBRA

2. FUNCTIONS AND ALGEBRA 2. FUNCTIONS AND ALGEBRA You might think of this chapter as an icebreaker. Functions are the primary participants in the game of calculus, so before we play the game we ought to get to know a few functions.

More information

Evaluate algebraic expressions for given values of the variables.

Evaluate algebraic expressions for given values of the variables. Algebra I Unit Lesson Title Lesson Objectives 1 FOUNDATIONS OF ALGEBRA Variables and Expressions Exponents and Order of Operations Identify a variable expression and its components: variable, coefficient,

More information

Chapter 9: Roots and Irrational Numbers

Chapter 9: Roots and Irrational Numbers Chapter 9: Roots and Irrational Numbers Index: A: Square Roots B: Irrational Numbers C: Square Root Functions & Shifting D: Finding Zeros by Completing the Square E: The Quadratic Formula F: Quadratic

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

Check boxes of Edited Copy of Sp Topics (was 261-pilot)

Check boxes of Edited Copy of Sp Topics (was 261-pilot) Check boxes of Edited Copy of 10023 Sp 11 253 Topics (was 261-pilot) Intermediate Algebra (2011), 3rd Ed. [open all close all] R-Review of Basic Algebraic Concepts Section R.2 Ordering integers Plotting

More information

OBJECTIVES UNIT 1. Lesson 1.0

OBJECTIVES UNIT 1. Lesson 1.0 OBJECTIVES UNIT 1 Lesson 1.0 1. Define "set," "element," "finite set," and "infinite set," "empty set," and "null set" and give two examples of each term. 2. Define "subset," "universal set," and "disjoint

More information

Region 16 Board of Education. Precalculus Curriculum

Region 16 Board of Education. Precalculus Curriculum Region 16 Board of Education Precalculus Curriculum 2008 1 Course Description This course offers students an opportunity to explore a variety of concepts designed to prepare them to go on to study calculus.

More information

College Algebra with Corequisite Support: Targeted Review

College Algebra with Corequisite Support: Targeted Review College Algebra with Corequisite Support: Targeted Review 978-1-63545-056-9 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable)

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

When using interval notation use instead of open circles, and use instead of solid dots.

When using interval notation use instead of open circles, and use instead of solid dots. P.1 Real Numbers PreCalculus P.1 REAL NUMBERS Learning Targets for P1 1. Describe an interval on the number line using inequalities. Describe an interval on the number line using interval notation (closed

More information

SECTION 2.4: LIMITS AND INFINITY II

SECTION 2.4: LIMITS AND INFINITY II (Section 2.4: Limits and Infinity II) 2.4.1 SECTION 2.4: LIMITS AND INFINITY II LEARNING OBJECTIVES Understand infinite limits at a point and relate them to vertical asymptotes of graphs. Be able to evaluate

More information

UNIT 4: RATIONAL AND RADICAL EXPRESSIONS. 4.1 Product Rule. Objective. Vocabulary. o Scientific Notation. o Base

UNIT 4: RATIONAL AND RADICAL EXPRESSIONS. 4.1 Product Rule. Objective. Vocabulary. o Scientific Notation. o Base UNIT 4: RATIONAL AND RADICAL EXPRESSIONS M1 5.8, M2 10.1-4, M3 5.4-5, 6.5,8 4.1 Product Rule Objective I will be able to multiply powers when they have the same base, including simplifying algebraic expressions

More information

( )( ) Algebra I / Technical Algebra. (This can be read: given n elements, choose r, 5! 5 4 3! ! ( 5 3 )! 3!(2) 2

( )( ) Algebra I / Technical Algebra. (This can be read: given n elements, choose r, 5! 5 4 3! ! ( 5 3 )! 3!(2) 2 470 Algebra I / Technical Algebra Absolute Value: A number s distance from zero on a number line. A number s absolute value is nonnegative. 4 = 4 = 4 Algebraic Expressions: A mathematical phrase that can

More information

Intermediate Algebra with Applications

Intermediate Algebra with Applications Lakeshore Technical College 10-804-118 Intermediate Algebra with Applications Course Outcome Summary Course Information Alternate Title Description Total Credits 4 Total Hours 72 Pre/Corequisites Prerequisite

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... 7 Introduction... 7 Integer Exponents... 8 Rational Exponents...5 Radicals... Polynomials...30 Factoring Polynomials...36

More information

MAT 135 In-Class Assignments Answer Key

MAT 135 In-Class Assignments Answer Key MAT 135 In-Class Assignments Answer Key Answers are listed under the heading of each section. Where a section was continued on multiple pages, the answers are all listed under the section heading. If there

More information

An equation is a statement that states that two expressions are equal. For example:

An equation is a statement that states that two expressions are equal. For example: Section 0.1: Linear Equations Solving linear equation in one variable: An equation is a statement that states that two expressions are equal. For example: (1) 513 (2) 16 (3) 4252 (4) 64153 To solve the

More information

Foundations of High School Math

Foundations of High School Math Foundations of High School Math This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to

More information

1: Translating Expressions

1: Translating Expressions Algebra I 2017-2018 1: Translating Expressions Translate between words and math symbols, such as: The sum of twice a number and 3 Answer: 2n + 3 Also translate math symbols into verbal language. 5(x +

More information

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions QUIZ AND TEST INFORMATION: The material in this chapter is on Quiz 3 and Exam 2. You should complete at least one attempt of Quiz 3 before taking Exam 2. This material is also on the final exam and used

More information

MyMathLab for School Precalculus Graphical, Numerical, Algebraic Common Core Edition 2016

MyMathLab for School Precalculus Graphical, Numerical, Algebraic Common Core Edition 2016 A Correlation of MyMathLab for School Precalculus Common Core Edition 2016 to the Tennessee Mathematics Standards Approved July 30, 2010 Bid Category 13-090-10 , Standard 1 Mathematical Processes Course

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

Mathematics. Algebra I (PreAP, Pt. 1, Pt. 2) Curriculum Guide. Revised 2016

Mathematics. Algebra I (PreAP, Pt. 1, Pt. 2) Curriculum Guide. Revised 2016 Mathematics Algebra I (PreAP, Pt. 1, Pt. ) Curriculum Guide Revised 016 Intentionally Left Blank Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction and

More information

Solving Polynomial and Rational Inequalities Algebraically. Approximating Solutions to Inequalities Graphically

Solving Polynomial and Rational Inequalities Algebraically. Approximating Solutions to Inequalities Graphically 10 Inequalities Concepts: Equivalent Inequalities Solving Polynomial and Rational Inequalities Algebraically Approximating Solutions to Inequalities Graphically (Section 4.6) 10.1 Equivalent Inequalities

More information

Curriculum Scope and Sequence

Curriculum Scope and Sequence Curriculum Scope and Sequence Subject/Grade Level: 9th Grade Course: Algebra I Unit Duration Transfer Goal(s) Enduring Understandings Essential Questions 1 - Solving Equations & Inequalities 32-35 days

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers. Example: Let A = {4, 8, 12, 16, 20,...} and let B = {6, 12, 18, 24, 30,...

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers. Example: Let A = {4, 8, 12, 16, 20,...} and let B = {6, 12, 18, 24, 30,... Fry Texas A&M University!! Math 150! Spring 2015 Unit 1! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {4, 8, 12, 16, 20,...} and let B = {6, 12, 18, 24, 30,...} Then A B= and

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

MATH Spring 2010 Topics per Section

MATH Spring 2010 Topics per Section MATH 101 - Spring 2010 Topics per Section Chapter 1 : These are the topics in ALEKS covered by each Section of the book. Section 1.1 : Section 1.2 : Ordering integers Plotting integers on a number line

More information

Integrated Math II Performance Level Descriptors

Integrated Math II Performance Level Descriptors Limited Integrated Math II Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Integrated Math II. A student at this

More information

Summer Work for students entering PreCalculus

Summer Work for students entering PreCalculus Summer Work for students entering PreCalculus Name Directions: The following packet represent a review of topics you learned in Algebra 1, Geometry, and Algebra 2. Complete your summer packet on separate

More information

Give algebraic and numeric examples to support your answer. Which property is demonstrated when one combines like terms in an algebraic expression?

Give algebraic and numeric examples to support your answer. Which property is demonstrated when one combines like terms in an algebraic expression? Big Idea(s): Algebra is distinguished from arithmetic by the systematic use of symbols for values. Writing and evaluating expressions with algebraic notation follows the same rules/properties as in arithmetic.

More information

College Algebra with Corequisite Support: A Blended Approach

College Algebra with Corequisite Support: A Blended Approach College Algebra with Corequisite Support: A Blended Approach 978-1-63545-058-3 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable)

More information

A Correlation of. Pearson. Mathematical Ideas. to the. TSI Topics

A Correlation of. Pearson. Mathematical Ideas. to the. TSI Topics A Correlation of Pearson 2016 to the A Correlation of 2016 Table of Contents Module M1. Linear Equations, Inequalities, and Systems... 1 Module M2. Algebraic Expressions and Equations (Other Than Linear)...

More information

June If you want, you may scan your assignment and convert it to a.pdf file and it to me.

June If you want, you may scan your assignment and convert it to a.pdf file and  it to me. Summer Assignment Pre-Calculus Honors June 2016 Dear Student: This assignment is a mandatory part of the Pre-Calculus Honors course. Students who do not complete the assignment will be placed in the regular

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Summer Work for students entering PreCalculus

Summer Work for students entering PreCalculus Summer Work for students entering PreCalculus Name Directions: The following packet represent a review of topics you learned in Algebra 1, Geometry, and Algebra 2. Complete your summer packet on separate

More information

INSIDE ALGEBRA CORRELATED WITH CALIFORNIA S COMMON CORE STANDARDS HIGH SCHOOL ALGEBRA

INSIDE ALGEBRA CORRELATED WITH CALIFORNIA S COMMON CORE STANDARDS HIGH SCHOOL ALGEBRA We CA Can COMMON Early Learning CORE STANDARDS Curriculum PreK Grades 8 12 INSIDE ALGEBRA CORRELATED WITH CALIFORNIA S COMMON CORE STANDARDS HIGH SCHOOL ALGEBRA May 2011 www.voyagersopris.com/insidealgebra

More information

Fundamentals. Introduction. 1.1 Sets, inequalities, absolute value and properties of real numbers

Fundamentals. Introduction. 1.1 Sets, inequalities, absolute value and properties of real numbers Introduction This first chapter reviews some of the presumed knowledge for the course that is, mathematical knowledge that you must be familiar with before delving fully into the Mathematics Higher Level

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions SECTION.1 Linear and Quadratic Functions Chapter Polynomial and Rational Functions Section.1: Linear and Quadratic Functions Linear Functions Quadratic Functions Linear Functions Definition of a Linear

More information

Stephen F Austin. Exponents and Logarithms. chapter 3

Stephen F Austin. Exponents and Logarithms. chapter 3 chapter 3 Starry Night was painted by Vincent Van Gogh in 1889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Exponents and Logarithms This chapter focuses on understanding

More information

College Algebra with Corequisite Support: A Compressed Approach

College Algebra with Corequisite Support: A Compressed Approach College Algebra with Corequisite Support: A Compressed Approach 978-1-63545-059-0 To learn more about all our offerings Visit Knewton.com Source Author(s) (Text or Video) Title(s) Link (where applicable)

More information

Algebra 1 Prince William County Schools Pacing Guide (Crosswalk)

Algebra 1 Prince William County Schools Pacing Guide (Crosswalk) Algebra 1 Prince William County Schools Pacing Guide 2017-2018 (Crosswalk) Teacher focus groups have assigned a given number of days to each unit based on their experiences and knowledge of the curriculum.

More information

Math Literacy. Curriculum (457 topics)

Math Literacy. Curriculum (457 topics) Math Literacy This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

More information

Algebra 2. Curriculum (524 topics additional topics)

Algebra 2. Curriculum (524 topics additional topics) Algebra 2 This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular needs.

More information

30 Wyner Math Academy I Fall 2015

30 Wyner Math Academy I Fall 2015 30 Wyner Math Academy I Fall 2015 CHAPTER FOUR: QUADRATICS AND FACTORING Review November 9 Test November 16 The most common functions in math at this level are quadratic functions, whose graphs are parabolas.

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

COLLEGE-PREP ALGEBRA I Course #042

COLLEGE-PREP ALGEBRA I Course #042 COLLEGE-PREP ALGEBRA I Course #042 Course of Study Findlay City Schools 2013 TABLE OF CONTENTS 1. Findlay City Schools Mission Statement and Beliefs 2. College-Prep Algebra I Course of Study 3. College-Prep

More information

= 9 = x + 8 = = -5x 19. For today: 2.5 (Review) and. 4.4a (also review) Objectives:

= 9 = x + 8 = = -5x 19. For today: 2.5 (Review) and. 4.4a (also review) Objectives: Math 65 / Notes & Practice #1 / 20 points / Due. / Name: Home Work Practice: Simplify the following expressions by reducing the fractions: 16 = 4 = 8xy =? = 9 40 32 38x 64 16 Solve the following equations

More information

Chapter P. Prerequisites. Slide P- 1. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter P. Prerequisites. Slide P- 1. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide P- 1 Chapter P Prerequisites 1 P.1 Real Numbers Quick Review 1. List the positive integers between -4 and 4.. List all negative integers greater than -4. 3. Use a calculator to evaluate the expression

More information

Summer Packet A Math Refresher For Students Entering IB Mathematics SL

Summer Packet A Math Refresher For Students Entering IB Mathematics SL Summer Packet A Math Refresher For Students Entering IB Mathematics SL Name: PRECALCULUS SUMMER PACKET Directions: This packet is required if you are registered for Precalculus for the upcoming school

More information

General Form: y = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0

General Form: y = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 Families of Functions Prepared by: Sa diyya Hendrickson Name: Date: Definition: function A function f is a rule that relates two sets by assigning to some element (e.g. x) in a set A exactly one element

More information

ALGEBRA 2/MATH 3 COURSE 1

ALGEBRA 2/MATH 3 COURSE 1 ALGEBRA 2/MATH 3 COURSE 1 TABLE OF CONTENTS NUMBER AND QUANTITY 6 THE REAL NUMBER SYSTEM (N.RN) 6 EXTEND THE PROPERTIES OF EXPONENTS TO RATIONAL EXPONENTS. (N.RN.1-2) 6 Expectations for Learning 6 Content

More information

LESSON 9.1 ROOTS AND RADICALS

LESSON 9.1 ROOTS AND RADICALS LESSON 9.1 ROOTS AND RADICALS LESSON 9.1 ROOTS AND RADICALS 67 OVERVIEW Here s what you ll learn in this lesson: Square Roots and Cube Roots a. Definition of square root and cube root b. Radicand, radical

More information

Law of Trichotomy and Boundary Equations

Law of Trichotomy and Boundary Equations Law of Trichotomy and Boundary Equations Law of Trichotomy: For any two real numbers a and b, exactly one of the following is true. i. a < b ii. a = b iii. a > b The Law of Trichotomy is a formal statement

More information

1.1 Functions and Their Representations

1.1 Functions and Their Representations Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 1.1 Functions and Their Representations Functions play a crucial role in mathematics. A function describes how one quantity depends on

More information

College Prep Algebra III Course #340. Course of Study. Findlay City School

College Prep Algebra III Course #340. Course of Study. Findlay City School College Prep Algebra III Course #340 Course of Study Findlay City School Algebra III Table of Contents 1. Findlay City Schools Mission Statement and Beliefs 2. Algebra III Curriculum Map 3. Algebra III

More information

Pre Algebra and Introductory Algebra

Pre Algebra and Introductory Algebra Pre Algebra and Introductory Algebra This course covers the topics outlined below and is available for use with integrated, interactive ebooks. You can customize the scope and sequence of this course to

More information