Vine Pruning for Efficient Multi-Pass Dependency Parsing. Alexander M. Rush and Slav Petrov

Size: px
Start display at page:

Download "Vine Pruning for Efficient Multi-Pass Dependency Parsing. Alexander M. Rush and Slav Petrov"

Transcription

1 Vine Pruning for Efficient Multi-Pass Dependency Parsing Alexander M. Rush and Slav Petrov

2 Dependency Parsing

3 Styles of Dependency Parsing greedy O(n) transition-based parsers (Nivre 2004) graph-based parsers (Eisner 2000) (McDonald 2005) speed first-order O(n 3 ) k-best O(kn) second-order O(n 3 ) accuracy third-order O(n 4 )

4 Styles of Dependency Parsing greedy O(n) transition-based parsers (Nivre 2004) graph-based parsers (Eisner 2000) (McDonald 2005) speed first-order O(n 3 ) k-best O(kn) second-order O(n 3 ) accuracy this work third-order O(n 4 )

5 Preview: Coarse-to-Fine Cascades cgwire vine first second

6 linear-size dependency representation

7 Representation Heads Modifiers

8 Representation Heads Modifiers

9 Representation Heads Modifiers

10 Representation Heads Modifiers

11 Representation Heads Modifiers

12 Representation Heads Modifiers

13 Representation Heads Modifiers

14 Representation Heads Modifiers

15 First-Order Feature Calculation

16 First-Order Feature Calculation [] [VBD] [] [ADP] [] [VERB] [] [IN] [ VBD] [ ADP] [ ] [VBD ADP] [ VERB] [ IN] [ ] [VERB IN] [VBD ADP] [ ADP] [ VBD ADP] [ VBD ] [ADJ ADP] [VBD ADP] [VBD ADJ ADP] [VBD ADJ ] [NNS ADP] [NNS VBD ADP] [NNS VBD ] [ADJ ADP NNP] [VBD ADP NNP] [VBD ADJ NNP] [NNS ADP NNP] [NNS VBD NNP] [ left 5] [VBD left 5] [ left 5] [ADP left 5] [VERB IN] [ IN] [ VERB IN] [ VERB ] [JJ IN] [VERB IN] [VERB JJ IN] [VERB JJ ] [NOUN IN] [NOUN VERB IN] [NOUN VERB ] [JJ IN NOUN] [VERB IN NOUN] [VERB JJ NOUN] [NOUN IN NOUN] [NOUN VERB NOUN] [ left 5] [VERB left 5] [ left 5] [IN left 5] [ VBD ADP] [VBD ADJ ADP] [NNS VBD ADP] [VBD ADJ ADP NNP] [NNS VBD ADP NNP] [ VBD left 5] [ ADP left 5] [ left 5] [VBD ADP left 5] [ VERB IN] [VERB JJ IN] [NOUN VERB IN] [VERB JJ IN NOUN] [NOUN VERB IN NOUN] [ VERB left 5] [ IN left 5] [ left 5] [VERB IN left 5] [VBD ADP left 5] [ ADP left 5] [ VBD ADP left 5] [ VBD left 5] [ADJ ADP left 5] [VBD ADP left 5] [VBD ADJ ADP left 5] [VBD ADJ left 5] [NNS ADP left 5] [NNS VBD ADP left 5] [NNS VBD left 5] [ADJ ADP NNP left 5] [VBD ADP NNP left 5] [VBD ADJ NNP left 5] [NNS ADP NNP left 5] [NNS VBD NNP left 5] [VERB IN left 5] [ IN left 5] [ VERB IN left 5] [ VERB left 5] [JJ IN left 5] [VERB IN left 5] [VERB JJ IN left 5] [VERB JJ left 5] [NOUN IN left 5] [NOUN VERB IN left 5]

17 Arc Length By Part-of-Speech NOUN ADP DET VERB ADJ counts length

18 Arc Length By Part-of-Speech NOUN ADP DET VERB ADJ counts length

19 Arc Length By Part-of-Speech NOUN ADP DET VERB ADJ counts length

20 bill The to the intends to RTC restrict only borrowings Treasury the unless authorization congressional specific Arc Length Examples The bill intends to restrict the RTC to Treasury borrowings only unless the agency receives specific congressional authorization. receives agency.

21 This was in system financing the new created in law to order the keep from bailout the spending. swelling deficit budget Arc Length Examples This financing system was created in the new law in order to keep the bailout spending from swelling the budget deficit.

22 Arc Length Examples But the RTC also requires working capital to maintain the bad assets of thrifts that are sold until the assets can be sold separately. But the RTC also requires working capital to maintain the bad assets of thrifts that are sold until the assets can be sold separately.

23 Arc Length Examples It s a problem that clearly has to be resolved said David Cooke executive director of the RTC. It s a problem that clearly has to be resolved said David Cooke executive director of the RTC.

24 Arc Length Examples We would have to wait until we have collected on those assets before we can move forward he said. We would have to wait until we have collected on those assets before we can move forward he said.

25 The in the huge language law new complicated has the. fight muddied Arc Length Examples The complicated language in the huge new law has muddied the fight.

26 Arc Length Examples That secrecy leads to a proposal like the one from Ways and Means which seems to me sort of draconian he said. That secrecy leads to a proposal like the one from Ways and Means which seems to me sort of draconian he said.

27 Arc Length Examples The RTC is going to have to pay a price of prior consultation on the Hill if they want that kind of flexibility. The RTC is going to have to pay a price of prior consultation on the Hill if they want that kind of flexibility.

28 Arc Length Heat Map

29 Arc Length Heat Map

30 Banded Matrix

31 Banded Matrix

32 Outer Arc

33 Outer Arc

34 Outer Arc

35 Outer Arc

36 vine Coarse-to-Fine

37 Coarse-to-Fine vine first

38 Coarse-to-Fine cgwire vine first second

39 dynamic programs for parsing

40 Inference Questions questions: How do we reduce inference time to O(n)? How do we decide which arcs to prune? Vine Parsing (Eisner and Smith 2005)

41 Eisner First-Order Rules + h m h r r + 1 m + h e h m m e

42 First-Order Parsing

43 First-Order Parsing

44 First-Order Parsing

45 First-Order Parsing

46 First-Order Parsing

47 First-Order Parsing

48 First-Order Parsing

49 First-Order Parsing

50 First-Order Parsing

51 Vine Parsing Rules + 0 e 0 e 1 e 1 e + 0 e 0 m m e 0 e 0 e + 0 e 0 m m e + 0 e 0 e 1 e 1 e

52 Vine Parsing

53 Vine Parsing

54 Vine Parsing

55 Vine Parsing

56 Vine Parsing

57 Vine Parsing

58 Vine Parsing

59 Vine Parsing

60 Vine Parsing

61 Vine Parsing

62 Vine Parsing

63 Vine Parsing

64 Arc Pruning Prune arcs based on max-marginals. maxmarginal(a) = max (y w) y:a y Can compute using inside-outside algorithm. Generic algorithm using hypergraph parsing.

65 Max-Marginals for First-Order Arcs maxmarginal( ) > threshold?

66 Max-Marginals for Outer Arcs maxmarginal(left ) > threshold?

67 pruning and training

68 Max-Marginal Pruning goal: Define a threshold on max-marginal score. Validation parameter α trades off between speed and accuracy. t α (w) = α max (y w) + (1 α) 1 y A maxmarginal(a w) a A Highest scoring parse upper bounds any max-marginal. sume average of max-marginals is lower than gold.

69 Pruning Threshold feature two w feature one

70 Pruning Threshold max feature two w feature one

71 Pruning Threshold max feature two w feature one

72 Pruning Threshold max feature two w feature one

73 Pruning Threshold max feature two w feature one

74 Pruning Threshold max feature two average max-marginal w feature one

75 Pruning Threshold max feature two average max-marginal w feature one

76 Pruning Threshold max feature two average max-marginal w feature one

77 Pruning Threshold max feature two average max-marginal w feature one

78 Pruning Threshold max feature two α average max-marginal w feature one

79 Pruning Threshold max feature two average max-marginal w feature one

80 Structured Cascade Training (Weiss and Taskar 2011) Train a linear model with a loss function for pruning. Regularized risk minimization with loss based on threshold min w λ w P P [1 y (p) w + t α (p) (w)] + p=1 Can use a simple variant of perceptron/pegasos to train.

81 Structured Cascade Training max feature two w feature one gold

82 Structured Cascade Training max feature two average max-marginal w feature one gold

83 Structured Cascade Training max feature two average max-marginal w feature one gold

84 Structured Cascade Training max feature two average max-marginal w feature one gold

85 Structured Cascade Training max feature two average max-marginal w feature one gold

86 Structured Cascade Training max feature two average max-marginal w feature one gold

87 Structured Cascade Training max feature two average max-marginal w feature one gold

88 Structured Cascade Training feature two w feature one gold

89 Structured Cascade Training feature two max w feature one gold

90 Structured Cascade Training feature two max w feature one gold

91 Structured Cascade Training feature two max w feature one gold

92 experiments

93 Implementation Inference Experiments use a highly-optimized C++ implementation. Baseline first-order parser processes 2000 tokens/sec. Hypergraph parsing framework with shared inference. Model Final models trained with hamming-loss MIRA. Full collection of dependency parsing features (Koo 2010). First- second- and third-order models match state-of-the-art.

94 Baselines NoPrune exhaustive parsing model with no pruning LocalShort unstructured classifier over O(n) short arcs (Bergsma and Cherry 2010) Local unstructured classifier over O(n 2 ) arcs (Bergsma and Cherry 2010) FirstOnly structured first-order model in cascade (Koo 2010) VinePosterior posterior pruning cascade trained with L-BFGS ZhangNivre reimplementation of state-of-the-art k-best transition-based parser (Zhang and Nivre 2011).

95 Speed/Accuracy Experiments: First-Order Parsing NoPrune Local FirstOnly VinePosterior VineCascade ZhangNivre(8) Relative Speed Accuracy

96 Speed/Accuracy Experiments: Second-Order Parsing NoPrune Local FirstOnly VinePosterior VineCascade ZhangNivre(16) Relative Speed Accuracy

97 Speed/Accuracy Experiments: Third-Order Parsing NoPrune Local FirstOnly VinePosterior VineCascade ZhangNivre(64) Relative Speed Accuracy

98 Empirical Complexity: First-Order Parsing NoPrune [2.8] VineCascade [1.4] time sentence length

99 Empirical Complexity: Second-Order Parsing NoPrune [2.8] VineCascade [1.8] time sentence length

100 Empirical Complexity: Third-Order Parsing NoPrune [3.8] VineCascade [1.9] time sentence length

101 Multilingual Experiments: First-Order Parsing En Bg De Pt Sw Zh NoPrune VineCascade Relative Speed

102 Multilingual Experiments: Second-Order Parsing En Bg De Pt Sw Zh NoPrune VineCascade Relative Speed

103 Multilingual Experiments: Third-Order Parsing En Bg De Pt Sw Zh NoPrune VineCascade Relative Speed

104 Special thanks to: Ryan McDonald Hao Zhang Michael Ringgaard Terry Koo Keith Hall Kuzman Ganchev Yoav Goldberg Andre Martins and the rest of the Google NLP team

Dependency Parsing. Statistical NLP Fall (Non-)Projectivity. CoNLL Format. Lecture 9: Dependency Parsing

Dependency Parsing. Statistical NLP Fall (Non-)Projectivity. CoNLL Format. Lecture 9: Dependency Parsing Dependency Parsing Statistical NLP Fall 2016 Lecture 9: Dependency Parsing Slav Petrov Google prep dobj ROOT nsubj pobj det PRON VERB DET NOUN ADP NOUN They solved the problem with statistics CoNLL Format

More information

Structured Prediction Models via the Matrix-Tree Theorem

Structured Prediction Models via the Matrix-Tree Theorem Structured Prediction Models via the Matrix-Tree Theorem Terry Koo Amir Globerson Xavier Carreras Michael Collins maestro@csail.mit.edu gamir@csail.mit.edu carreras@csail.mit.edu mcollins@csail.mit.edu

More information

Advanced Graph-Based Parsing Techniques

Advanced Graph-Based Parsing Techniques Advanced Graph-Based Parsing Techniques Joakim Nivre Uppsala University Linguistics and Philology Based on previous tutorials with Ryan McDonald Advanced Graph-Based Parsing Techniques 1(33) Introduction

More information

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti Quasi-Synchronous Phrase Dependency Grammars for Machine Translation Kevin Gimpel Noah A. Smith 1 Introduction MT using dependency grammars on phrases Phrases capture local reordering and idiomatic translations

More information

NLP Programming Tutorial 11 - The Structured Perceptron

NLP Programming Tutorial 11 - The Structured Perceptron NLP Programming Tutorial 11 - The Structured Perceptron Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Prediction Problems Given x, A book review Oh, man I love this book! This book is

More information

LECTURER: BURCU CAN Spring

LECTURER: BURCU CAN Spring LECTURER: BURCU CAN 2017-2018 Spring Regular Language Hidden Markov Model (HMM) Context Free Language Context Sensitive Language Probabilistic Context Free Grammar (PCFG) Unrestricted Language PCFGs can

More information

Transition-based Dependency Parsing with Selectional Branching

Transition-based Dependency Parsing with Selectional Branching Transitionbased Dependency Parsing with Selectional Branching Presented at the 4th workshop on Statistical Parsing in Morphologically Rich Languages October 18th, 2013 Jinho D. Choi University of Massachusetts

More information

NLP Homework: Dependency Parsing with Feed-Forward Neural Network

NLP Homework: Dependency Parsing with Feed-Forward Neural Network NLP Homework: Dependency Parsing with Feed-Forward Neural Network Submission Deadline: Monday Dec. 11th, 5 pm 1 Background on Dependency Parsing Dependency trees are one of the main representations used

More information

10/17/04. Today s Main Points

10/17/04. Today s Main Points Part-of-speech Tagging & Hidden Markov Model Intro Lecture #10 Introduction to Natural Language Processing CMPSCI 585, Fall 2004 University of Massachusetts Amherst Andrew McCallum Today s Main Points

More information

Structured Prediction

Structured Prediction Structured Prediction Classification Algorithms Classify objects x X into labels y Y First there was binary: Y = {0, 1} Then multiclass: Y = {1,...,6} The next generation: Structured Labels Structured

More information

Personal Project: Shift-Reduce Dependency Parsing

Personal Project: Shift-Reduce Dependency Parsing Personal Project: Shift-Reduce Dependency Parsing 1 Problem Statement The goal of this project is to implement a shift-reduce dependency parser. This entails two subgoals: Inference: We must have a shift-reduce

More information

13A. Computational Linguistics. 13A. Log-Likelihood Dependency Parsing. CSC 2501 / 485 Fall 2017

13A. Computational Linguistics. 13A. Log-Likelihood Dependency Parsing. CSC 2501 / 485 Fall 2017 Computational Linguistics CSC 2501 / 485 Fall 2017 13A 13A. Log-Likelihood Dependency Parsing Gerald Penn Department of Computer Science, University of Toronto Based on slides by Yuji Matsumoto, Dragomir

More information

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Natural Language Processing CS 6840 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Parsing Define a probabilistic model of syntax P(T S):

More information

Soft Inference and Posterior Marginals. September 19, 2013

Soft Inference and Posterior Marginals. September 19, 2013 Soft Inference and Posterior Marginals September 19, 2013 Soft vs. Hard Inference Hard inference Give me a single solution Viterbi algorithm Maximum spanning tree (Chu-Liu-Edmonds alg.) Soft inference

More information

Graph-based Dependency Parsing. Ryan McDonald Google Research

Graph-based Dependency Parsing. Ryan McDonald Google Research Graph-based Dependency Parsing Ryan McDonald Google Research ryanmcd@google.com Reader s Digest Graph-based Dependency Parsing Ryan McDonald Google Research ryanmcd@google.com root ROOT Dependency Parsing

More information

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP NP PP 1.0. N people 0.

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP  NP PP 1.0. N people 0. /6/7 CS 6/CS: Natural Language Processing Instructor: Prof. Lu Wang College of Computer and Information Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang The grammar: Binary, no epsilons,.9..5

More information

Log-Linear Models with Structured Outputs

Log-Linear Models with Structured Outputs Log-Linear Models with Structured Outputs Natural Language Processing CS 4120/6120 Spring 2016 Northeastern University David Smith (some slides from Andrew McCallum) Overview Sequence labeling task (cf.

More information

Posterior vs. Parameter Sparsity in Latent Variable Models Supplementary Material

Posterior vs. Parameter Sparsity in Latent Variable Models Supplementary Material Posterior vs. Parameter Sparsity in Latent Variable Models Supplementary Material João V. Graça L 2 F INESC-ID Lisboa, Portugal Kuzman Ganchev Ben Taskar University of Pennsylvania Philadelphia, PA, USA

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classification II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classification II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Minimize Training Error? A loss function declares how costly each mistake is E.g. 0 loss for correct label,

More information

Computational Linguistics

Computational Linguistics Computational Linguistics Dependency-based Parsing Clayton Greenberg Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2016 Acknowledgements These slides

More information

Dynamic-oracle Transition-based Parsing with Calibrated Probabilistic Output

Dynamic-oracle Transition-based Parsing with Calibrated Probabilistic Output Dynamic-oracle Transition-based Parsing with Calibrated Probabilistic Output Yoav Goldberg Computer Science Department Bar Ilan University Ramat Gan, Israel yoav.goldberg@gmail.com Abstract We adapt the

More information

Latent Variable Models in NLP

Latent Variable Models in NLP Latent Variable Models in NLP Aria Haghighi with Slav Petrov, John DeNero, and Dan Klein UC Berkeley, CS Division Latent Variable Models Latent Variable Models Latent Variable Models Observed Latent Variable

More information

Multilevel Coarse-to-Fine PCFG Parsing

Multilevel Coarse-to-Fine PCFG Parsing Multilevel Coarse-to-Fine PCFG Parsing Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Catherine Hill, Shrivaths Iyengar, Jeremy Moore, Michael Pozar, and Theresa

More information

Probabilistic Context Free Grammars. Many slides from Michael Collins

Probabilistic Context Free Grammars. Many slides from Michael Collins Probabilistic Context Free Grammars Many slides from Michael Collins Overview I Probabilistic Context-Free Grammars (PCFGs) I The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing Computational Linguistics Dependency-based Parsing Dietrich Klakow & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2013 Acknowledgements These slides

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Transition-based Dependency Parsing with Selectional Branching

Transition-based Dependency Parsing with Selectional Branching Transition-based Dependency Parsing with Selectional Branching Jinho D. Choi Department of Computer Science University of Massachusetts Amherst Amherst, MA, 01003, USA jdchoi@cs.umass.edu Andrew McCallum

More information

Introduction to Data-Driven Dependency Parsing

Introduction to Data-Driven Dependency Parsing Introduction to Data-Driven Dependency Parsing Introductory Course, ESSLLI 2007 Ryan McDonald 1 Joakim Nivre 2 1 Google Inc., New York, USA E-mail: ryanmcd@google.com 2 Uppsala University and Växjö University,

More information

Boosting Ensembles of Structured Prediction Rules

Boosting Ensembles of Structured Prediction Rules Boosting Ensembles of Structured Prediction Rules Corinna Cortes Google Research 76 Ninth Avenue New York, NY 10011 corinna@google.com Vitaly Kuznetsov Courant Institute 251 Mercer Street New York, NY

More information

Probabilistic Context-free Grammars

Probabilistic Context-free Grammars Probabilistic Context-free Grammars Computational Linguistics Alexander Koller 24 November 2017 The CKY Recognizer S NP VP NP Det N VP V NP V ate NP John Det a N sandwich i = 1 2 3 4 k = 2 3 4 5 S NP John

More information

Statistical methods in NLP, lecture 7 Tagging and parsing

Statistical methods in NLP, lecture 7 Tagging and parsing Statistical methods in NLP, lecture 7 Tagging and parsing Richard Johansson February 25, 2014 overview of today's lecture HMM tagging recap assignment 3 PCFG recap dependency parsing VG assignment 1 overview

More information

Lab 12: Structured Prediction

Lab 12: Structured Prediction December 4, 2014 Lecture plan structured perceptron application: confused messages application: dependency parsing structured SVM Class review: from modelization to classification What does learning mean?

More information

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I CS395T: Structured Models for NLP Lecture 19: Advanced NNs I Greg Durrett Administrivia Kyunghyun Cho (NYU) talk Friday 11am GDC 6.302 Project 3 due today! Final project out today! Proposal due in 1 week

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars CS 585, Fall 2017 Introduction to Natural Language Processing http://people.cs.umass.edu/~brenocon/inlp2017 Brendan O Connor College of Information and Computer Sciences

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Stochastic Grammars Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(22) Structured Classification

More information

Word Embeddings in Feedforward Networks; Tagging and Dependency Parsing using Feedforward Networks. Michael Collins, Columbia University

Word Embeddings in Feedforward Networks; Tagging and Dependency Parsing using Feedforward Networks. Michael Collins, Columbia University Word Embeddings in Feedforward Networks; Tagging and Dependency Parsing using Feedforward Networks Michael Collins, Columbia University Overview Introduction Multi-layer feedforward networks Representing

More information

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I. Greg Durrett

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I. Greg Durrett CS395T: Structured Models for NLP Lecture 19: Advanced NNs I Greg Durrett Administrivia Kyunghyun Cho (NYU) talk Friday 11am GDC 6.302 Project 3 due today! Final project out today! Proposal due in 1 week

More information

Lecture 9: Hidden Markov Model

Lecture 9: Hidden Markov Model Lecture 9: Hidden Markov Model Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501 Natural Language Processing 1 This lecture v Hidden Markov

More information

Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing

Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing Yuan Zhang CSAIL, MIT yuanzh@csail.mit.edu Regina Barzilay CSAIL, MIT regina@csail.mit.edu Abstract Accurate multilingual transfer parsing

More information

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark Penn Treebank Parsing Advanced Topics in Language Processing Stephen Clark 1 The Penn Treebank 40,000 sentences of WSJ newspaper text annotated with phrasestructure trees The trees contain some predicate-argument

More information

Transition-Based Parsing

Transition-Based Parsing Transition-Based Parsing Based on atutorial at COLING-ACL, Sydney 2006 with Joakim Nivre Sandra Kübler, Markus Dickinson Indiana University E-mail: skuebler,md7@indiana.edu Transition-Based Parsing 1(11)

More information

Sequence Labeling: HMMs & Structured Perceptron

Sequence Labeling: HMMs & Structured Perceptron Sequence Labeling: HMMs & Structured Perceptron CMSC 723 / LING 723 / INST 725 MARINE CARPUAT marine@cs.umd.edu HMM: Formal Specification Q: a finite set of N states Q = {q 0, q 1, q 2, q 3, } N N Transition

More information

IN FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning

IN FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning 1 IN4080 2018 FALL NATURAL LANGUAGE PROCESSING Jan Tore Lønning 2 Logistic regression Lecture 8, 26 Sept Today 3 Recap: HMM-tagging Generative and discriminative classifiers Linear classifiers Logistic

More information

Marrying Dynamic Programming with Recurrent Neural Networks

Marrying Dynamic Programming with Recurrent Neural Networks Marrying Dynamic Programming with Recurrent Neural Networks I eat sushi with tuna from Japan Liang Huang Oregon State University Structured Prediction Workshop, EMNLP 2017, Copenhagen, Denmark Marrying

More information

CS838-1 Advanced NLP: Hidden Markov Models

CS838-1 Advanced NLP: Hidden Markov Models CS838-1 Advanced NLP: Hidden Markov Models Xiaojin Zhu 2007 Send comments to jerryzhu@cs.wisc.edu 1 Part of Speech Tagging Tag each word in a sentence with its part-of-speech, e.g., The/AT representative/nn

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Information Extraction, Hidden Markov Models Sameer Maskey Week 5, Oct 3, 2012 *many slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny Speech Recognition

More information

Probabilistic Context-Free Grammars. Michael Collins, Columbia University

Probabilistic Context-Free Grammars. Michael Collins, Columbia University Probabilistic Context-Free Grammars Michael Collins, Columbia University Overview Probabilistic Context-Free Grammars (PCFGs) The CKY Algorithm for parsing with PCFGs A Probabilistic Context-Free Grammar

More information

Spectral Unsupervised Parsing with Additive Tree Metrics

Spectral Unsupervised Parsing with Additive Tree Metrics Spectral Unsupervised Parsing with Additive Tree Metrics Ankur Parikh, Shay Cohen, Eric P. Xing Carnegie Mellon, University of Edinburgh Ankur Parikh 2014 1 Overview Model: We present a novel approach

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University September 27, 2018 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Discrimina)ve Latent Variable Models. SPFLODD November 15, 2011

Discrimina)ve Latent Variable Models. SPFLODD November 15, 2011 Discrimina)ve Latent Variable Models SPFLODD November 15, 2011 Lecture Plan 1. Latent variables in genera)ve models (review) 2. Latent variables in condi)onal models 3. Latent variables in structural SVMs

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars Berlin Chen 2005 References: 1. Natural Language Understanding, chapter 3 (3.1~3.4, 3.6) 2. Speech and Language Processing, chapters 9, 10 NLP-Berlin Chen 1 Grammars

More information

WHITE PAPER BENEFITS OF USING EXPERT FX RISK MANAGEMENT RESOURCES PREPARED BY ANDRE CILLIERS DIRECTOR AND CURRENCY RISK STRATEGIST AT TREASURYONE

WHITE PAPER BENEFITS OF USING EXPERT FX RISK MANAGEMENT RESOURCES PREPARED BY ANDRE CILLIERS DIRECTOR AND CURRENCY RISK STRATEGIST AT TREASURYONE WHITE PAPER BENEFITS OF USING EXPERT FX RISK MANAGEMENT RESOURCES EXCHANGE RATE RISK MANAGEMENT PREPARED BY ANDRE CILLIERS DIRECTOR AND CURRENCY RISK STRATEGIST AT TREASURYONE SEPTEMBER 2018 Introduction

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 26 February 2018 Recap: tagging POS tagging is a sequence labelling task.

More information

Dependency grammar. Recurrent neural networks. Transition-based neural parsing. Word representations. Informs Models

Dependency grammar. Recurrent neural networks. Transition-based neural parsing. Word representations. Informs Models Dependency grammar Morphology Word order Transition-based neural parsing Word representations Recurrent neural networks Informs Models Dependency grammar Morphology Word order Transition-based neural parsing

More information

CKY & Earley Parsing. Ling 571 Deep Processing Techniques for NLP January 13, 2016

CKY & Earley Parsing. Ling 571 Deep Processing Techniques for NLP January 13, 2016 CKY & Earley Parsing Ling 571 Deep Processing Techniques for NLP January 13, 2016 No Class Monday: Martin Luther King Jr. Day CKY Parsing: Finish the parse Recognizer à Parser Roadmap Earley parsing Motivation:

More information

Sequential Data Modeling - The Structured Perceptron

Sequential Data Modeling - The Structured Perceptron Sequential Data Modeling - The Structured Perceptron Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Prediction Problems Given x, predict y 2 Prediction Problems Given x, A book review

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University October 9, 2018 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Distributed Training Strategies for the Structured Perceptron

Distributed Training Strategies for the Structured Perceptron Distributed Training Strategies for the Structured Perceptron Ryan McDonald Keith Hall Gideon Mann Google, Inc., New York / Zurich {ryanmcd kbhall gmann}@google.com Abstract Perceptron training is widely

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Uppsala University Department of Linguistics and Philology Slides borrowed from Ryan McDonald, Google Research Machine Learning for NLP 1(50) Introduction Linear Classifiers Classifiers

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Global linear models Based on slides from Michael Collins Globally-normalized models Why do we decompose to a sequence of decisions? Can we directly estimate the probability

More information

Polyhedral Outer Approximations with Application to Natural Language Parsing

Polyhedral Outer Approximations with Application to Natural Language Parsing Polyhedral Outer Approximations with Application to Natural Language Parsing André F. T. Martins 1,2 Noah A. Smith 1 Eric P. Xing 1 1 Language Technologies Institute School of Computer Science Carnegie

More information

Structured Prediction Theory and Algorithms

Structured Prediction Theory and Algorithms Structured Prediction Theory and Algorithms Joint work with Corinna Cortes (Google Research) Vitaly Kuznetsov (Google Research) Scott Yang (Courant Institute) MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE

More information

CS388: Natural Language Processing Lecture 4: Sequence Models I

CS388: Natural Language Processing Lecture 4: Sequence Models I CS388: Natural Language Processing Lecture 4: Sequence Models I Greg Durrett Mini 1 due today Administrivia Project 1 out today, due September 27 Viterbi algorithm, CRF NER system, extension Extension

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

A Context-Free Grammar

A Context-Free Grammar Statistical Parsing A Context-Free Grammar S VP VP Vi VP Vt VP VP PP DT NN PP PP P Vi sleeps Vt saw NN man NN dog NN telescope DT the IN with IN in Ambiguity A sentence of reasonable length can easily

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 17 October 2016 updated 9 September 2017 Recap: tagging POS tagging is a

More information

Posterior Sparsity in Unsupervised Dependency Parsing

Posterior Sparsity in Unsupervised Dependency Parsing Journal of Machine Learning Research 10 (2010)?? Submitted??; Published?? Posterior Sparsity in Unsupervised Dependency Parsing Jennifer Gillenwater Kuzman Ganchev João Graça Computer and Information Science

More information

The Structured Weighted Violations Perceptron Algorithm

The Structured Weighted Violations Perceptron Algorithm The Structured Weighted Violations Perceptron Algorithm Rotem Dror and Roi Reichart Faculty of Industrial Engineering and Management, Technion, IIT {rtmdrr@campus roiri@ie}.technion.ac.il Abstract We present

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing

ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk Language Modelling 2 A language model is a probability

More information

Extracting Information from Text

Extracting Information from Text Extracting Information from Text Research Seminar Statistical Natural Language Processing Angela Bohn, Mathias Frey, November 25, 2010 Main goals Extract structured data from unstructured text Training

More information

Maxent Models and Discriminative Estimation

Maxent Models and Discriminative Estimation Maxent Models and Discriminative Estimation Generative vs. Discriminative models (Reading: J+M Ch6) Introduction So far we ve looked at generative models Language models, Naive Bayes But there is now much

More information

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) Parsing Based on presentations from Chris Manning s course on Statistical Parsing (Stanford) S N VP V NP D N John hit the ball Levels of analysis Level Morphology/Lexical POS (morpho-synactic), WSD Elements

More information

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE Li Sheng Institute of intelligent information engineering Zheiang University Hangzhou, 3007, P. R. China ABSTRACT In this paper, a neural network-driven

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Lagrangian Relaxation Algorithms for Inference in Natural Language Processing

Lagrangian Relaxation Algorithms for Inference in Natural Language Processing Lagrangian Relaxation Algorithms for Inference in Natural Language Processing Alexander M. Rush and Michael Collins (based on joint work with Yin-Wen Chang, Tommi Jaakkola, Terry Koo, Roi Reichart, David

More information

Multiword Expression Identification with Tree Substitution Grammars

Multiword Expression Identification with Tree Substitution Grammars Multiword Expression Identification with Tree Substitution Grammars Spence Green, Marie-Catherine de Marneffe, John Bauer, and Christopher D. Manning Stanford University EMNLP 2011 Main Idea Use syntactic

More information

Adaptive Multi-Compositionality for Recursive Neural Models with Applications to Sentiment Analysis. July 31, 2014

Adaptive Multi-Compositionality for Recursive Neural Models with Applications to Sentiment Analysis. July 31, 2014 Adaptive Multi-Compositionality for Recursive Neural Models with Applications to Sentiment Analysis July 31, 2014 Semantic Composition Principle of Compositionality The meaning of a complex expression

More information

Linear Classifiers IV

Linear Classifiers IV Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers IV Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018 1-61 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Regularization Matt Gormley Lecture 1 Feb. 19, 218 1 Reminders Homework 4: Logistic

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Tuning as Linear Regression

Tuning as Linear Regression Tuning as Linear Regression Marzieh Bazrafshan, Tagyoung Chung and Daniel Gildea Department of Computer Science University of Rochester Rochester, NY 14627 Abstract We propose a tuning method for statistical

More information

CS626: NLP, Speech and the Web. Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: Parsing Algorithms 30 th August, 2012

CS626: NLP, Speech and the Web. Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: Parsing Algorithms 30 th August, 2012 CS626: NLP, Speech and the Web Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 14: Parsing Algorithms 30 th August, 2012 Parsing Problem Semantics Part of Speech Tagging NLP Trinity Morph Analysis

More information

A Support Vector Method for Multivariate Performance Measures

A Support Vector Method for Multivariate Performance Measures A Support Vector Method for Multivariate Performance Measures Thorsten Joachims Cornell University Department of Computer Science Thanks to Rich Caruana, Alexandru Niculescu-Mizil, Pierre Dupont, Jérôme

More information

Structured Prediction

Structured Prediction Machine Learning Fall 2017 (structured perceptron, HMM, structured SVM) Professor Liang Huang (Chap. 17 of CIML) x x the man bit the dog x the man bit the dog x DT NN VBD DT NN S =+1 =-1 the man bit the

More information

CS460/626 : Natural Language

CS460/626 : Natural Language CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 23, 24 Parsing Algorithms; Parsing in case of Ambiguity; Probabilistic Parsing) Pushpak Bhattacharyya CSE Dept., IIT Bombay 8 th,

More information

Relaxed Marginal Inference and its Application to Dependency Parsing

Relaxed Marginal Inference and its Application to Dependency Parsing Relaxed Marginal Inference and its Application to Dependency Parsing Sebastian Riedel David A. Smith Department of Computer Science University of Massachusetts, Amherst {riedel,dasmith}@cs.umass.edu Abstract

More information

Variational Decoding for Statistical Machine Translation

Variational Decoding for Statistical Machine Translation Variational Decoding for Statistical Machine Translation Zhifei Li, Jason Eisner, and Sanjeev Khudanpur Center for Language and Speech Processing Computer Science Department Johns Hopkins University 1

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Max-margin learning of GM Eric Xing Lecture 28, Apr 28, 2014 b r a c e Reading: 1 Classical Predictive Models Input and output space: Predictive

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Hidden Markov Models

Hidden Markov Models CS769 Spring 2010 Advanced Natural Language Processing Hidden Markov Models Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu 1 Part-of-Speech Tagging The goal of Part-of-Speech (POS) tagging is to label each

More information

Generalized Linear Classifiers in NLP

Generalized Linear Classifiers in NLP Generalized Linear Classifiers in NLP (or Discriminative Generalized Linear Feature-Based Classifiers) Graduate School of Language Technology, Sweden 2009 Ryan McDonald Google Inc., New York, USA E-mail:

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Lecture 7: Sequence Labeling

Lecture 7: Sequence Labeling http://courses.engr.illinois.edu/cs447 Lecture 7: Sequence Labeling Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Recap: Statistical POS tagging with HMMs (J. Hockenmaier) 2 Recap: Statistical

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Empirical Methods in Natural Language Processing Lecture 11 Part-of-speech tagging and HMMs

Empirical Methods in Natural Language Processing Lecture 11 Part-of-speech tagging and HMMs Empirical Methods in Natural Language Processing Lecture 11 Part-of-speech tagging and HMMs (based on slides by Sharon Goldwater and Philipp Koehn) 21 February 2018 Nathan Schneider ENLP Lecture 11 21

More information

Fourth-Order Dependency Parsing

Fourth-Order Dependency Parsing Fourth-Order Dependency Parsing X uezhe Ma 1,2 Hai Zhao 1,2 (1) Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering, Shanghai Jiao Tong University (2)

More information