Lesson 29. Exact Differential Equations: Integrating Factors

Size: px
Start display at page:

Download "Lesson 29. Exact Differential Equations: Integrating Factors"

Transcription

1 Module 3: Ordinar Differential Equations Lesson 9 Eact Differential Equations: Integrating Factors In general, equations of the tpe M,)d + N,)d = 0 are not eact. However, it is sometimes possible to transform the equation into an eact differential equation multipling it b a suitable function I,). That is, if I,) is an integrating factor then the differential equation I,)M,)d+I,)N,)d = 0 becomes eact. A solution to the above equation is obtained b solving the eact differential equation as in the previous lesson. Note that the given equation ma have several integrating factors. This is eactl the procedure we have used for solving linear differential equations in earlier lesson. Here we deal with more general differential equation. 9. Rule I: B Inspection There is not much theor behind finding integrating factor b inspection. This method works based on recognition of some standard eact differentials that occur frequentl in practice. The following list of eact differentials would be quite useful in solving eact differential equations: i) d) = d+d d d ii) d = ) iii) d ln ) = iv) d arctan ) = v) dln) = d+d ) or d = d d d d or d ln ) = d d d d + or d arctan ) = d d Eample Solve the differential equation +)d+ )d.

2 Solution: The given equation can be rewritten as d+d)+d d This is further rewritten as ) d d d+d)+ = 0 Using standard differential forms given above we get ) d)+d = 0 Integrating the above equation, the desired solution is given as Here c is an arbitrar constant. + = c 9. Rule II: Md+Nd = 0 is homogeneous and M+N 0 If the equationmd+nd = 0 is homogeneous andm+n 0, theni,) = is an integrating factor. In order to prove the result, we need to show that M+N) Md+Nd M+N = dsome function and ) Rewriting Md+Nd as Md+Nd = { d M+N) + d ) d +M N) d )} Multipling b proposed integrating factor we get Md+Nd M+N = { d + d ) + M N) d M+N) d )} 9.) Given thatm,) andn,) are homogeneous functions of some degreen, i.e.,mt,t) = t n M,) and N,) = t n N,). Then ) M, = M, ) = ) nm,) M,) = n M,

3 Similarl, we get N,) = n N Now consider ) M N) n M,) n N, M+N) = ) ) = n M, + n N, Going back to the Equation 9.), we have Md+Nd M+N = ), { dln))+f ) M,) N, ) ) = f M, +N, ) d ln )} ) Rewriting f /) = f epln/))) and defining g) := fep)), the above equation becomes Md+Nd M+N = { dln))+gln/))d ln )} Hence, we have shown that Md+Nd M+N = d [ ln)+ g ln ) d ln )] Thus M+N Nd = 0. is an integrating factor of the homogenous differential equation Md Eample Solve the differential equation )d 3 3 )d = 0 Solution: The given equation is a homogeneous differential equation. Comparing it with Md+Nd = 0, we have M = and N = 3 3 ). Since the integrating factor is M+N = ) 3 3 ) = 0, M+N) = Multipl b the integrating factor, the given differential equation becomes / /)d / 3/)d = 0 3

4 This is now eact and can be rewritten as d d d+ 3 d = 0 d ) d+ 3 d = 0 Integrating the above equation we obtain the desired solution as ln+3ln = c 9.3 Rule III: Md+Nd = 0 is of the form f )d+f )d = 0 If the equationmd+nd = 0 is of the form f )d+f )d = 0, then M N) is an integrating factor provided M N 0. Similar to rule II we now show that Md+Nd M N = dsome function and ) Again, rewriting Md + Nd as Md+Nd = { d M+N) + d ) d +M N) d )} Now dividing b M N we get { Md+Nd M+N) d M N = M N + d ) d + d )} Using M = f ) and N = f ) we obtain Md+Nd M N = { f )+f ) f ) f ) dln)+d ln )} Let f) := f )+f ) and g) := fep)), the above equation reduces to f ) f ) Md+Nd M N = { f)dln)+d ln )} = { gln)dln)+d ln )} This shows that [ Md+Nd M N = d gln)dln)+ ln )] 4

5 9.3. Eample Solve +)d+ )d = 0. Solution: Comparing withmd+nd = 0, we havem = +) andn = ). The given equation is of the form f )d+f )d = 0 and we have M N = +) ) = Therefore, multipling the equation b /3 3 3, we obtain /3+/3 3 ))d+/3 3 ) /3)d = 0 This is an eact differential equation which can be solved with the technique discussed in previous lesson. 9.4 Rule IV: Most general approach Now we discuss the most general approach of finding integrating function. The idea is to multipl the given differential equation M,)d+N,)d = 0 9.) b a function I,) and then tr to choose I,) so that the resulting equation I,)M,)d+I,)N,)d = 0 9.3) becomes eact. The above equation is eact if and onl if IM) = IN) 9.4) If a function I, ) satisfing the partial differential Equation 9.4) can be found, then 9.3) will be eact. Unfortunatel, solving Equation 9.4), is as difficult to solve as the original Equation 9.) b some other methods. Therefore, while in principle integrating factors are powerful tools for solving differential equations, in practice the can be found 5

6 onl in special cases. The cases we will consider are: i) an integrating factor I that is either as function of onl, or ii) a function of onl. Let us determine necessar conditions on M and N so that 9.) has an integrating factor I that depends on onl. Assuming that I is a function of onl, then Equation 9.4) reduces to IM = IN +N di d di d = IM IN N 9.5) If M N )/N is a function of onl, sa f), then there is an integrating factor I that also depends onl on which can be found b solving 9.5) as I) = e f)d. A similar procedure can be used to determine a condition under which Equation 9.) has an integrating factor depending onl on. To conclude, we have: If M N N ) is function ofalone saf), then I) = f)d e is an I.F. If N M M ) is function of alone saf), then I) = f)d e is an I.F. 9.5 Eample Problems 9.5. Problem Find an integrating factor of + + )d + d = 0 Solution: Comparing with Md+Nd = 0, we have Further, note that M = + +) and N = N M N ) = is a function of alone. Hence, the integrating factor of the given problem is e /d = Problem Find an integrating factor of 4 e + 3 +)d+ 4 e 3)d = 0 Solution: Compare with Md + Nd = 0, we get M = 4 e + 3 +) and N = 4 e 3) 6

7 Also, note that N M M ) = 4 is a function of alone. Hence the integrating factor of the given problem ise 4/d = / 4. Suggested Readings Boce, W.E. and DiPrima, R.C. 00). Elementar Differential Equations and Boundar Value Problems. Seventh Edition, John Wille & Sons, Inc., New York. Dube, R. 00). Mathematics for Engineers Volume II). Narosa Publishing House. New Delhi. McQuarrie, D.A. 009). Mathematical Methods for Scientist and Engineers. First Indian Edition. Viva Books Pvt. Ltd. New Delhi. Raisinghania, M.D. 005). Ordinar & Partial Differential Equation. Eighth Edition. S. Chand & Compan Ltd., New Delhi. Kreszig, E. 993). Advanced Engineering Mathematics. Seventh Edition, John Wille & Sons, Inc., New York. Arfken, G.B. 00). Mathematical Methods for Phsicists. Fifth Edition, Harcourt Academic Press, San Diego. Grewal, B.S. 007). Higher Engineering Mathematics. Fourteenth Edition. Khanna Publishilers, New Delhi. Piskunov, N. 996). Differential and Integral Calculus Volume - ). First Edition. CBS Publisher, Moscow. 7

Particular Solutions

Particular Solutions Particular Solutions Our eamples so far in this section have involved some constant of integration, K. We now move on to see particular solutions, where we know some boundar conditions and we substitute

More information

MAE 82 Engineering Mathematics

MAE 82 Engineering Mathematics Class otes : First Order Differential Equation on Linear AE 8 Engineering athematics Universe on Linear umerical Linearization on Linear Special Cases Analtical o General Solution Linear Analtical General

More information

Ordinary Differential Equations of First Order

Ordinary Differential Equations of First Order CHAPTER 1 Ordinar Differential Equations of First Order 1.1 INTRODUCTION Differential equations pla an indispensable role in science technolog because man phsical laws relations can be described mathematicall

More information

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud Basics Concepts and Ideas First Order Differential Equations Dr. Omar R. Daoud Differential Equations Man Phsical laws and relations appear mathematicall in the form of Differentia Equations The are one

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

Section B. Ordinary Differential Equations & its Applications Maths II

Section B. Ordinary Differential Equations & its Applications Maths II Section B Ordinar Differential Equations & its Applications Maths II Basic Concepts and Ideas: A differential equation (D.E.) is an equation involving an unknown function (or dependent variable) of one

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

Introduction to Differential Equations

Introduction to Differential Equations Math0 Lecture # Introduction to Differential Equations Basic definitions Definition : (What is a DE?) A differential equation (DE) is an equation that involves some of the derivatives (or differentials)

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Ordinary Differential Equations

Ordinary Differential Equations Chapter 10 Ordinary Differential Equations 10.1 Introduction Relationship between rate of change of variables rather than variables themselves gives rise to differential equations. Mathematical formulation

More information

This is a problem of calculus of variations with an equality constraint. This problem is similar to the problem of minimizing a function

This is a problem of calculus of variations with an equality constraint. This problem is similar to the problem of minimizing a function 3-7 ISOPERIMETRIC PROBLEMS Isoperimetric implies constant perimeter. This is a problem of calculus of variations ith an equalit constraint in the integral form. ( V ) d ; W G( ) d This problem is similar

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

EXACT EQUATIONS AND INTEGRATING FACTORS

EXACT EQUATIONS AND INTEGRATING FACTORS MAP- EXACT EQUATIONS AND INTEGRATING FACTORS First-order Differential Equations for Which We Can Find Eact Solutions Stu the patterns carefully. The first step of any solution is correct identification

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

µ Differential Equations MAΘ National Convention 2017 For all questions, answer choice E) NOTA means that none of the above answers is correct.

µ Differential Equations MAΘ National Convention 2017 For all questions, answer choice E) NOTA means that none of the above answers is correct. µ Differential Equations MAΘ National Convention 07 For all questions, answer choice E) NOTA means that none of the above answers is correct.. C) Since f (, ) = +, (0) = and h =. Use Euler s method, we

More information

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS SECTION 7.5 STRATEGY FOR INTEGRATION 483 6. 2 sin 2 2 cos CAS 67. (a) Use a computer algebra sstem to find the partial fraction decomposition of the function 62 63 Find the area of the region under the

More information

Partial differentiation. Background mathematics review

Partial differentiation. Background mathematics review Partial differentiation Background mathematics review David Miller Partial differentiation Partial derivatives Background mathematics review David Miller Partial derivative Suppose we have a function f(,)

More information

is the two-dimensional curl of the vector field F = P, Q. Suppose D is described by a x b and f(x) y g(x) (aka a type I region).

is the two-dimensional curl of the vector field F = P, Q. Suppose D is described by a x b and f(x) y g(x) (aka a type I region). Math 55 - Vector alculus II Notes 4.4 Green s Theorem We begin with Green s Theorem: Let be a positivel oriented (parameterized counterclockwise) piecewise smooth closed simple curve in R and be the region

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 6 Additional Topics in Differential Equations 6. Eact First-Order Equations 6. Second-Order Homogeneous Linear Equations 6.3 Second-Order Nonhomogeneous Linear Equations 6.4 Series Solutions of Differential

More information

4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26.

4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26. 38 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS sstems are also able, b means of their dsolve commands, to provide eplicit solutions of homogeneous linear constant-coefficient differential equations.

More information

Chapter 3. Expectations

Chapter 3. Expectations pectations - Chapter. pectations.. Introduction In this chapter we define five mathematical epectations the mean variance standard deviation covariance and correlation coefficient. We appl these general

More information

Ordinary Differential Equations

Ordinary Differential Equations 58229_CH0_00_03.indd Page 6/6/6 2:48 PM F-007 /202/JB0027/work/indd & Bartlett Learning LLC, an Ascend Learning Compan.. PART Ordinar Differential Equations. Introduction to Differential Equations 2. First-Order

More information

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1.

8.4. If we let x denote the number of gallons pumped, then the price y in dollars can $ $1.70 $ $1.70 $ $1.70 $ $1. 8.4 An Introduction to Functions: Linear Functions, Applications, and Models We often describe one quantit in terms of another; for eample, the growth of a plant is related to the amount of light it receives,

More information

A.5. Complex Numbers AP-12. The Development of the Real Numbers

A.5. Complex Numbers AP-12. The Development of the Real Numbers AP- A.5 Comple Numbers Comple numbers are epressions of the form a + ib, where a and b are real numbers and i is a smbol for -. Unfortunatel, the words real and imaginar have connotations that somehow

More information

VEER NARMAD SOUTH GUJARAT UNIVERSITY, SURAT. SYLLABUS FOR B.Sc. (MATHEMATICS) Semester: III, IV Effective from July 2015

VEER NARMAD SOUTH GUJARAT UNIVERSITY, SURAT. SYLLABUS FOR B.Sc. (MATHEMATICS) Semester: III, IV Effective from July 2015 Semester: III, IV Semester Paper Name of the Paper Hours Credit Marks III IV MTH-301 Advanced Calculus I 3 3 100 Ordinary Differential (30 Internal MTH-302 3 3 Equations + MTH-303 Numerical Analysis I

More information

Pure Core 1. Revision Notes

Pure Core 1. Revision Notes Pure Core Revision Notes Ma 06 Pure Core Algebra... Indices... Rules of indices... Surds... 4 Simplifing surds... 4 Rationalising the denominator... 4 Quadratic functions... 5 Completing the square....

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

Get Solution of These Packages & Learn by Video Tutorials on SHORT REVISION

Get Solution of These Packages & Learn by Video Tutorials on   SHORT REVISION FREE Download Stu Pacage from website: www.teoclasses.com & www.mathsbsuhag.com Get Solution of These Pacages & Learn b Video Tutorials on www.mathsbsuhag.com SHORT REVISION DIFFERENTIAL EQUATIONS OF FIRST

More information

SHIVAJI UNIVERSITY, KOLHAPUR CBCS SYLLABUS WITH EFFECT FROM JUNE B. Sc. Part I Semester I

SHIVAJI UNIVERSITY, KOLHAPUR CBCS SYLLABUS WITH EFFECT FROM JUNE B. Sc. Part I Semester I SHIVAJI UNIVERSITY, KOLHAPUR CBCS SYLLABUS WITH EFFECT FROM JUNE 2018 B. Sc. Part I Semester I SUBJECT: MATHEMATICS DSC 5A (DIFFERENTIAL CALCULUS) Theory: 32 hrs. (40 lectures of 48 minutes) Marks-50 (Credits:

More information

SPS Mathematical Methods

SPS Mathematical Methods SPS 2281 - Mathematical Methods Assignment No. 2 Deadline: 11th March 2015, before 4:45 p.m. INSTRUCTIONS: Answer the following questions. Check our answer for odd number questions at the back of the tetbook.

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Sr. No. Subject Code. Subject Name

Sr. No. Subject Code. Subject Name TEACHING AND EXAMINATION SCHEME Semester I Sr. No. Subject Code Subject Name Credit Hours (per week) Theory Practical Lecture(DT) Practical(Lab.) Lecture(DT) Practical(Lab.) CE SEE Total CE SEE Total L

More information

14.5 The Chain Rule. dx dt

14.5 The Chain Rule. dx dt SECTION 14.5 THE CHAIN RULE 931 27. w lns 2 2 z 2 28. w e z 37. If R is the total resistance of three resistors, connected in parallel, with resistances,,, then R 1 R 2 R 3 29. If z 5 2 2 and, changes

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

Introduction to Differential Equations

Introduction to Differential Equations Introduction to Differential Equations. Definitions and Terminolog.2 Initial-Value Problems.3 Differential Equations as Mathematical Models Chapter in Review The words differential and equations certainl

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 0537_cop6.qd 0/8/08 :6 PM Page 3 6 Additional Topics in Differential Equations In Chapter 6, ou studied differential equations. In this chapter, ou will learn additional techniques for solving differential

More information

NST1A: Mathematics II (Course A) End of Course Summary, Lent 2011

NST1A: Mathematics II (Course A) End of Course Summary, Lent 2011 General notes Proofs NT1A: Mathematics II (Course A) End of Course ummar, Lent 011 tuart Dalziel (011) s.dalziel@damtp.cam.ac.uk This course is not about proofs, but rather about using different techniques.

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

11.1 Solving Linear Systems by Graphing

11.1 Solving Linear Systems by Graphing Name Class Date 11.1 Solving Linear Sstems b Graphing Essential Question: How can ou find the solution of a sstem of linear equations b graphing? Resource Locker Eplore Tpes of Sstems of Linear Equations

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these.

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these. MATRICES UNIT STRUCTURE.0 Objectives. Introduction. Definitions. Illustrative eamples.4 Rank of matri.5 Canonical form or Normal form.6 Normal form PAQ.7 Let Us Sum Up.8 Unit End Eercise.0 OBJECTIVES In

More information

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents Unit NOTES Honors Common Core Math Da : Properties of Eponents Warm-Up: Before we begin toda s lesson, how much do ou remember about eponents? Use epanded form to write the rules for the eponents. OBJECTIVE

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

Generalized Least-Squares Regressions III: Further Theory and Classication

Generalized Least-Squares Regressions III: Further Theory and Classication Generalized Least-Squares Regressions III: Further Theor Classication NATANIEL GREENE Department of Mathematics Computer Science Kingsborough Communit College, CUNY Oriental Boulevard, Brookln, NY UNITED

More information

Lecture 4: Exact ODE s

Lecture 4: Exact ODE s Lecture 4: Exact ODE s Dr. Michael Doughert Januar 23, 203 Exact equations are first-order ODE s of a particular form, and whose methods of solution rel upon basic facts concerning partial derivatives,

More information

4.1 Circles. Explore Deriving the Standard-Form Equation

4.1 Circles. Explore Deriving the Standard-Form Equation COMMON CORE r Locker LESSON Circles.1 Name Class Date.1 Circles Common Core Math Standards The student is epected to: COMMON CORE A-CED.A.3 Represent constraints b equations or inequalities,... and interpret

More information

First Order Differential Equations f ( x,

First Order Differential Equations f ( x, Chapter d dx First Order Differential Equations f ( x, ).1 Linear Equations; Method of Integrating Factors Usuall the general first order linear equations has the form p( t ) g ( t ) (1) where pt () and

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

Lesson 10. Maximum and Minimum of function of two variables

Lesson 10. Maximum and Minimum of function of two variables Module 1: Differential Calculus Lesson 10 Maximum and Minimum of function of two variables 10.1 Introduction We say that a function has a maximum (local) at a point if for all points sufficiently close

More information

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW MATH 234 - LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW Now will will begin with the process of learning how to solve differential equations. We will learn different techniques for

More information

ADDITIVELY SEPARABLE FUNCTIONS

ADDITIVELY SEPARABLE FUNCTIONS ADDITIVELY SEPARABLE FUNCTIONS FUNCTIONS OF THE FORM F (, ) =f()+g() STEVEN F. BELLENOT Abstract. A sample project similar to the project for Spring 25. The picture below has a hortizontal space coordinate

More information

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID

A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID DEPARTMENT OF MATHEMATICS TECHNICAL REPORT A PARTIAL CHARACTERIZATION OF THE COCIRCUITS OF A SPLITTING MATROID DR. ALLAN D. MILLS MAY 2004 No. 2004-2 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Course Code: MTH-S101 Breakup: 3 1 0 4 Course Name: Mathematics-I Course Details: Unit-I: Sequences & Series: Definition, Monotonic sequences, Bounded sequences, Convergent and Divergent Sequences Infinite

More information

CHAPTER SIXTEEN. = 4 x y + 6 x y + 3 x y + 4 x y = 17 x y = 31(0.1)(0.2) = f(x i, y i) x y = 7 x y + 10 x y + 6 x y + 8 x y = 31 x y. x = 0.

CHAPTER SIXTEEN. = 4 x y + 6 x y + 3 x y + 4 x y = 17 x y = 31(0.1)(0.2) = f(x i, y i) x y = 7 x y + 10 x y + 6 x y + 8 x y = 31 x y. x = 0. CHAPTE SIXTEEN 6. SOLUTIONS 5 Solutions for Section 6. Eercises. Mark the values of the function on the plane, as shown in Figure 6., so that ou can guess respectivel at the smallest and largest values

More information

B.Sc. Part -I (MATHEMATICS) PAPER - I ALGEBRA AND TRIGONOMETRY

B.Sc. Part -I (MATHEMATICS) PAPER - I ALGEBRA AND TRIGONOMETRY B.Sc. Part -I (MATHEMATICS) 2015-2016 PAPER - I ALGEBRA AND TRIGONOMETRY UNIT -I Max.Marks.50 Symmetric. Skew symmetric. Hermitian matrices. Elementaryoperations on matrices,inverse of a matrix. Linear

More information

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling

International Examinations. Advanced Level Mathematics Pure Mathematics 1 Hugh Neill and Douglas Quadling International Eaminations Advanced Level Mathematics Pure Mathematics Hugh Neill and Douglas Quadling PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street,

More information

5.1 Understanding Linear Functions

5.1 Understanding Linear Functions Name Class Date 5.1 Understanding Linear Functions Essential Question: What is a linear function? Resource Locker Eplore 1 Recognizing Linear Functions A race car can travel up to 210 mph. If the car could

More information

L T P C MA6151 & Mathematics I & Title

L T P C MA6151 & Mathematics I & Title SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE-0 (Approved by AICTE, New Delhi & Affiliated to Anna University) DEPARTMENT OF SCIENCE AND HUMANITIES Course Code L T P C MA65 & Mathematics I & Title

More information

Lesson 1. Rolle s Theorem, Lagrange s Mean Value Theorem, Cauchy s Mean Value Theorem

Lesson 1. Rolle s Theorem, Lagrange s Mean Value Theorem, Cauchy s Mean Value Theorem Module 1: Differential Calculus Lesson 1 Rolle s Theorem, Lagrange s Mean Value Theorem, Cauchy s Mean Value Theorem 1.1 Introduction In this lesson first we will state the Rolle s theorems, mean value

More information

The Distance Formula & The Midpoint Formula

The Distance Formula & The Midpoint Formula The & The Professor Tim Busken Mathematics Department Januar 14, 2015 Theorem ( : 1 dimension) If a and b are real numbers, then the distance between them on a number line is a b. a b : 2 dimensions Consider

More information

Mathematical aspects of mechanical systems eigentones

Mathematical aspects of mechanical systems eigentones Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Mathematical aspects of mechanical sstems eigentones Andre Kuzmin April st 6 Abstract Computational methods of

More information

11.1 Double Riemann Sums and Double Integrals over Rectangles

11.1 Double Riemann Sums and Double Integrals over Rectangles Chapter 11 Multiple Integrals 11.1 ouble Riemann Sums and ouble Integrals over Rectangles Motivating Questions In this section, we strive to understand the ideas generated b the following important questions:

More information

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric Trigonometric equations 6 sllabusref eferenceence Topic: Periodic functions and applications In this cha 6A 6B 6C 6D 6E chapter Simple trigonometric equations Equations using radians Further trigonometric

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Refresher Course in Mathematics September 013 Lecture 9 Differential equations Francesco Feri Integration and differential equations. Definition: a differential equation includes

More information

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I APPENDIXES A Numbers, Inequalities, and Absolute Values B Coordinate Geometr and Lines C Graphs of Second-Degree Equations D Trigonometr E F Sigma Notation Proofs of Theorems G The Logarithm Defined as

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE-10

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE-10 SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY COIMBATORE-0 (Approved by AICTE, New Delhi & Affiliated to Anna University) DEPARTMENT OF SCIENCE AND HUMANITIES Subject Code & Title MA65 & MATHEMATICS - I L T

More information

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS arxiv:1803.0591v1 [math.gm] QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS Aleander Panfilov stable spiral det A 6 3 5 4 non stable spiral D=0 stable node center non stable node saddle 1 tr A QUALITATIVE

More information

An Alternative Method to Solve Exact Differential Equations

An Alternative Method to Solve Exact Differential Equations International Mathematical Forum, 5, 00, no. 54, 689-697 An Alternative Method to Solve Eact Differential Equations Oswaldo González-Gaiola and S. Hernández Linares Departamento de Matemáticas Aplicadas

More information

CONSUMER CHOICES Madison is thinking about leasing a car for. Example 1 Solve the system of equations by graphing.

CONSUMER CHOICES Madison is thinking about leasing a car for. Example 1 Solve the system of equations by graphing. 2-1 BJECTIVES Solve sstems of equations graphicall. Solve sstems of equations algebraicall. Solving Sstems of Equations in Two Variables CNSUMER CHICES Madison is thinking about leasing a car for two ears.

More information

m x n matrix with m rows and n columns is called an array of m.n real numbers

m x n matrix with m rows and n columns is called an array of m.n real numbers LINEAR ALGEBRA Matrices Linear Algebra Definitions m n matri with m rows and n columns is called an arra of mn real numbers The entr a a an A = a a an = ( a ij ) am am amn a ij denotes the element in the

More information

Lesson 5. Partial and Total Derivatives

Lesson 5. Partial and Total Derivatives Module 1: Differential Calculus Lesson 5 Partial and Total Derivatives 5.1 Introduction Let, we denote as the partial derivative of with respect to and define as and similarly Example 5.1: Given, find

More information

Algebra(2(Honors( Summer(Packet( ( ( Work(on(this(packet(during(the(summer.( ( ( There(will(be(an(in=class(quiz(on(the(material(the(

Algebra(2(Honors( Summer(Packet( ( ( Work(on(this(packet(during(the(summer.( ( ( There(will(be(an(in=class(quiz(on(the(material(the( Algebra((Honors( Summer(Packet( ( ( Work(on(this(packet(during(the(summer.( ( ( There(will(be(an(in=class(quiz(on(the(material(the( first(week(of(school.( ( ( Please(visit(the(CHS(website(to(view(answers(to(

More information

(MTH5109) GEOMETRY II: KNOTS AND SURFACES LECTURE NOTES. 1. Introduction to Curves and Surfaces

(MTH5109) GEOMETRY II: KNOTS AND SURFACES LECTURE NOTES. 1. Introduction to Curves and Surfaces (MTH509) GEOMETRY II: KNOTS AND SURFACES LECTURE NOTES DR. ARICK SHAO. Introduction to Curves and Surfaces In this module, we are interested in studing the geometr of objects. According to our favourite

More information

(a) We split the square up into four pieces, parametrizing and integrating one a time. Right side: C 1 is parametrized by r 1 (t) = (1, t), 0 t 1.

(a) We split the square up into four pieces, parametrizing and integrating one a time. Right side: C 1 is parametrized by r 1 (t) = (1, t), 0 t 1. Thursda, November 5 Green s Theorem Green s Theorem is a 2-dimensional version of the Fundamental Theorem of alculus: it relates the (integral of) a vector field F on the boundar of a region to the integral

More information

8.3. Integration of Rational Functions by Partial Fractions. 570 Chapter 8: Techniques of Integration

8.3. Integration of Rational Functions by Partial Fractions. 570 Chapter 8: Techniques of Integration 570 Chapter 8: Techniques of Integration 8.3 Integration of Rational Functions b Partial Fractions This section shows how to epress a rational function (a quotient of polnomials) as a sum of simpler fractions,

More information

Math 4381 / 6378 Symmetry Analysis

Math 4381 / 6378 Symmetry Analysis Math 438 / 6378 Smmetr Analsis Elementar ODE Review First Order Equations Ordinar differential equations of the form = F(x, ( are called first order ordinar differential equations. There are a variet of

More information

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr.

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr. Course Title: Real Analsis Course Code: MTH3 Course instructor: Dr. Atiq ur Rehman Class: MSc-II Course URL: www.mathcit.org/atiq/fa5-mth3 You don't have to be a mathematician to have a feel for numbers.

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

Transformation of Surface Charge Density in Mixed Number Lorentz Transformation

Transformation of Surface Charge Density in Mixed Number Lorentz Transformation Sri ankan Journal of Phsics, Vol. 13(1) (1) 17-5 Institute of Phsics - Sri anka Research Article Transformation of Surface Charge Densit in Mied Number orent Transformation S. B. Rafiq * and M. S. Alam

More information

Gauss and Gauss Jordan Elimination

Gauss and Gauss Jordan Elimination Gauss and Gauss Jordan Elimination Row-echelon form: (,, ) A matri is said to be in row echelon form if it has the following three properties. () All row consisting entirel of zeros occur at the bottom

More information

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY SECOND YEAR B.Sc. SEMESTER - III SYLLABUS FOR S. Y. B. Sc. STATISTICS Academic Year 07-8 S.Y. B.Sc. (Statistics)

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

Transformation of kinematical quantities from rotating into static coordinate system

Transformation of kinematical quantities from rotating into static coordinate system Transformation of kinematical quantities from rotating into static coordinate sstem Dimitar G Stoanov Facult of Engineering and Pedagog in Sliven, Technical Universit of Sofia 59, Bourgasko Shaussee Blvd,

More information

6.3 Interpreting Vertex Form and Standard Form

6.3 Interpreting Vertex Form and Standard Form Name Class Date 6.3 Interpreting Verte Form and Standard Form Essential Question: How can ou change the verte form of a quadratic function to standard form? Resource Locker Eplore Identifing Quadratic

More information

An analytic proof of the theorems of Pappus and Desargues

An analytic proof of the theorems of Pappus and Desargues Note di Matematica 22, n. 1, 2003, 99 106. An analtic proof of the theorems of Pappus and Desargues Erwin Kleinfeld and Tuong Ton-That Department of Mathematics, The Universit of Iowa, Iowa Cit, IA 52242,

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C MATH 255 Line integrals III Fall 216 In general 1. The fundamental theorem of line integrals v T ds depends on the curve between the starting point and the ending point. onsider two was to get from (1,

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING & TECHNOLOGY SRM UNIVERSITY

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING & TECHNOLOGY SRM UNIVERSITY DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING & TECHNOLOGY SRM UNIVERSITY MA 0142 MATHEMATICS-II Semester: II Academic Year: 2011-2012 Lecture Scheme / Plan The objective is to impart the students of

More information

On the Computational Procedure of Solving Boundary Value Problems of Class M Using the Power Series Method

On the Computational Procedure of Solving Boundary Value Problems of Class M Using the Power Series Method Australian Journal of Basic and Applied Sciences, 4(6): 1007-1014, 2010 ISSN 1991-8178 On the Computational Procedure of Solving Boundary Value Problems of Class M Using the Power Series Method 1 2 E.A.

More information

f x, y x 2 y 2 2x 6y 14. Then

f x, y x 2 y 2 2x 6y 14. Then SECTION 11.7 MAXIMUM AND MINIMUM VALUES 645 absolute minimum FIGURE 1 local maimum local minimum absolute maimum Look at the hills and valles in the graph of f shown in Figure 1. There are two points a,

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Crptograph Part I (Solution to Practice Set) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinit to positive infinit. The set of

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

15.2 Graphing Logarithmic

15.2 Graphing Logarithmic _ - - - - - - Locker LESSON 5. Graphing Logarithmic Functions Teas Math Standards The student is epected to: A.5.A Determine the effects on the ke attributes on the graphs of f () = b and f () = log b

More information

M ULTIPLE I NTEGRALS. variables over regions in 3-space. Calculating such integrals will require some new techniques that will be a

M ULTIPLE I NTEGRALS. variables over regions in 3-space. Calculating such integrals will require some new techniques that will be a April, :4 g65-ch5 Sheet number Page number 5 can magenta ellow black M ULTIPLE I NTEALS n this chapter we will etend the concept of a definite integral to functions of two and three variables. Whereas

More information

10.2 Graphing Exponential Functions

10.2 Graphing Exponential Functions Name Class Date 10. Graphing Eponential Functions Essential Question: How do ou graph an eponential function of the form f () = ab? Resource Locker Eplore Eploring Graphs of Eponential Functions Eponential

More information

Chapter 11. Systems of Equations Solving Systems of Linear Equations by Graphing

Chapter 11. Systems of Equations Solving Systems of Linear Equations by Graphing Chapter 11 Sstems of Equations 11.1 Solving Sstems of Linear Equations b Graphing Learning Objectives: A. Decide whether an ordered pair is a solution of a sstem of linear equations. B. Solve a sstem of

More information

Practice Midterm Solutions

Practice Midterm Solutions Practice Midterm Solutions Math 4B: Ordinary Differential Equations Winter 20 University of California, Santa Barbara TA: Victoria Kala DO NOT LOOK AT THESE SOLUTIONS UNTIL YOU HAVE ATTEMPTED EVERY PROBLEM

More information