Investigation of Colt fire safety system

Size: px
Start display at page:

Download "Investigation of Colt fire safety system"

Transcription

1 Lars Jensen Avdelningen för installationsteknik Institutionen för bygg- och miljöteknologi Lunds tekniska högskola Lunds universitet, 2017 Rapport TVIT-17/7110

2 Lunds Universitet Lunds Universitet, med åtta fakulteter samt ett antal forskningscentra och specialhögskolor, är Skandinaviens största enhet för forskning och högre utbildning. Huvuddelen av universitetet ligger i Lund, som har invånare. En del forsknings- och utbildningsinstitutioner är dock belägna i Malmö, Helsingborg och Ljungbyhed. Lunds Universitet grundades 1666 och har idag totalt anställda och studerande som deltar i ett 280 utbildningsprogram och ca fristående kurser. Avdelningen för installationsteknik Avdelningen för Installationsteknik tillhör institutionen för Bygg- och miljöteknologi på Lunds Tekniska Högskola, som utgör den tekniska fakulteten vid Lunds Universitet. Installationsteknik omfattar installationernas funktion vid påverkan av människor, verksamhet, byggnad och klimat. Forskningen har en systemanalytisk och metodutvecklande inriktning med syfte att utforma energieffektiva och funktionssäkra installationssystem och byggnader som ger bra inneklimat. Nuvarande forskning innefattar bl a utveckling av metoder för utveckling av beräkningsmetoder för godtyckliga flödessystem, konvertering av direktelvärmda hus till alternativa värmesystem, vädring och ventilation i skolor, system för brandsäkerhet, alternativa sätt att förhindra rökspridning vid brand, installationernas belastning på yttre miljön, att betrakta byggnad och installationer som ett byggnadstekniskt system, analysera och beräkna inneklimatet i olika typer av byggnader, effekter av brukarnas beteende för energianvändning, reglering av golvvärmesystem, bestämning av luftflöden i byggnader med hjälp av spårgasmetod. Vi utvecklar även användbara projekteringsverktyg för energi och inomhusklimat, system för individuell energimätning i flerbostadshus samt olika analysverktyg för optimering av ventilationsanläggningar hos industrin.

3 Lars Jensen

4 Lars Jensen ISRN LUTVDG/TVIT--17/7110--SE(36) Avdelningen för installationsteknik Institutionen för bygg- och miljöteknologi Lunds tekniska högskola Lunds universitet Box LUND

5 Contents 1 Introduction 5 2 Basic model 7 Lobby pressure 7 Apartment door pressure difference 8 Wind velocity limit 8 Stack effect limit 9 Stairwell flow limit 9 Stairwell to lobby pressure difference limit 9 Effective leakage area for the rest of the building 10 Reduced model to fire floor only 10 3 Reduced model results 11 4 Full model results 15 5 Passive performance 25 6 Active performance 29 7 Comparisons and conclusions 33 8 Related work by the author 35 3

6 4 Investigation of Colt fire safety system

7 1 Introduction The aim with this report is to make a basic investigation of the Colt fire safety system. The main effort is put on door opening forces that guarantees egress. The door pressure differences are influenced by the Colt system, the wind effect and the stack effect due to different temperatures inside and outside the building. The Colt system is used to protect stairwell and elevator systems in high-rise buildings and has three basic function features. Each floor in the building has a lobby that is connected to all apartments, stairwells and elevators. The Colt system layout is shown for a nine storey building in Figure 1.1 with a common lobby on each storey and three different doors sdoor for stairwell, edoor for elevators and adoor for apartments When a fire occurs on a certain floor an extract fan system xfan is connected with an extract damper to that floor lobby and the stairwell top is connected to the outside with a large damper denoted as AOV. The stairwell is used for supply air to match the extract system. The pressure difference between the stairwell and the lobby is controlled to 50 Pa with the extract fan to protect from smoke spread from the lobby to the stairwell.. s t a i r we l l s y s t em e x t r a c t s y s t em e l e v a t o r s y s t em a p a r t me n t s AOV x f a n s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t s d o o r l o b b y l o b b y x d amp e r e d o o r l o b b y l o b b y a d o o r a p a r t me n t Figure 1.1 Layout for Colt system in a nine storey building.. 5

8 The Colt system has been tested with twenty scenarios denoted as 4-19 with a thirty storey building in a study carried out by WSP and four additional scenarios denoted as as stated in Table 1.1. The indoor and fire temperature are fixed to 22 C respectively 600 C in all scenarios. The outdoor temperature and the wind pressure at the stairwell top are varied as shown below. The scenarios in Table 1.1 can be described as an apartment fire with closed apartment door in scenarios 4-8 and open apartment door 2 m 2 and open facade 10 m 2 in scenario The stairwell door As m 2 on the fire floor is open except closed in scenarios 4-8 and partly open 0.2 m 2 in scenarios to allow space for fire hose. The three elevator doors on each storey has a fixed total effective leakage area Ae m 2. The three elevator shafts are combined into a single elevator shaft. The extract air flow qx m 3 /s is free except for scenarios with fixed flow as shown in Table 1.1. Table 1.1 Outdoor temperature, wind pressure, extract air flow and on fire storey effective leakage area for a stairwell door, apartment doors and apartment facades. scenario Tu C pwind Pa qx m 3 /s As m 2 Aa m 2 Af m A basic model is given in section 2 showing what limits the Colt system performance. Both a reduced and a full model will be calculated and shown in section 3 respectively 4. Three fire floor levels bottom, middle and top are tested. A comparison between the reduced and the full model results are made and given in section 7 together with the conclusions. The passive performance with different stairwell top opening area is studied in section 5 with different outdoor temperatures and wind pressure. The active performance is also studied in section 6 with different Colt pressure differences, stairwell door opening areas and fire storey levels together with the same stack effect. 6

9 2 Basic model The activated Colt fire safety system creates a substantial under pressure in a lobby. This lobby pressure Δplobby Pa is limited by the allowable apartment door opening force. The lobby pressure can be calculated in many ways. A simple method is to calculate the pressure change between the building top through the stairwell to the lobby. Lobby pressure The lobby pressure plobby Pa is a sum of wind pressure at building top pwind Pa, stack effect between fire floor and building top Δpstack Pa and stairwell pressure drop Δpstair Pa for a flow q m 3 /s between building top and fire floor. The lobby pressure plobby Pa becomes: plobby = pwind - Δpstack Δpstair (Pa) (2.1) pwind = f ρv 2 /2 (Pa) (2.2) Δpstack = (ρo - ρi)gh = Δρgh (Pa) (2.3) Δpstair = ( Aaov -2 + nastorey -2 + Asdoor -2 ) ρq 2 /2 (Pa) (2.4) The parameter h m in (2.3) is the level difference between the fire floor and building top. The parameter n - in (2.4) is the number of stories between the fire floor and building top. The Colt system pressure difference between stairwell and lobby on fire floor is ΔpC Pa and also equal to the last term in (2.4) for Δpstair Pa. Possible lobby pressures have been calculated with (2.1-3) for scenarios 4-8 in Table 1.1, stairwell flow q 0 m 3 /s and level differences h 0, 45 and 90 m and are given in Table 2.1 with the stack effect. The calculated lobby pressure in Table 2.1 is below -100 Pa in nine out of fifteen cases. Notice that stairwell pressure loss is not included. Table 2.1 Outdoor temperature, wind pressure, thermal gradient and lobby pressure. scenario To C pwind Pa Δρg Pa/m h = 0 m h = 45 m h = 90 m Δρgh Pa

10 The allowable door pressure difference limits lobby pressure. This limitation also limits the different terms composing the lobby pressure. It is obvious that the worst case is a fire on the bottom storey. The allowable door pressure difference is assumed to be 100 Pa. The simple design rule becomes that the lobby pressure should be equal to 100 Pa. Apartment door pressure difference The fire floor apartment door pressure difference Δpdoor Pa can be calculated with the flow area quotient between facade and apartment door denoted as k = Af / Ad - which gives: Δpdoor = r plobby (Pa) (2.5) r = k 2 / ( 1 + k 2 ) (-) (2.6) The apartment door pressure difference Δpdoor is very close to the lobby pressure plobby because the apartment door effective leakage area is far smaller than the façade effective leakage area. The area quotients k 1, 2, 3, 4 and 5 gives door pressure difference versus lobby pressure quotients r according to (2.6) equal to 0.5, 0.8, 0.9, 0.94 respectively A simple and good design rule is to set the lobby pressure equal to the maximum allowable door pressure difference which can be close below 100 Pa. Wind velocity limit The wind pressure pwind is a function of the free wind dynamic pressure ρv 2 /2 times a shape factor f depending the surface location versus the wind direction. The shape factor f is mostly between -1.0 and 1.0 but can be far below -1.0 on roofs to high-rise buildings. The wind pressure used here have been calculated for a wind speed of 10 m/s and shape factors -0.7 and The free wind dynamic pressure is 60 Pa for air temperature 20 C. The resulting wind pressure should not exceed 100 Pa. The allowable wind velocity vmax m/s can be calculated as: vmax = ( 200 / fρ) 0.5 (m/s) (2.7) The shape factor f is mostly between -1.0 and 1.0 but can be far below -1.0 on roofs to highrise buildings and as low as An air density of 1.25 kg/m 3 and a shape factor of -2 limits the wind velocity to 9 m/s. 8

11 Stack effect limit The stack effect should not either exceed the 100 Pa limit. The thermal gradient Δρg Pa/m for a given building with the height h m is limited according to: Δρg = 100/h (Pa/m) (2.8) The height h m is limited to 204, 102, 68 and 51 m for outdoor air temperatures 8.3, -2.5, and C corresponding to air density differences 0.05, 0.10, 0.15 and 0.20 kg/m 3. The outdoor density ρo kg/m 3 and outdoor temperature To C is in turn also limited and can be calculated as: ρo = ρi + Δρ = ρi + 100/gh (kg/m 3 ) (2.9) To = / ρo ( C) (2.10) Stairwell flow limit A compact closed staircase with double return can be described as a rectangular duct with two 180 sharp bends, four 37 sharp bends for 3:4 staircase slope and two narrower passages between sloping staircases compared with horizontal surfaces. One storey pressure loss can be set equal to an effective leakage area Astorey of 2 m 2 for a normal sized stairwell with a width 1.2 m and a height 2.5 m. The total leakage area for a several storey stairwell with openings included as shown (2.4) denoted as Astair m 2 becomes equal to m 2 or more useful Astair -2 = 10 m -4 for n = 32 stories with Astorey 2 m 2 and effective opening areas Aaov = Asdoor = 1 m 2. Using a part of (2.4) gives Astair -2 = = 10 m -4. The total stairwell flow pressure loss becomes Δpstair = 6 q 2 Pa with air density 1.2 kg/m 3. The pressure drop for flows 1, 2, 3, 4 and 5 m 3 /s becomes 6, 24, 54, 96 respectively 150 Pa. The numbers shows that a modest stairwell flow can cause a lobby pressure below -100 Pa. The stairwell pressure drop is substantial and can be about 1 Pa/m for a flow of 4 m 3 /s. Stairwell to lobby pressure difference limit The Colt system pressure difference is set to 50 Pa. This pressure difference has at least to match the smoke layer stack effect. A pressure difference of 50 Pa over an opening will create a flow velocity of 9 m/s. Sometimes a certain air velocity in an opening is claimed to prevent smoke spread. The velocity effect is modest compared with the smoke layer stack effect. Air velocities of 2, 3, 4 and 5 m/s corresponds to at forcing pressure difference of 2.4, 5.5, 9.6 respectively 15.0 Pa. 9

12 The stack effect gradient is 6, 8 and 9 Pa/m for smoke layer temperatures 313, 606 respectively 889 C versus a surrounding temperature 20 C. A smoke layer covering 1 m of a stairwell door opening is blocked with a pressure difference of 6, 8 respectively 9 Pa. A pressure difference of 20 Pa seems to be sufficient to block a door opening with a smoke layer down to the floor. Effective leakage area for the rest of the building The model in Figure 1.1 is simplified by assuming airtight stairwell doors, airtight extract dampers and pressure loss free elevator shafts and that the rest of the building or all none fire floors can be replaced with a single flow resistance between the fire floor lobby and outside. That turns out to be close to a single flow resistance for three elevator doors for a single storey as shown below. The stack effect is neglected. The elevator doors, the apartment doors and facades can be described as effective flow leakage areas denoted Ae, Aa and Af m 2. The effective flow area for a single floor between the elevator shaft and outside A m 2 can be calculated as follows: A -2 = Ae -2 + Aa -2 + Af -2 (m -4 ) (2.11) The effective flow area between the fire floor lobby and the other floors to the outside Ab can be calculated for an n storey building as follows: Ab -2 = Ae -2 + (n-1) -2 A -2 (m -4 ) (2.12) The second term in (2.12) can be omitted because A is larger than Ae according to (2.11) and (n-1)a is far larger than Ae. This gives the simplification that the effective flow area between the fire floor lobby and through the rest of the building to the outside Ab is just equal to the fire floor elevator door effective flow area Ae m 2. Reduced model to fire floor only The model in Figure 1.1 can be reduced to the fire floor and its connection through all other floors according to ( ) as shown in Figure 2.1. Flow paths with an airtight closed stairwell door and an airtight extract damper are removed.. AOV s d o o r x f a n x d amp e r e d o o r l o b b y a d o o r a p a r t me n t. Figure 2.1 Reduced model for the activated Colt system in Figure

13 3 Reduced model results The reduced model in Figure 2.1 has been calculated for all twenty scenarios 4-23 stated in Table 1.1 and for three different fire floor levels equal to bottom, middle and top of the building or 0, 45 and 90 m corresponding to stories 2, 16 and 30. Storey 1 is only an entrance. The PFS program results are shown in Figure with result printouts tabled in two blocks for scenarios 4-13 (PFS steps 1-10) respectively scenarios (PFS steps 11-20). The reduced model is the begin-end-block below the tabled printouts in Figure The PFS program sign convention for flows and pressure differences is positive from left to right and downwards. The nine inputs are stated as pro(1-9). Free values are denoted as fpv for a free parameter value. The eight results are stated as res(1-8) and are as follows below: lobby pressure, Pa extract air flow, m 3 /s stairwell air flow, m 3 /s stairwell air flow temperature, C stairwell door pressure, Pa apartment door pressure, Pa fire floor flow, m 3 /s rest of building flow, m 3 /s The apartment door pressure difference is larger than 100 Pa in 14, 11 and 8 cases out of 20 cases for levels 0, 45 respectively 90 m. The stairwell inflow is negative and an undesired outflow with high temperatures in 7, 7 and 5 cases out of 20 cases for levels 0, 45 respectively 90 m. The cause to this malfunction is that the extract air flow is limited to 10, 10, 10, 10, 20, 30 and 40 m 3 /s (PFS-steps 14-20). 11

14 c om s i mp l e BRE x s 9 0 t a b l e s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a p r o ( 3 ) q C m3 / s f p v f p v f p v f p v f p v f p v f p v f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) w p P a p r o ( 6 ) T b C p r o ( 7 ) A t l m p r o ( 8 ) A l a m p r o ( 9 ) A a o m r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) m3 / s r e s ( 4 ) C r e s ( 5 ) P a r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) m3 / s s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a f p v f p v f p v f p v f p v f p v f p v p r o ( 3 ) q C m3 / s f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) w p P a p r o ( 6 ) T b C p r o ( 7 ) A t l m p r o ( 8 ) A l a m p r o ( 9 ) A a o m r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) m3 / s r e s ( 4 ) C r e s ( 5 ) P a r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) m3 / s b e g i n c o n t r o l d e n z = d z d e n c a s e = 1 t r i x = 1 s e t o p = t, T n = T, 2 2 : < T p = T, 2 2 : > T p " e x t r a c t s y s t em " T p " s t a i r w e l l " h? : qw h, w p : q Tw P a m3 / s m3 / s C 4 q, q C h, p C q, 0 t, 9 0, P a o p, A t l : hw : T z, P a C o p, A l a : hw : T o p, A a o T, T b : < qw " f i r e f l o o r " P a C m3 / s 7 o p, T p z, 4 5 T n : qw " o t h e r f l o o r s " m3 / s 8 e n d " 9 0 " Figure 3.1 Results for simplified model at level 00 m for scenarios

15 c om s i mp l e BRE x s 4 5 t a b l e s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a p r o ( 3 ) q C m3 / s f p v f p v f p v f p v f p v f p v f p v f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) w p P a p r o ( 6 ) T b C p r o ( 7 ) A t l m p r o ( 8 ) A l a m p r o ( 9 ) A a o m r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) m3 / s r e s ( 4 ) C r e s ( 5 ) P a r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) m3 / s s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a f p v f p v f p v f p v f p v f p v f p v p r o ( 3 ) q C m3 / s f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) w p P a p r o ( 6 ) T b C p r o ( 7 ) A t l m p r o ( 8 ) A l a m p r o ( 9 ) A a o m r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) m3 / s r e s ( 4 ) C r e s ( 5 ) P a r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) m3 / s b e g i n c o n t r o l d e n z = d z d e n c a s e = 1 t r i x = 1 s e t o p = t, T n = T, 2 2 : < T p = T, 2 2 : > T p " e x t r a c t s y s t em " T p " s t a i r w e l l " h? : qw h, w p : q Tw P a m3 / s m3 / s C 4 q, q C h, p C q, 0 t, 4 5, P a o p, A t l : hw : T z, P a C o p, A l a : hw : T o p, A a o T, T b : < qw " f i r e f l o o r " P a C m3 / s 7 o p, T p z, 0 0 T n : qw " o t h e r f l o o r s " m3 / s 8 e n d " 9 0 " Figure 3.2 Results for simplified model at level 45 m for scenarios

16 c om s i mp l e BRE x s 0 0 t a b l e s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a p r o ( 3 ) q C m3 / s f p v f p v f p v f p v f p v f p v f p v f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) w p P a p r o ( 6 ) T b C p r o ( 7 ) A t l m p r o ( 8 ) A l a m p r o ( 9 ) A a o m r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) m3 / s r e s ( 4 ) C r e s ( 5 ) P a r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) m3 / s s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a f p v f p v f p v f p v f p v f p v f p v p r o ( 3 ) q C m3 / s f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) w p P a p r o ( 6 ) T b C p r o ( 7 ) A t l m p r o ( 8 ) A l a m p r o ( 9 ) A a o m r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) m3 / s r e s ( 4 ) C r e s ( 5 ) P a r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) m3 / s b e g i n c o n t r o l d e n z = d z d e n c a s e = 1 t r i x = 1 s e t o p = t, T n = T, 2 2 : < T p = T, 2 2 : > T p " e x t r a c t s y s t em " T p " s t a i r w e l l " h? : qw h, w p : q Tw P a m3 / s m3 / s C 4 q, q C h, p C q, 0 t, 0 0, P a o p, A t l : hw : T z, P a C o p, A l a : hw : T o p, A a o T, T b : < qw " f i r e f l o o r " P a C m3 / s 7 o p, T p z, T n : qw " o t h e r f l o o r s " m3 / s 8 e n d " 9 0 " Figure 3.3 Results for simplified model at level 90 m for scenarios

17 4 Full model results The full model in Figure 1.1 has been calculated for all twenty scenarios 4-23 stated in Table 1.1 and for three different fire floor levels equal to bottom, middle and top of the building or 0, 45 and 90 m in section 3 corresponding to stories 2, 16 and 30. Storey 1 is only an entrance. The PFS program results are shown in Figure with a PFS begin-end-block splitted into two parts followed by result printouts tabled in two blocks for scenarios for scenarios 4-13 (PFS 1-10) respectively scenarios (PFS 11-20). The PFS program sign convention for flows and pressure differences is positive from left to right and downwards. The eight inputs are stated as pro(1-8). ). Free values are denoted as fpv for a free parameter value. The eight results are stated as res(1-8) and are as follows below: lobby pressure, Pa extract air flow, m 3 /s stairwell door pressure, Pa stairwell top air flow, m 3 /s stairwell top air flow temperature, C stairwell door pressure, Pa rest of building flow, m 3 /s apartment door pressure, Pa The apartment door pressure difference is larger than 100 Pa in 13, 10 and 8 cases out of 20 cases for stories 2, 16 and 30. The stairwell inflow is negative and an undesired outflow with high temperatures in 13, 12 and 11 cases out of 20 cases for levels 0, 45 respectively 90 m. The cause to this malfunction is that the extract air flow is limited to 10, 10, 10, 10, 20, 30 and 40 m 3 /s (PFS-steps 14-20). 15

18 c om f u l l BRE x f 2 b e g i n c o n t r o l d e n = d e n z = d z d e n c a s e = 1 r s a e e = t r i x = 1 t a b l e = 1 2 s e t o p = t, " o p, A s t r y p n i n g f ö r a r e a A m2 me d k o n t r a k t i o n 0. 6 " s e t d e p = o p, : h " e n t r e p l a n d ö r r " s e t d t l = o p, : h " t r a p p h u s d ö r r " s e t d h l = o p, : h " t r e h i s s d ö r r a r " s e t d l a = o p, : h " t o l v l ä g e n h e t s d ö r r a r " s e t a o = o p, " t o l v l ä g e n h e t s f a s a d e r " s e t p t = t, 3. 0, 3. 0 " t r a p p h u s t r y c k f a l l p e r p l a n " s e t p h = t, , 2 0 " h i s s s c h a k t t r y c k f a l l p e r p l a n " s e t z p = z, - 3 " n i v å s k i l l n a d p e r p l a n " s e t T n = T, 2 2 : q < " t emp e r a t u r i n f l ö d e n < 0 " s e t T p = T, 2 2 " t emp e r a t u r i n f l ö d e n > 0 " s e t T f = T, : < " b r a n d t emp e r a t u r " s e t s p = s, s n = s, " f a s a d s t a r t f l ö d e " s e t d t l f = o p, A t l : h w " t r a p p h u s d ö r r b r a n d p l a n " s e t d h l f = o p, : q w " t r a p p h u s d ö r r b r a n d p l a n " s e t d l a f = o p, A l a : h w " l ä g e n h e t s d ö r r b r a n d p l a n " s e t a o f = o p, A a o " l ä g e n h e t s f a s a d b r a n d p l a n " c om t r y c k s k i l l n a d s k r a v b r a n d g a s f l ä k t h, p C q, h? : w q, q C T n : w : T P a P a m3 / s 2 c om C 2 1 h? : w q, P a 3 c om t r a p p h u s l o b b y h i s s a r l o b b y l ä g e n h e t e r c om d ö r r d ö r r d ö r r T p h, p w : q T w m3 / s C 5 o p, s, d t l d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s Figure 4.1 Results for full model for scenarios 4-23 with fire on storey 2. 16

19 z p d t l z p d h l d l a a o s p T n p t P a p h 0. 1 P a 2. 4 P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 0. 4 P a 5. 6 P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 0. 7 P a 8. 8 P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 1. 0 P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 1. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 1. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 2. 0 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 2. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 2. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 3. 0 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 3. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 3. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 4. 0 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 4. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 4. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 5. 0 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 5. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 5. 7 P a P a m3 / s z p d t l f z p d h l f d l a f a o f s n T f p t P a 6 p h m3 / s P a 8 z p d t l z p d h l d e p s n T n P a P a P a m3 / s c om e n d Figure 4.2 Results for full model for scenarios 4-23 with fire on storey 2. 17

20 t a b l e s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a p r o ( 3 ) q C m3 / s f p v f p v f p v f p v f p v f p v f p v f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) pw P a p r o ( 6 ) A t l m p r o ( 7 ) A l a m p r o ( 8 ) A a o m s t e p n umb e r e r r o r s o b s e r v a t i o n s r ms e e P a me a n a b s e e P a ma x a b s e e P a s t e p n umb e r r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) P a r e s ( 4 ) m3 / s r e s ( 5 ) C r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) P a s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a f p v f p v f p v f p v f p v f p v f p v p r o ( 3 ) q C m3 / s f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) pw P a p r o ( 6 ) A t l m p r o ( 7 ) A l a m p r o ( 8 ) A a o m s t e p n umb e r e r r o r s o b s e r v a t i o n s r ms e e P a me a n a b s e e P a ma x a b s e e P a s t e p n umb e r r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) P a r e s ( 4 ) m3 / s r e s ( 5 ) C r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) P a Figure 4.3 Results for full model for scenarios 4-23 with fire on storey 2. 18

21 c om f u l l BRE x f 1 6 b e g i n c o n t r o l d e n = d e n z = d z d e n c a s e = 1 r s a e e = t r i x = 1 t a b l e = 1 2 s e t o p = t, " o p, A s t r y p n i n g f ö r a r e a A m2 me d k o n t r a k t i o n 0. 6 " s e t d e p = o p, : h " e n t r e p l a n d ö r r " s e t d t l = o p, : h " t r a p p h u s d ö r r " s e t d h l = o p, : h " t r e h i s s d ö r r a r " s e t d l a = o p, : h " t o l v l ä g e n h e t s d ö r r a r " s e t a o = o p, " t o l v l ä g e n h e t s f a s a d e r " s e t p t = t, 3. 0, 3. 0 " t r a p p h u s t r y c k f a l l p e r p l a n " s e t p h = t, , 2 0 " h i s s s c h a k t t r y c k f a l l p e r p l a n " s e t z p = z, - 3 " n i v å s k i l l n a d p e r p l a n " s e t T n = T, 2 2 : q < " t emp e r a t u r i n f l ö d e n < 0 " s e t T p = T, 2 2 " t emp e r a t u r i n f l ö d e n > 0 " s e t T f = T, : < " b r a n d t emp e r a t u r " s e t s p = s, 0. 0 s n = s, " f a s a d s t a r t f l ö d e " s e t d t l f = o p, A t l : h w " t r a p p h u s d ö r r b r a n d p l a n " s e t d h l f = o p, : q w " t r a p p h u s d ö r r b r a n d p l a n " s e t d l a f = o p, A l a : h w " l ä g e n h e t s d ö r r b r a n d p l a n " s e t a o f = o p, A a o " l ä g e n h e t s f a s a d b r a n d p l a n " c om t r y c k s k i l l n a d s k r a v b r a n d g a s f l ä k t h, p C q, h? : w q, q C s, 1 0 T n : w : T P a P a m3 / s 2 c om C h? : w q, P a 3 c om t r a p p h u s l o b b y h i s s a r l o b b y l ä g e n h e t e r c om d ö r r d ö r r d ö r r T p h, p w : q T w m3 / s C 5 o p, s, d t l d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s Figure 4.4 Results for full model for scenarios 4-23 with fire on storey

22 z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 0. 1 P a 2. 2 P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 0. 4 P a 5. 4 P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h 0. 7 P a 8. 5 P a m3 / s z p d t l f z p d h l f d l a f a o f s p T f p t P a 6 p h m3 / s P a 8 z p d t l z p d h l d l a a o s n T n p t P a p h 1. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 1. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 2. 0 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 2. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 2. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 3. 1 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 3. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 3. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 4. 1 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 4. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 4. 7 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 5. 1 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 5. 4 P a P a m3 / s z p d t l z p d h l d l a a o s n T n p t P a p h 5. 8 P a P a m3 / s z p d t l z p d h l d e p s n T n P a P a P a m3 / s c om e n d Figure 4.5 Results for full model for scenarios 4-23 with fire on storey

23 t a b l e s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a p r o ( 3 ) q C m3 / s f p v f p v f p v f p v f p v f p v f p v f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) p w P a p r o ( 6 ) A t l m p r o ( 7 ) A l a m p r o ( 8 ) A a o m s t e p n umb e r e r r o r s o b s e r v a t i o n s r ms e e P a me a n a b s e e P a ma x a b s e e P a s t e p n umb e r r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) P a r e s ( 4 ) m3 / s r e s ( 5 ) C r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) P a s t e p n umb e r p r o ( 1 ) s o n p r o ( 2 ) p C P a f p v f p v f p v f p v f p v f p v f p v p r o ( 3 ) q C m3 / s f p v f p v f p v p r o ( 4 ) d z k g / m p r o ( 5 ) p w P a p r o ( 6 ) A t l m p r o ( 7 ) A l a m p r o ( 8 ) A a o m s t e p n umb e r e r r o r s o b s e r v a t i o n s r ms e e P a me a n a b s e e P a ma x a b s e e P a s t e p n umb e r r e s ( 1 ) P a r e s ( 2 ) m3 / s r e s ( 3 ) P a r e s ( 4 ) m3 / s r e s ( 5 ) C r e s ( 6 ) P a r e s ( 7 ) m3 / s r e s ( 8 ) P a Figure 4.6 Results for full model for scenarios 4-23 with fire on storey

24 c om f u l l BRE x f 3 0 b e g i n c o n t r o l d e n = d e n z = d z d e n c a s e = 1 r s a e e = t r i x = 1 t a b l e = 1 2 s e t o p = t, " o p, A s t r y p n i n g f ö r a r e a A m2 me d k o n t r a k t i o n 0. 6 " s e t d e p = o p, : h " e n t r e p l a n d ö r r " s e t d t l = o p, : h " t r a p p h u s d ö r r " s e t d h l = o p, : h " t r e h i s s d ö r r a r " s e t d l a = o p, : h " t o l v l ä g e n h e t s d ö r r a r " s e t a o = o p, " t o l v l ä g e n h e t s f a s a d e r " s e t p t = t, 3. 0, 3. 0 " t r a p p h u s t r y c k f a l l p e r p l a n " s e t p h = t, , 2 0 " h i s s s c h a k t t r y c k f a l l p e r p l a n " s e t z p = z, - 3 " n i v å s k i l l n a d p e r p l a n " s e t T n = T, 2 2 : q < " t emp e r a t u r i n f l ö d e n < 0 " s e t T p = T, 2 2 " t emp e r a t u r i n f l ö d e n > 0 " s e t T f = T, : < " b r a n d t emp e r a t u r " s e t s p = s, s n = s, " f a s a d s t a r t f l ö d e " s e t d t l f = o p, A t l : h w " t r a p p h u s d ö r r b r a n d p l a n " s e t d h l f = o p, : q w " t r a p p h u s d ö r r b r a n d p l a n " s e t d l a f = o p, A l a : h w " l ä g e n h e t s d ö r r b r a n d p l a n " s e t a o f = o p, A a o " l ä g e n h e t s f a s a d b r a n d p l a n " c om t r y c k s k i l l n a d s k r a v b r a n d g a s f l ä k t h, p C q, h? : w q, q C s, 5 T n : w : T P a P a m3 / s 2 c om C h? : w q, P a 3 c om t r a p p h u s l o b b y h i s s a r l o b b y l ä g e n h e t e r c om d ö r r d ö r r d ö r r T p h, p w : q T w m3 / s C 5 o p, s, d t l f d h l f d l a f a o f s p T f p t P a 6 p h m3 / s P a 8 z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s z p d t l z p d h l d l a a o s p T n p t P a p h P a P a m3 / s Figure 4.7 Results for full model for scenarios 4-23 with fire on storey

PFS ++ reference manual 2015

PFS ++ reference manual 2015 PFS ++ reference manual 2015 Lars Jensen Avdelningen för installationsteknik Institutionen för bygg- och miljöteknologi Lunds tekniska högskola Lunds universitet, 2015 Rapport TVIT-15/7100 Lunds Universitet

More information

Study on Stack Effect of Stairwell by Numerical Model of Leakage Flow through Gap of Door

Study on Stack Effect of Stairwell by Numerical Model of Leakage Flow through Gap of Door Open Journal of Fluid Dynamics, 13, 3, 41-47 Published Online December 13 (http://www.scirp.org/journal/ojfd) http://dx.doi.org/1.436/ojfd.13.349 Study on Stack Effect of Stairwell by Numerical Model of

More information

1. For which values of the parameters α and β has the linear system. periodic solutions? Which are the values if the period equals 4π?

1. For which values of the parameters α and β has the linear system. periodic solutions? Which are the values if the period equals 4π? MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA316 Differential Equations, foundation

More information

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the third quarter of the year 2006

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the third quarter of the year 2006 P-06-235 Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the third quarter of the year 2006 Reynir Böðvarsson Uppsala University, Department of Earth Sciences October

More information

Gravitationsfält. Uppdaterad: [1] Gravitation ett märkligt fenomen [2] Gravitationsfält [3] Gravitationsfält

Gravitationsfält. Uppdaterad: [1] Gravitation ett märkligt fenomen [2] Gravitationsfält [3] Gravitationsfält Gravitationsfält Uppdaterad: 180112 [1] Gravitation ett märkligt fenomen [2] Gravitationsfält [3] Gravitationsfält Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den.

More information

Automatic Control II: Summary and comments

Automatic Control II: Summary and comments Automatic Control II: Summary and comments Hints for what is essential to understand the course, and to perform well at the exam. You should be able to distinguish between continuous-time (c-t) and discrete-time

More information

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the second quarter of the year 2007

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the second quarter of the year 2007 P-07-163 Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the second quarter of the year 2007 Reynir Böðvarsson Uppsala University, Department of Earth Sciences July

More information

INVESTIGATION INTO RISE TIME OF BUOYANT FIRE PLUME FRONTS

INVESTIGATION INTO RISE TIME OF BUOYANT FIRE PLUME FRONTS , Volume 2, Number, p.4-25, 2000 INVESTIGATION INTO RISE TIME OF BUOYANT FIRE PLUME FRONTS T. Tanaka isaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 6-00 Japan T. Fujita Shimizu

More information

CHAPTER 4 AIR FLOW THROUGH OPENINGS

CHAPTER 4 AIR FLOW THROUGH OPENINGS CHAPTER 4 AIR FLOW THROUGH OPENINGS Learning Objectives This chapter introduces the equations that describe airflow through openings. After you have studied this chapter and completed the personal feedback

More information

Project: Vibration Damping

Project: Vibration Damping Mekanik GK för I (FMEA10) 2018 Project: Vibration Damping Project team: Name: Personal id-number: Mekanik www.mek.lth.se. 1 Project: Vibration damping Project Specification 1. Introduction In this project

More information

A MODEL OF SMOKE MOVEMENT IN STAIR SHAFTS

A MODEL OF SMOKE MOVEMENT IN STAIR SHAFTS A MODEL OF SMOKE MOVEMENT IN STAIR SHAFTS Daisaku Nii 1,4, Noe Takehira 1, Kazunori Harada 1,, Yoshifumi Ohmiya 2, Toshio Yamana 3 and Ichiro Hagiwara 3 1 Department of Architecture and Environmental Design,

More information

Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Iqbal, Ahsan; Afshari, Alireza; Heiselberg, Per Kvols; Høj, Anders

Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Iqbal, Ahsan; Afshari, Alireza; Heiselberg, Per Kvols; Høj, Anders Aalborg Universitet Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Iqbal, Ahsan; Afshari, Alireza; Heiselberg, Per Kvols; Høj, Anders Published in: Proceedings of CLIMA

More information

BUS5 Building structures 5: Fire safety

BUS5 Building structures 5: Fire safety Czech Technical University in Prague FACULTY OF CIVIL ENGINEERING Deptarment of Building Structures BUS5 Building structures 5: Fire safety Excercise 2 Fire Compartments, Fire Risk, Fire Resistance Grades

More information

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the third quarter of the year 2009

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the third quarter of the year 2009 P-09-61 Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the third quarter of the year 2009 Reynir Böðvarsson Uppsala University, Department of Earth Sciences October

More information

Dwelling Airtightness Testing Report

Dwelling Airtightness Testing Report Dwelling Airtightness Testing Report BSRIA Airtightness Old Bracknell Lane West Bracknell, Berkshire RG12 7AH Phone: 0800 5871000 Fax: 01344 465691 Report N : DAT-LOV01-EAS01-UNI01-1-PL2-T1 Date: 08/06/2009

More information

Dwelling Airtightness Testing Report

Dwelling Airtightness Testing Report Dwelling Airtightness Testing Report BSRIA Airtightness Old Bracknell Lane West Bracknell, Berkshire RG12 7AH Phone: 0800 5871000 Fax: 01344 465691 Report N : DAT-DRA01-NA01-SOU01-1-PL1-T1 Date: 14/05/2010

More information

Luleå Tekniska Universitet Kurskod SMD098 Tentamensdatum

Luleå Tekniska Universitet Kurskod SMD098 Tentamensdatum Luleå Tekniska Universitet Kurskod SMD098 Tentamensdatum 991215 Skrivtid 4 timmar Tentamen i Beräkningsstrukturer Antal uppgifter: 6 Max poäng: 30 Betygsgränser: >20 poäng 4 >25 poäng 5 Betygsgränser kan

More information

Can I have a similar please. Sorry Mister that s the last one

Can I have a similar please. Sorry Mister that s the last one Can I have a similar please Sorry Mister that s the last one Mega cities 1950 New York London Rhine-Ruhr Moscow Tokyo Shanghai Paris Buenos Aires Mega cities 2015 Population worldwide in cities Tokyo Los

More information

Structural Fire Design according to Eurocodes

Structural Fire Design according to Eurocodes Brussels, 18-20 February 2008 Dissemination of information workshop 1 Structural Fire Design according to Eurocodes Joël KRUPPA CTICM Coordinator CEN TC 250 / Horizontal Group "FIRE" ESSENTIAL REQUIREMENTS

More information

Air distribution systems. Linear whirl outlet WL...

Air distribution systems. Linear whirl outlet WL... Air distribution systems Linear whirl outlet WL... DS 0 E 1.013 Preliminary remarks Mode of operation The linear whirl outlet generates turbulent mixing ventilation. It can be installed on or in a wall

More information

Fysik 1 Kompendium: Del 2 Standard Modellen samt Ljus

Fysik 1 Kompendium: Del 2 Standard Modellen samt Ljus Fysik 1 Kompendium: Del 2 Standard Modellen samt Ljus Klass: Na2 Lärare: VT14 Relativitet: Heureka Kapitel 13 (s.282-291) samt Ergo 393-401 Formel Skriv ner här alla formel som du kommer i kontakt med

More information

VARIETY MODES AND CHAOS IN SMOKE VENTILATION BY CEILING CHAMBER SYSTEM. Katsumichi NITTA

VARIETY MODES AND CHAOS IN SMOKE VENTILATION BY CEILING CHAMBER SYSTEM. Katsumichi NITTA VARIETY MODES AND CHAOS IN SMOKE VENTILATION BY CEILING CHAMBER SYSTEM Katsumichi NITTA Prof., Dr.Eng. Department. Architecture and Design, Faculty of Engineering and Design, Kyoto Institute of Technology.

More information

The Critical Velocity for Smoke Control

The Critical Velocity for Smoke Control The Critical Velocity for Smoke Control Dr Fathi Tarada Managing Director, Mosen Ltd Chief Executive, HBI Haerter Ltd Bill Kennedy Bill Kennedy was a leading thinker in the area of critical velocity Application

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(6): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(6): Research Article Available online www.ocpr.com Journal of Chemical and Pharmaceutical Research, 201, 6(6):1777-1782 Research Article ISSN : 0975-738 CODEN(USA) : JCPRC5 Numerical Simulation of smoke movement in vertical

More information

A fire resistance assessment case history G.C. and M.E. Giuliani

A fire resistance assessment case history G.C. and M.E. Giuliani A fire resistance assessment case history G.C. and M.E. Giuliani In general A structure subjected to fire must be safe for the time necessary for the escape of the people and for the safe operation of

More information

Aalborg Universitet. Publication date: Document Version Publisher's PDF, also known as Version of record

Aalborg Universitet. Publication date: Document Version Publisher's PDF, also known as Version of record Aalborg Universitet Experimental Investigation of the Influence of Different Flooring Emissivity on Night- Time Cooling using Displacement Ventilation Dreau, Jerome Le; Karlsen, Line Røseth; Litewnicki,

More information

Computational Fluid Dynamics F7018T. Part II: Finite volume methods

Computational Fluid Dynamics F7018T. Part II: Finite volume methods Computational Fluid Dynamics F7018T Part II: Finite volume methods Questions to be answered Why numerical solutions of fluid mechanical problems? What is CFD? Why is it wrong to compare CFD with FEM? Can

More information

Some CFD simulations for the design of the FCC ventilation system. 9/28/2015 A. Rakai EN-CV-PJ 2

Some CFD simulations for the design of the FCC ventilation system. 9/28/2015 A. Rakai EN-CV-PJ 2 Some CFD simulations for the design of the FCC ventilation system 9/28/2015 A. Rakai EN-CV-PJ 2 FCC tunnel design 9/28/2015 A. Rakai EN-CV-PJ 3 FCC: machine tunnel A 9100 m section considered for the study,

More information

Technical Reference Note

Technical Reference Note Technical Reference Note Air Conditioning Contractors of America, s2800 Shirlington Road, Suite Suite 300, 300Arlington, s VA, VA 22206, 22206 703-575-4477, s7035754477 Fax sfax 703-575-4449 7035754449

More information

POSTER PAPER PROCEEDINGS

POSTER PAPER PROCEEDINGS ITA - AITES WORLD TUNNEL CONGRESS 21-26 April 2018 Dubai International Convention & Exhibition Centre, UAE POSTER PAPER PROCEEDINGS Flow and temperature characteristics around a burning car in a long tunnel

More information

Umea University Report UMINF Department of Computing Science ISSN S Umea January 21, 1997 Sweden Algorithms and Software for th

Umea University Report UMINF Department of Computing Science ISSN S Umea January 21, 1997 Sweden Algorithms and Software for th Umea University Report UMINF 97.03 Department of Computing Science ISSN-0348-0542 S-901 87 Umea January 21, 1997 Sweden Algorithms and Software for the Computation of Parameters Occurring in ODE-models

More information

Design for Airtightness and Moisture Control in New Zealand housing

Design for Airtightness and Moisture Control in New Zealand housing Design for Airtightness and Moisture Control in housing paola leardini the university of auckland [school of architecture & planning] thomas van raamsdonk pro clima nz limited current issues Indoor Air

More information

TREES Training for Renovated Energy Efficient Social housing

TREES Training for Renovated Energy Efficient Social housing TREES Training for Renovated Energy Efficient Social housing Intelligent Energy -Europe programme, contract n EIE/05/110/SI2.420021 Section 2 Tools 2.1 Simplified heating load calculation Tamas CSOKNYAI

More information

Numerical experiments - a research method in fire science

Numerical experiments - a research method in fire science Numerical experiments - a research method in fire science Johansson, Nils Published: 2013-01-01 Link to publication Citation for published version (APA): Johansson, N. (2013). Numerical experiments - a

More information

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 18 August 2017, 08:00-12:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 18 August 2017, 08:00-12:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 18 August 2017, 08:00-12:00 Examiner: Zhenxia Liu (Tel: 070 0895208). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the

More information

Experiments in Natural Ventilation for Passive Cooling

Experiments in Natural Ventilation for Passive Cooling OPTIMUM VENTILATION AND AIR FLOW CONTROL IN BUILDINGS 7 th AIVC Conference, Gothenburg, Sweden, 7-0 September, 996 Experiments in Natural Ventilation for Passive Cooling F. Flourentzou, J. van der Maas,

More information

LQR and MPC control of a simulated data center

LQR and MPC control of a simulated data center DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 LQR and MPC control of a simulated data center ERIK BERGLUND KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES

More information

A NEW MODEL FOR ESTIMATING NEUTRAL PLANE IN FIRE SITUATION

A NEW MODEL FOR ESTIMATING NEUTRAL PLANE IN FIRE SITUATION A NEW MODEL FOR ESTIMATING NEUTRAL PLANE IN FIRE SITUATION JY Zhang¹,*, Jane WZ Lu² and R Huo¹ 1 PhD student, State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei,

More information

DATA ANALYSIS OF NATURAL VENTILATION IN A FIRE IN TUNNEL.

DATA ANALYSIS OF NATURAL VENTILATION IN A FIRE IN TUNNEL. - 119 - DATA ANALYSIS OF NATURAL VENTILATION IN A FIRE IN TUNNEL. ABSTRACT. Giuli G., Giorgiantoni G., Zampetti P. ENEA (The Italian Committee for the New Technologies, for Energy and the Environment)

More information

P Oskarshamn site investigation. Refraction seismic measurements in Laxemar spring Gustaf Lindqvist, MRM Konsult AB.

P Oskarshamn site investigation. Refraction seismic measurements in Laxemar spring Gustaf Lindqvist, MRM Konsult AB. P-06-49 Oskarshamn site investigation Refraction seismic measurements in Laxemar spring 2006 Gustaf Lindqvist, MRM Konsult AB June 2006 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management

More information

MODELING OF ROCK GROUTING IN SATURATED VARIABLE APERTURE FRACTURES Injekteringsmodellering av vattenfyllda bergsprickor med varierande apertur

MODELING OF ROCK GROUTING IN SATURATED VARIABLE APERTURE FRACTURES Injekteringsmodellering av vattenfyllda bergsprickor med varierande apertur MODELING OF ROCK GROUTING IN SATURATED VARIABLE APERTURE FRACTURES Injekteringsmodellering av vattenfyllda bergsprickor med varierande apertur Liangchao Zou, Division of resources, energy and infrastructure,

More information

Multi-Adaptive Galerkin Methods for ODEs

Multi-Adaptive Galerkin Methods for ODEs Multi-Adaptive Galerkin Methods for ODEs ANDERS LOGG Licentiatuppsats i tillämpad matematik som presenteras vid seminarium i sal HA2 den 6 juni 2001, klockan 13.15. Diskussionsledare är Professor Gustaf

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

In steady flow the velocity of the fluid particles at any point is constant as time passes.

In steady flow the velocity of the fluid particles at any point is constant as time passes. Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

More information

Calculation of Vibrations in Structures in the Early Design Phase

Calculation of Vibrations in Structures in the Early Design Phase Calculation of Vibrations in Structures in the Early Design Phase Prediction of comfort disturbing vibrations in buildings Master s thesis in the Master s Programme Structural Engineering and Building

More information

AN EXPERIMENTAL STUDY ON CRIB FIRES IN A CLOSED COMPARTMENT

AN EXPERIMENTAL STUDY ON CRIB FIRES IN A CLOSED COMPARTMENT AN EXPERIMENTAL STUDY ON CRIB FIRES IN A CLOSED COMPARTMENT Bhisham Kumar DHURANDHER a *, Ravi KUMAR a, Amit Kumar DHIMAN b a Department of Mechanical & Industrial Engineering, Indian Institute of Technology,

More information

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the second quarter of the year 2011

P Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the second quarter of the year 2011 P-11-35 Swedish National Seismic Network (SNSN) A short report on recorded earthquakes during the second quarter of the year 2011 Reynir Böðvarsson Uppsala University, Department of Earth Sciences July

More information

Växelspänningsprov utförda på en kompositstolpe från Jerol Industri AB

Växelspänningsprov utförda på en kompositstolpe från Jerol Industri AB TEKNISKT MEDDELANDE UTM12-472 Till Avd Datum Projnr Sida Jerol Industri AB R 212-8-14 84646 1(1) Från, tfn Göran Olsson, 24-795 32 Kopior till Växelspänningsprov utförda på en kompositstolpe från Jerol

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Räkneövningar Empirisk modellering

Räkneövningar Empirisk modellering Räkneövningar Empirisk modellering Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University 5th February 009 Abstract Räkneuppgifter samt lite kompletterande teori. Contents

More information

MOISTURE TRANSPORT THROUGH

MOISTURE TRANSPORT THROUGH ANNEX 41 MOIST-ENG, Working Meeting, October 22-24 2007, Porto, Portugal MOISTURE TRANSPORT THROUGH A HORIZONTAL OPENING Test setup and initial results Sergio Vera, Jiwu Rao, Paul Fazio Building Envelope

More information

ABOUT UNCERTAINTIES IN SIMULATION MODELS FOR BUILDING SYSTEMS CONTROL

ABOUT UNCERTAINTIES IN SIMULATION MODELS FOR BUILDING SYSTEMS CONTROL ABOUT UNCERTAINTIES IN SIMULATION MODELS FOR BUILDING SYSTEMS CONTROL Kristina Orehounig, Matthias Schuss, Claus Pröglhöf, and Ardeshir Mahdavi Department of Building Physics and Building Ecology Vienna

More information

Physics 160 Spring 2013 Homework Assignments

Physics 160 Spring 2013 Homework Assignments Physics 160 Spring 2013 Homework Assignments HW #11 - Due May 3. Mastering Physics: 7 questions from chapters 13 and 14. Written Question:13.77 Consider a spacecraft in elliptical orbit around the earth.

More information

DEFINING THE PERFORMANCE OF THE DOUBLE SKIN FAÇADE WITH THE USE OF THE SIMULATION MODEL

DEFINING THE PERFORMANCE OF THE DOUBLE SKIN FAÇADE WITH THE USE OF THE SIMULATION MODEL Eighth International IBPSA Conference Eindhoven, Netherlands August -4, 003 DEFINING THE PERFORMANCE OF THE DOUBLE SKIN FAÇADE WITH THE USE OF THE SIMULATION MODEL Wojtek Stec & Dolf van Paassen Energy

More information

Characterization of the Airflow from a Bottom Hung Window under Natural Ventilation

Characterization of the Airflow from a Bottom Hung Window under Natural Ventilation Downloaded from vbn.aau.dk on: March 2, 219 Aalborg Universitet Characterization of the Airflow from a Bottom Hung Window under Natural Ventilation Svidt, Kjeld; Heiselberg, Per; Nielsen, Peter V. Publication

More information

The Use of Double Fire Shutter System in a Fire Safety Engineering Design

The Use of Double Fire Shutter System in a Fire Safety Engineering Design The Use of Double Fire Shutter System in a Fire Safety Engineering Design K KYUEN and 5 M LO Department of Building & Construction City University of Hong Kong GHYEOH CSIRO, Australia ABSTRACT Protected

More information

Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings Li, Zhigang

Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings Li, Zhigang Aalborg Universitet Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings Li, Zhigang Publication date: 2007 Document Version Publisher's PDF, also known as Version of record

More information

ANALYSIS OF FIELD TEST RESULTS FOR THE OIL SHALE MINE VENTILATION SIMULATION

ANALYSIS OF FIELD TEST RESULTS FOR THE OIL SHALE MINE VENTILATION SIMULATION Oil Shale, 2018, Vol. 35, No. 4, pp. 356 364 ISSN 0208-189X doi: https://doi.org/10.3176/oil.2018.4.05 2018 Estonian Academy Publishers ANALYSIS OF FIELD TEST RESULTS FOR THE OIL SHALE MINE VENTILATION

More information

Study of air curtains used to restrict infiltration into refrigerated rooms

Study of air curtains used to restrict infiltration into refrigerated rooms Study of air curtains used to restrict infiltration into refrigerated rooms Gregory Verhaeghe 1, Marnix Van Belleghem 1, Arnout Willockx 1, Ivan Verhaert 1, Michel De Paepe 1 1 Ghent University, Department

More information

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials)

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials) For updated version, please click on http://ocw.ump.edu.my REINFORCED CONCRETE DESIGN 1 Design of Column (Examples and Tutorials) by Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth

More information

Study on Train Obstruction Effect on Smoke Control near Tunnel Cross-Passage

Study on Train Obstruction Effect on Smoke Control near Tunnel Cross-Passage Study on Train Obstruction Effect on Smoke Control near Tunnel Cross-Passage Hou Y. S., Li Y. F.*, Li J. M. Beijing University of Technology, College of Architecture and Civil Engineering, Beijing, China

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Vibration, stöt och tillståndskontroll Ordlista (ISO 2041:2009, IDT)

Vibration, stöt och tillståndskontroll Ordlista (ISO 2041:2009, IDT) SVENSK STANDARD SS-ISO 2041:2009 Fastställd/Approved: 2009-09-14 Publicerad/Published: 2009-10-13 Utgåva/Edition: 3 Språk/Language: engelska/english ICS: 01.040.17; 17.160 Vibration, stöt och tillståndskontroll

More information

Exam for the course Statistics for scientists. Thursday, January 19,

Exam for the course Statistics for scientists. Thursday, January 19, STOCKHOLM UNIVERSITY EXAMINATION DEPARTMENT OF MATHEMATICS Statistics for scientists Div. of Mathematical Statistics Thursday, January 19, 2006 Exam for the course Statistics for scientists Thursday, January

More information

Roadway Traffic Noise Feasibility Assessment. 315 Chapel Street. Ottawa, Ontario

Roadway Traffic Noise Feasibility Assessment. 315 Chapel Street. Ottawa, Ontario Roadway Traffic Noise Feasibility Assessment 315 Chapel Street Ottawa, Ontario REPORT: GWE17-002 - Traffic Noise Prepared For: Leanne Moussa Allsaints 10 Blackburn Avenue K1N 6P8 Ottawa, Ontario Prepared

More information

Fig. 8.1 shows the paths of the metal ball and the block. The ball collides with the block. Air resistance is negligible. ball and block collide here

Fig. 8.1 shows the paths of the metal ball and the block. The ball collides with the block. Air resistance is negligible. ball and block collide here 1 A small block of wood is held at a horizontal distance of 1.2 m from a metal ball. The metal ball is fired horizontally towards the block at a speed of 8.0 m s 1. At the same instant the ball is fired,

More information

Thermal performance of the new hall of the historical hospital in Florence

Thermal performance of the new hall of the historical hospital in Florence hermal performance of the new hall of the historical hospital in Florence C. Balocco *,1, E. Marmonti 1 1 Dipartimento di Energetica, Università di Firenze *Corresponding author: via Santa Marta 3,F irenze,

More information

FAFA Föreläsning 4, läsvecka 2 7 november 2016

FAFA Föreläsning 4, läsvecka 2 7 november 2016 FAFA55 2016 Föreläsning 4, läsvecka 2 7 november 2016 Nya salar för gruppövningar F1.03 må 7/11 13-15: Byt K219 mot H222 F1.11 ti 8/11 8-10: Byt K219 mot H222 F1.03 ti 8/11 13-15: Byt K219 mot H222 F1.11

More information

EVALUATION OF VENTILATION PERFORMANCE IN VOID SPACE BY EXCEEDANCE PROBABILITIES BASED ON CFD SIMULATION

EVALUATION OF VENTILATION PERFORMANCE IN VOID SPACE BY EXCEEDANCE PROBABILITIES BASED ON CFD SIMULATION EVALUATION OF VENTILATION PERFORMANCE IN VOID SPACE BY EXCEEDANCE PROBABILITIES BASED ON CFD SIMULATION Zhen BU 1, Shinsuke KATO 2, Yoshihiro ISHIDA 2, and Hong HUANG 2 1 Graduate School of Engineering,

More information

USE OF CFD TOOL ANSYS FLUENT FOR FIRE SAFETY IMPROVEMENT OF AN INDOOR SPORTS ARENA

USE OF CFD TOOL ANSYS FLUENT FOR FIRE SAFETY IMPROVEMENT OF AN INDOOR SPORTS ARENA USE OF CFD TOOL ANSYS FLUENT FOR FIRE SAFETY IMPROVEMENT OF AN INDOOR SPORTS ARENA Ondřej ZAVILA 1 Abstract: Key words: The focus of the article is the design of a HVAC (heating, ventilation and air-conditioning)

More information

10-year industry best core warranty. 2-year warranty on balance of unit.

10-year industry best core warranty. 2-year warranty on balance of unit. MODEL FEATURES MERV-8 filters Fully insulated case Large cores for high efficiency No condensate pan or drain required AHRI Certified Rainhood included Access door for easy maintenance and Cleaning Integral

More information

Markundersökningar Bestämning av utbytesaciditet i bariumkloridextrakt

Markundersökningar Bestämning av utbytesaciditet i bariumkloridextrakt SVENSK STANDARD SS-ISO 14254 Fastställd 2002-05-24 Utgåva 1 Markundersökningar Bestämning av utbytesaciditet i bariumkloridextrakt Soil quality Determination of exchangeable acidity in barium chloride

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate

Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate ADRIANA LIRA-OLIVER 1, JORGE ROJAS 2, GUADALUPE HUELSZ 2, GUILLERMO BARRIOS 2, FRANCISCO ROJAS 2 1 3S-Consulting for Sustainable

More information

Sammanfattning. accumulation. Sammanfattning av ytansamlingar

Sammanfattning. accumulation. Sammanfattning av ytansamlingar Oceanographic Unit No 7, August 2015 Algal situation in Marine Waters surrounding Sweden Sammanfattning Denna rapport handlar enbart om Östersjön då SMHI följt med på den Finska expeditionen COMBINE 3

More information

Laminar and turbulent flows

Laminar and turbulent flows Ventilation 0 Duct Design Vladimír Zmrhal (room no. 84) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering Laminar and turbulent flos Reynolds number d Re = ν laminar flo Re

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-08-20 Sal (1) ISY:s datorsalar (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa

More information

P Forsmark site investigation. Snow depth, ground frost and ice cover during the winter 2004/2005

P Forsmark site investigation. Snow depth, ground frost and ice cover during the winter 2004/2005 P-05-134 Forsmark site investigation Snow, ground frost and ice cover during the winter 2004/2005 Niklas Heneryd, Svensk Kärnbränslehantering AB June 2005 Svensk Kärnbränslehantering AB Swedish Nuclear

More information

Drying out capacity and snow melting risk for ventilated wooden roofs - a parameter study

Drying out capacity and snow melting risk for ventilated wooden roofs - a parameter study Drying out capacity and snow melting risk for ventilated wooden roofs - a parameter study Sivert Uvsløkk SINTEF Byggforsk 9th Symposium on Building Physics in the Nordic countries Thursday 2.06.2011 Tampere

More information

Washington State Math Championship Mental Math Grades 5

Washington State Math Championship Mental Math Grades 5 Washington State Math Championship 2006 Mental Math Grades 5 1. What is the volume of a cube with edge 0.5? 2. What is the perimeter of a square that has an area 64? 3. What is one ninth times 207? 4.

More information

Application of first-order Generalised Beam Theory on open thin-walled members

Application of first-order Generalised Beam Theory on open thin-walled members Application of first-order Generalised Beam Theory on open thin-walled members Master of Science Thesis in the Master s Programme Structural Engineering and Building Technology GUSTAF GELL HENRIC THOMPSSON

More information

Technical University of Denmark BSIM

Technical University of Denmark BSIM WHOLE BUILDING HAM SIMULATION WITH A MULTIZONE AIR FLOW MODEL Karl Grau 1 and Carsten Rode 2 1 Danish Building Research Institute 2 Technical University of Denmark ABSTRACT BSim is a whole building thermal

More information

Institutionen för systemteknik

Institutionen för systemteknik Institutionen för systemteknik Department of Electrical Engineering Examensarbete Passive Control for a Human Power Amplifier, providing Force Amplification, Guidance and Obstacle Avoidance Examensarbete

More information

P Forsmark site investigation. Quantitative mapping of fracture minerals in Forsmark. Stefan Eklund, Karl-Johan Mattsson Geosigma AB

P Forsmark site investigation. Quantitative mapping of fracture minerals in Forsmark. Stefan Eklund, Karl-Johan Mattsson Geosigma AB P-08-47 Forsmark site investigation Quantitative mapping of fracture minerals in Forsmark Stefan Eklund, Karl-Johan Mattsson Geosigma AB December 2009 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel

More information

Use. Worth noting. Key figures. Installation. lindab fasadium

Use. Worth noting. Key figures. Installation. lindab fasadium Contact, Overview, Index Guideline heating and cooling Plexus Professor / Professor Plus Premum / Premax / Solus Architect Polaris I & S Plafond Podium Celo Cabinett Capella Carat Atrium / Loggia Regula

More information

Chapter 3.8: Energy Dissipators. By Dr. Nuray Denli Tokyay

Chapter 3.8: Energy Dissipators. By Dr. Nuray Denli Tokyay Chapter 3.8: Energy Dissipators By Dr. Nuray Denli Tokyay 3.1 Introduction A stilling basin is a short length of paved channel placed at the foot of a spillway or any other source of supercritical flow

More information

Tentamen i ELEKTROMAGNETISK FÄLTTEORI

Tentamen i ELEKTROMAGNETISK FÄLTTEORI Karlstads Universitet Fysik Tentamen i ELEKTROMAGNETISK FÄLTTEORI [ VT 2017, FYGB03] Datum: 2017-03-29 Tid: 8.15 13.15 Lärare: Jürgen Fuchs Tel: 0547001817 / 0762714576 Total poäng: 50 Godkänd / 3: 25

More information

AN EXPERIMENTAL STUDY ON CRIB FIRES IN A CLOSED COMPARTMENT

AN EXPERIMENTAL STUDY ON CRIB FIRES IN A CLOSED COMPARTMENT THERMAL SCIENCE: Year 17, Vol. 1, No. 3, pp. 131-11 131 AN EXPERIMENTAL STUDY ON CRIB FIRES IN A CLOSED COMPARTMENT by Bhisham Kumar DHURANDHER a *, Ravi KUMAR a, and Amit Kumar DHIMAN b a Department of

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

P Oskarshamn site investigation. Borehole KLX12A. Determination of P-wave velocity, transverse borehole core

P Oskarshamn site investigation. Borehole KLX12A. Determination of P-wave velocity, transverse borehole core P-06-70 Oskarshamn site investigation Borehole KLX12A Determination of P-wave velocity, transverse borehole core Panayiotis Chryssanthakis, Lloyd Tunbridge Norwegian Geotechnical Institute, Oslo October

More information

Ventilation 5 Fans Vladimír Zmrhal (room no. 814) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering 1 Introduction Fans air pump that creates a pressure difference and causes

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds.

a. Determine the sprinter's constant acceleration during the first 2 seconds. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

P Oskarshamn site investigation. Drillhole KSH01A. Extensometer measurement of the coefficient of thermal expansion of rock (SINTEF)

P Oskarshamn site investigation. Drillhole KSH01A. Extensometer measurement of the coefficient of thermal expansion of rock (SINTEF) P-05-59 Oskarshamn site investigation Drillhole KSH01A Extensometer measurement of the coefficient of thermal expansion of rock (SINTEF) Lisbeth Alnæs, SINTEF Civil and Environmental Engineering, Rock

More information

PRESENTATION. Goldore Sweden AB (publ) har Archelon AB (publ), Capensor Capital AB och Anders West som huvudägare.

PRESENTATION. Goldore Sweden AB (publ) har Archelon AB (publ), Capensor Capital AB och Anders West som huvudägare. PRESENTATION September 2018 SAMMANFATTNING Goldore Sweden AB (publ) har Archelon AB (publ), Capensor Capital AB och Anders West som huvudägare. Bolagets fokus ligger på guld i Skelleftefältet, som har

More information

BACHELOR'S THESIS. A Priori Modeling of the Tisova Fire Test in FDS. Jakob Degler Andreas Eliasson 2015

BACHELOR'S THESIS. A Priori Modeling of the Tisova Fire Test in FDS. Jakob Degler Andreas Eliasson 2015 BACHELOR'S THESIS A Priori Modeling of the Tisova Fire Test in FDS Jakob Degler Andreas Eliasson 2015 Fire Protection Engineering Fire Protection Engineer Luleå University of Technology Department of Civil,

More information

The Hegselmann-Krause Model of Opinion Dynamics in One and Two Dimensions: Phase Transitions, Periodicity and Other Phenomena

The Hegselmann-Krause Model of Opinion Dynamics in One and Two Dimensions: Phase Transitions, Periodicity and Other Phenomena The Hegselmann-Krause Model of Opinion Dynamics in One and Two Dimensions: Phase Transitions, Periodicity and Other Phenomena Kandidatarbete inom civilingenjörsutbildningen vid Chalmers Gustav Karlsson

More information

Flood Mapping: Assessing the Uncertainty Associated with Flood Inundation Modelling. A Case Study of the Mora River, Sweden

Flood Mapping: Assessing the Uncertainty Associated with Flood Inundation Modelling. A Case Study of the Mora River, Sweden Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 390 Flood Mapping: Assessing the Uncertainty Associated with Flood Inundation Modelling.

More information

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master:

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master: INSTRUCTIONS FOR USE This file can only be used to produce a handout master: Use print from the File menu to make a printout of the test. You may not modify the contents of this file. IMPORTANT NOTICE:

More information

ANNEX 5: FAN MODEL. The flow-pressure laws include φ, ψ and λ as no dimensional parameters:

ANNEX 5: FAN MODEL. The flow-pressure laws include φ, ψ and λ as no dimensional parameters: A.44 ANNEX 5: FAN MODEL 5.1. Fan model flow-pressure laws The fan flow-pressure laws are defined from the following inputs: The total pressure drop delivered by the fan The fan total volume air flow The

More information