Boundary integral methods for NIMROD resistive wall

Size: px
Start display at page:

Download "Boundary integral methods for NIMROD resistive wall"

Transcription

1 Coronado Consulting Boundary integral methods for NIMROD resistive wall D. C. Barnes, C. Akcay, J. M. Finn J. King NIMROD SUMMER MEETING 1 August, 2018

2 R-wall project With Jake (TechX), DCB (Coronado), C. Akcay, J. Finn (Tibbar) Provide alternative to 2 region Sovinec implementation Achieve higher-order convergence w. boundary-integral method 1

3 R-wall Conditions Sherwood-status Replaced old top-hat (also used by GRIN) basis Implemented Nystrom (collocation) method Young & Martinsson Tested on circular, aspect 3 torus Manufactured solution with same ring source used for solver Circular? Problem with accuracy, essentially no convergence Studied A. Becarra implementation in developer Some strange results of using different interpolations?? Suspect GRIN solver matrix for slow convergence?? 2

4 B = Φ Φ = 2 x M, M 0 continuous B External Solver = Φ Φ n n M M in BTx = ΦM ', ΦM R * [ BT] JT ET B n σ ( S ) Φ M = ds Dσ r r 1 nφ M = dsσ ( S ) n Nσ r r S = DN 1 S S 3

5 Convergence of boundary solution (tophat) Function Derivative 4

6 Resistive wall transformer solution 5

7 Improve R-wall algorithm Desired nth-order convergence (n up to 6 or so) or Round-off-ish accuracy Components of boundary integral approach Free-space Green s function Approximate integrals (logarithmic singularity) Matrix inversion and algebra Remainder of algorithm nimset time nimrod time 6

8 Vacuum solver Green s functions 7

9 Vacuum solver Green s functions n = 0 & n = 1 use elliptic integrals n > 1 by recursion 8

10 Vacuum solver Integrals 9

11 Vacuum solver Integrals Testing in stand-alone code n = 0 & n = 1 so far Manufacture solution using several random sources inside torus Give solve for φ compare nφ Issues Young & Martinsson use Nystrom method (collocation) NIMROD uses various different nodes Interpolation between various meshes 10

12 Bug in Young-Martinsson manuscript They use triage approach Far segments use GL Next door use special modified GL (Jim Bremer) Same segment use different modified GL Problem with next door numbers in doc E.g. replaced with GL and improved result Discovered that weights don t sum to 2 11

13 Hero mathematicians to the rescue! Gunnar Martinsson Jim Bremer Eternal gratitude to both for their help Jim provided code to re-compute modified GL quadratures Changed ~3 lines and voila! 12

14 Manufactured solution

15 Success! Potential Normal Derivative Tangential Derivative n = 0 14

16 Success! Potential Normal Derivative Tangential Derivative n =1 15

17 Higher-order convergence Poly_degree=4 Uniform GLL 1.00E E E E-08 Potential Convergence -- uniform nodelets 1.00E E E E E E-09 n=0 n=1 4th Potential Convergence -- GLL nodelets 1.00E n=0 n=1 4th 1.00E E E E-07 Derivative Convergence -- uniform nodelets 1.00E E E E E E-07 4th Dn=0 Dn=1 Derivative Convergence -- GLL nodelets 1.00E th Dn=0 Dn=1 16

18 Higher-order convergence Poly_degree=5 Uniform GLL 1.00E E E E E-10 Potential Convergence -- uniform nodelets (pd=5) 1.00E E E E E-10 n=0 n=1 5th Potential Convergence -- GLL nodelets (pd=5) 1.00E n=0 n=1 5th Derivative Convergence -- uniform nodelets (pd=5) 1.00E E E E E E E E th Dn=0 Dn=1 Derivative Convergence -- GLL nodelets (pd=5) 1.00E E E E E E E E th Dn=0 Dn=1 17

19 Under the rug Underlying Nystrom accurate but slow convergent Boundary Integral Convergence 3.0E E-09 y = 7E-08x E n=0 n=1 Power (n=0) Possible/probable causes Discontinuities in normal, tangent C 0 elements? 18

20 Boundary integral plans Order of priority? Higher toroidal harmonics Straightforward use recursion to get Green s Testing developer w new boundary matrices Replace GRIN w NIMbnd Use new tang derivative matrix eliminate interpolation, etc. Cihan working on this Additional verification Cihan/John working on toridal harmonics for circular torus Add 2 nd conducting wall Compare w Carl s 2 region Get Nystrom convergence Use splines to get boundary geometry May migrate to NIMROD? 19

21 Verification with toroidal harmonics Toroidal Coordinates Toroidal Harmonics ( ) Tridiagonal System Exp. of χ Exp. of nχ August 3,

22 NIMdevel items Cihan built on Tibbar machine Studied Andie s implementation of rest of algorithm Obtained Carl s notes on this R E n B t B B t n [ ] w = t µ 0 = φ = n E t 21

23 Plug in new matrices NIMdevel plans Test convergence (how?) Use toroidal harmonics, e.g. resistive wall decay problem Convergence! Clean up code and ready for merge Convergence! Improve NIMROD boundary term treatment 22

24 Other issues More complex boundaries Smooth shapes no problem expected (demo) Corners will likely kill splines, etc. Basically no problem except bookkeeping Open boundary i.e. r = 0 Worked at one time with tophat basis Fix broken branches in BI code Publication, documentation 23

Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems

Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems z Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems Johan Helsing Lund University Talk at Integral equation methods: fast algorithms and applications, Banff,

More information

Fast and accurate methods for the discretization of singular integral operators given on surfaces

Fast and accurate methods for the discretization of singular integral operators given on surfaces Fast and accurate methods for the discretization of singular integral operators given on surfaces James Bremer University of California, Davis March 15, 2018 This is joint work with Zydrunas Gimbutas (NIST

More information

The use of exact values at quadrature points in the boundary element method

The use of exact values at quadrature points in the boundary element method The use of exact values at quadrature points in the boundary element method N.D. Stringfellow, R.N.L. Smith Applied Mathematics & OR Group, Cranfield University, Shrivenham, Swindon, U.K., SN6 SLA E-mail:

More information

NIMROD Boundary Conditions

NIMROD Boundary Conditions NIMROD Boundary Conditions Carl Sovinec University of Wisconsin-Madison and the Two-Fluid and Transport Group Plasma Science and Innovation Center Annual Meeting Seattle Washington, August 13-14, 2007

More information

Computations with Discontinuous Basis Functions

Computations with Discontinuous Basis Functions Computations with Discontinuous Basis Functions Carl Sovinec University of Wisconsin-Madison NIMROD Team Meeting November 12, 2011 Salt Lake City, Utah Motivation The objective of this work is to make

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

Medical Physics & Science Applications

Medical Physics & Science Applications Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-5: Introduction to the Finite Element Method Introduction Finite Element Method is used

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Research Statement. James Bremer Department of Mathematics, University of California, Davis

Research Statement. James Bremer Department of Mathematics, University of California, Davis Research Statement James Bremer Department of Mathematics, University of California, Davis Email: bremer@math.ucdavis.edu Webpage: https.math.ucdavis.edu/ bremer I work in the field of numerical analysis,

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

A HIGH-ORDER ACCURATE ACCELERATED DIRECT SOLVER FOR ACOUSTIC SCATTERING FROM SURFACES

A HIGH-ORDER ACCURATE ACCELERATED DIRECT SOLVER FOR ACOUSTIC SCATTERING FROM SURFACES A HIGH-ORDER ACCURATE ACCELERATED DIRECT SOLVER FOR ACOUSTIC SCATTERING FROM SURFACES JAMES BREMER,, ADRIANNA GILLMAN, AND PER-GUNNAR MARTINSSON Abstract. We describe an accelerated direct solver for the

More information

Lagrange Interpolation and Neville s Algorithm. Ron Goldman Department of Computer Science Rice University

Lagrange Interpolation and Neville s Algorithm. Ron Goldman Department of Computer Science Rice University Lagrange Interpolation and Neville s Algorithm Ron Goldman Department of Computer Science Rice University Tension between Mathematics and Engineering 1. How do Mathematicians actually represent curves

More information

3 6 x a. 12 b. 63 c. 27 d. 0. 6, find

3 6 x a. 12 b. 63 c. 27 d. 0. 6, find Advanced Algebra Topics COMPASS Review revised Summer 0 You will be allowed to use a calculator on the COMPASS test Acceptable calculators are basic calculators, scientific calculators, and approved models

More information

An Arithmetic Sequence can be defined recursively as. a 1 is the first term and d is the common difference where a 1 and d are real numbers.

An Arithmetic Sequence can be defined recursively as. a 1 is the first term and d is the common difference where a 1 and d are real numbers. Section 12 2A: Arithmetic Sequences An arithmetic sequence is a sequence that has a constant ( labeled d ) added to the first term to get the second term and that same constant is then added to the second

More information

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant QUESTION 1 Create a program for linear interpolation of a three axis manufacturing machine with a constant velocity profile. The inputs are the initial and final positions, feed rate, and sample period.

More information

Algebra II Learning Targets

Algebra II Learning Targets Chapter 0 Preparing for Advanced Algebra LT 0.1 Representing Functions Identify the domain and range of functions LT 0.2 FOIL Use the FOIL method to multiply binomials LT 0.3 Factoring Polynomials Use

More information

Numerical Analysis Fall. Gauss Elimination

Numerical Analysis Fall. Gauss Elimination Numerical Analysis 2015 Fall Gauss Elimination Solving systems m g g m m g x x x k k k k k k k k k 3 2 1 3 2 1 3 3 3 2 3 2 2 2 1 0 0 Graphical Method For small sets of simultaneous equations, graphing

More information

Progress in the Plasma Science and Innovation Center

Progress in the Plasma Science and Innovation Center 1 THP/2-02 Progress in the Plasma Science and Innovation Center U. Shumlak 1, C. Akcay 1, A. H. Glasser 1, C. J. Hansen 1, E. D. Held 2, T. R. Jarboe 1, J.-Y. Ji 2, C. Kim 1, W. Lowrie 1, V. S. Lukin 4,

More information

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs David L. Finn December 9th, 2004 We now start considering the basic curve elements to be used throughout this course; polynomial curves and

More information

Green s Functions, Boundary Integral Equations and Rotational Symmetry

Green s Functions, Boundary Integral Equations and Rotational Symmetry Green s Functions, Boundary Integral Equations and Rotational Symmetry...or, How to Construct a Fast Solver for Stokes Equation Saibal De Advisor: Shravan Veerapaneni University of Michigan, Ann Arbor

More information

Finite Difference Methods (FDMs) 1

Finite Difference Methods (FDMs) 1 Finite Difference Methods (FDMs) 1 1 st - order Approxima9on Recall Taylor series expansion: Forward difference: Backward difference: Central difference: 2 nd - order Approxima9on Forward difference: Backward

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

STATIC AND DYNAMIC RECURSIVE LEAST SQUARES

STATIC AND DYNAMIC RECURSIVE LEAST SQUARES STATC AND DYNAMC RECURSVE LEAST SQUARES 3rd February 2006 1 Problem #1: additional information Problem At step we want to solve by least squares A 1 b 1 A 1 A 2 b 2 A 2 A x b, A := A, b := b 1 b 2 b with

More information

Fourier Spectral Computing for PDEs on the Sphere

Fourier Spectral Computing for PDEs on the Sphere Fourier Spectral Computing for PDEs on the Sphere an FFT-based method with implicit-explicit timestepping a simple & efficient approach Dave Muraki, Andrea Blazenko & Kevin Mitchell Mathematics, Simon

More information

Fractional Spectral and Spectral Element Methods

Fractional Spectral and Spectral Element Methods Fractional Calculus, Probability and Non-local Operators: Applications and Recent Developments Nov. 6th - 8th 2013, BCAM, Bilbao, Spain Fractional Spectral and Spectral Element Methods (Based on PhD thesis

More information

An Introduction to NeRDS (Nearly Rank Deficient Systems)

An Introduction to NeRDS (Nearly Rank Deficient Systems) (Nearly Rank Deficient Systems) BY: PAUL W. HANSON Abstract I show that any full rank n n matrix may be decomposento the sum of a diagonal matrix and a matrix of rank m where m < n. This decomposition

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision

MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision David L. Finn Yesterday, we introduced barycentric coordinates and de Casteljau s algorithm. Today, we want to go

More information

Northwest High School s Geometry

Northwest High School s Geometry Northwest High School s Geometry Summer Math Packet (For 2013-2014) DUE THE FIRST DAY OF SCHOOL Student Name: - 1 - This packet has been designed to help you review various mathematical topics that will

More information

Mathematical Physics II

Mathematical Physics II Mathematical Physics II PHYS 50 Solution to Problem Set # In the first two problems you will learn (hopefully) how to use numerical computations to suggest analytic results to you. 1. Fixed BC: Tridiagonal

More information

CHAPTER 8: MATRICES and DETERMINANTS

CHAPTER 8: MATRICES and DETERMINANTS (Section 8.1: Matrices and Determinants) 8.01 CHAPTER 8: MATRICES and DETERMINANTS The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa). SECTION 8.1: MATRICES and

More information

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method University of Hertfordshire Department of Mathematics Study on the Dual Reciprocity Boundary Element Method Wattana Toutip Technical Report 3 July 999 Preface The boundary Element method (BEM) is now recognised

More information

AP Calculus BC Summer Assignment 2018

AP Calculus BC Summer Assignment 2018 AP Calculus BC Summer Assignment 018 Name: When you come back to school, I will epect you to have attempted every problem. These skills are all different tools that we will pull out of our toolbo at different

More information

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 = Math 1310 A polynomial function is a function of the form = + + +...+ + where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function is n. We call the term the leading term,

More information

Self-Influencing Interpolation in Groundwater Flow

Self-Influencing Interpolation in Groundwater Flow Self-Influencing Interpolation in Groundwater Flow Carolyn Atwood Whitman College Walla Walla, WA Robert Hildebrand University of Puget Sound Tacoma, WA Andrew Homan Ohio Northern University Ada, OH July

More information

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012 First-order overdetermined systems for elliptic problems John Strain Mathematics Department UC Berkeley July 2012 1 OVERVIEW Convert elliptic problems to first-order overdetermined form Control error via

More information

NIMEQ: MHD Equilibrium Solver for NIMROD

NIMEQ: MHD Equilibrium Solver for NIMROD NIMEQ: MHD Equilibrium Solver for NIMOD E.C.Howell, C..Sovinec University of Wisconsin-Madison 5 th Annual Meeting of Division of Plasma Physics Dallas, Texas, Nov. 17-Nov. 1,8 1 Abstract A Grad-Shafranov

More information

Block-tridiagonal matrices

Block-tridiagonal matrices Block-tridiagonal matrices. p.1/31 Block-tridiagonal matrices - where do these arise? - as a result of a particular mesh-point ordering - as a part of a factorization procedure, for example when we compute

More information

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura Curves Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Taku Komura How to create a virtual world? To compose scenes We need to define objects

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Curves Introduction Polynomial curves Bézier curves Drawing Bézier curves Piecewise curves Modeling Creating 3D objects How to construct

More information

Algebra 2 Honors Curriculum Pacing Guide

Algebra 2 Honors Curriculum Pacing Guide SOUTH CAROLINA ACADEMIC STANDARDS FOR MATHEMATICS The mathematical processes provide the framework for teaching, learning, and assessing in all high school mathematics core courses. Instructional programs

More information

Polynomials and Rational Functions. Quadratic Equations and Inequalities. Remainder and Factor Theorems. Rational Root Theorem

Polynomials and Rational Functions. Quadratic Equations and Inequalities. Remainder and Factor Theorems. Rational Root Theorem Pre-Calculus Pre-AP Scope and Sequence - Year at a Glance Pre-Calculus Pre-AP - First Semester Pre-calculus with Limits; Larson/Hostetler Three Weeks 1 st 3 weeks 2 nd 3 weeks 3 rd 3 weeks 4 th 3 weeks

More information

Department of Structural, Faculty of Civil Engineering, Architecture and Urban Design, State University of Campinas, Brazil

Department of Structural, Faculty of Civil Engineering, Architecture and Urban Design, State University of Campinas, Brazil Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm A SIMPLIFIED FORMULATION FOR STRESS AND TRACTION BOUNDARY IN- TEGRAL EQUATIONS USING THE

More information

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ... Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form... where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function

More information

Lecture 1: Introduction

Lecture 1: Introduction CBMS Conference on Fast Direct Solvers Dartmouth College June June 7, 4 Lecture : Introduction Gunnar Martinsson The University of Colorado at Boulder Research support by: Many thanks to everyone who made

More information

3.1 Interpolation and the Lagrange Polynomial

3.1 Interpolation and the Lagrange Polynomial MATH 4073 Chapter 3 Interpolation and Polynomial Approximation Fall 2003 1 Consider a sample x x 0 x 1 x n y y 0 y 1 y n. Can we get a function out of discrete data above that gives a reasonable estimate

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

Numerical Integration (Quadrature) Another application for our interpolation tools!

Numerical Integration (Quadrature) Another application for our interpolation tools! Numerical Integration (Quadrature) Another application for our interpolation tools! Integration: Area under a curve Curve = data or function Integrating data Finite number of data points spacing specified

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Problem Set 5: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 102 / LeClair Summer II Ω 3 Ω 1 Ω 18 V 15 V

Problem Set 5: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 102 / LeClair Summer II Ω 3 Ω 1 Ω 18 V 15 V UNVERSTY OF ALABAMA Department of Physics and Astronomy PH 102 / LeClair Summer 2010 Problem Set 5: Solutions 1. Find the current in the 1 Ω resistor in the circuit below. 5 Ω 3 Ω + + - 18 V 15 V - 1 Ω

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational expressions Solve polynomial equations and equations involving rational expressions Review Chapter 1 and their

More information

L2-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 2015

L2-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 2015 L-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 015 Marty McFly: Wait a minute, Doc. Ah... Are you telling me you built a time machine... out of a DeLorean? Doc Brown: The way I see

More information

High-order quadratures for boundary integral equations: a tutorial

High-order quadratures for boundary integral equations: a tutorial High-order quadratures for boundary integral equations: a tutorial CBMS conference on fast direct solvers 6/23/14 Alex Barnett (Dartmouth College) Slides accompanying a partly chalk talk. Certain details,

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013 An Introduction to Numerical Continuation Methods with Application to some Problems from Physics Eusebius Doedel Cuzco, Peru, May 2013 Persistence of Solutions Newton s method for solving a nonlinear equation

More information

Integrated Math 3 Math 3 Course Description:

Integrated Math 3 Math 3 Course Description: Course Description: Integrated Math 3 Math 3 Course Description: Integrated strands include algebra, functions, geometry, trigonometry, statistics, probability and discrete math. Scope and sequence includes

More information

HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK

HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK HUDSONVILLE HIGH SCHOOL COURSE FRAMEWORK COURSE / SUBJECT A P C a l c u l u s ( B C ) KEY COURSE OBJECTIVES/ENDURING UNDERSTANDINGS OVERARCHING/ESSENTIAL SKILLS OR QUESTIONS Limits and Continuity Derivatives

More information

Lecture 20: Bezier Curves & Splines

Lecture 20: Bezier Curves & Splines Lecture 20: Bezier Curves & Splines December 6, 2016 12/6/16 CSU CS410 Bruce Draper & J. Ross Beveridge 1 Review: The Pen Metaphore Think of putting a pen to paper Pen position described by time t Seeing

More information

Coupling of the EM Solver with Mechanical and Thermal Shell Elements

Coupling of the EM Solver with Mechanical and Thermal Shell Elements 13 th International LS-DYNA Users Conference Session: Electromagnetic Coupling of the EM Solver with Mechanical and Thermal Shell Elements Pierre L Eplattenier Julie Anton Iñaki Çaldichoury Livermore Software

More information

Chapter 5: Limits, Continuity, and Differentiability

Chapter 5: Limits, Continuity, and Differentiability Chapter 5: Limits, Continuity, and Differentiability 63 Chapter 5 Overview: Limits, Continuity and Differentiability Derivatives and Integrals are the core practical aspects of Calculus. They were the

More information

An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces

An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces Helsing, Johan; Karlsson, Anders Published in: Journal of Computational Physics DOI: 10.1016/j.jcp.014.04.053

More information

4. Numerical Quadrature. Where analytical abilities end... continued

4. Numerical Quadrature. Where analytical abilities end... continued 4. Numerical Quadrature Where analytical abilities end... continued Where analytical abilities end... continued, November 30, 22 1 4.3. Extrapolation Increasing the Order Using Linear Combinations Once

More information

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines

Curve Fitting. 1 Interpolation. 2 Composite Fitting. 1.1 Fitting f(x) 1.2 Hermite interpolation. 2.1 Parabolic and Cubic Splines Curve Fitting Why do we want to curve fit? In general, we fit data points to produce a smooth representation of the system whose response generated the data points We do this for a variety of reasons 1

More information

Instructional Unit Conic Sections Pre Calculus #312 Unit Content Objective Performance Performance Task State Standards

Instructional Unit Conic Sections Pre Calculus #312 Unit Content Objective Performance Performance Task State Standards Instructional Unit Conic Sections Conic Sections The student will be -Define conic sections -Homework 2.8.11E -Ellipses able to create conic as conic slices and -Classwork -Hyperbolas sections based on

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

Algebra 2 CP Curriculum Pacing Guide

Algebra 2 CP Curriculum Pacing Guide SOUTH CAROLINA ACADEMIC STANDARDS FOR MATHEMATICS The mathematical processes provide the framework for teaching, learning, and assessing in all high school mathematics core courses. Instructional programs

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

Integer factorization, part 1: the Q sieve. part 2: detecting smoothness. D. J. Bernstein

Integer factorization, part 1: the Q sieve. part 2: detecting smoothness. D. J. Bernstein Integer factorization, part 1: the Q sieve Integer factorization, part 2: detecting smoothness D. J. Bernstein The Q sieve factors by combining enough -smooth congruences ( + ). Enough log. Plausible conjecture:

More information

Curriculum Guide Algebra 2 Advanced

Curriculum Guide Algebra 2 Advanced Unit 1: Equations and Inequalities Biblical Worldview Essential Questions: Is your life balanced as a believer? Are you a real Christian? 13 Lessons A2#1, A2#2 1. Use a number line to graph and order real

More information

Solution of Non Linear Singular Perturbation Equation. Using Hermite Collocation Method

Solution of Non Linear Singular Perturbation Equation. Using Hermite Collocation Method Applied Mathematical Sciences, Vol. 7, 03, no. 09, 5397-5408 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ams.03.37409 Solution of Non Linear Singular Perturbation Equation Using Hermite Collocation

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

Sect Addition and Subtraction of Polynomials

Sect Addition and Subtraction of Polynomials Sect 5.5 - Addition and Subtraction of Polynomials Concept #1 Introduction to Polynomials Before we begin discussing polynomials, let s review some items from chapter 1 with the following example: Complete

More information

Seminar on Vector Field Analysis on Surfaces

Seminar on Vector Field Analysis on Surfaces Seminar on Vector Field Analysis on Surfaces 236629 1 Last time Intro Cool stuff VFs on 2D Euclidean Domains Arrows on the plane Div, curl and all that Helmholtz decomposition 2 today Arrows on surfaces

More information

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS Victor S. Ryaben'kii Semyon V. Tsynkov Chapman &. Hall/CRC Taylor & Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2.

INTERPOLATION. and y i = cos x i, i = 0, 1, 2 This gives us the three points. Now find a quadratic polynomial. p(x) = a 0 + a 1 x + a 2 x 2. INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 = 0, x 1 = π/4, x

More information

Lecture for Week 6 (Secs ) Derivative Miscellany I

Lecture for Week 6 (Secs ) Derivative Miscellany I Lecture for Week 6 (Secs. 3.6 9) Derivative Miscellany I 1 Implicit differentiation We want to answer questions like this: 1. What is the derivative of tan 1 x? 2. What is dy dx if x 3 + y 3 + xy 2 + x

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

MATHEMATICAL OBJECTS in

MATHEMATICAL OBJECTS in MATHEMATICAL OBJECTS in Computational Tools in a Unified Object-Oriented Approach Yair Shapira @ CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis

More information

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20

Exam 2. Average: 85.6 Median: 87.0 Maximum: Minimum: 55.0 Standard Deviation: Numerical Methods Fall 2011 Lecture 20 Exam 2 Average: 85.6 Median: 87.0 Maximum: 100.0 Minimum: 55.0 Standard Deviation: 10.42 Fall 2011 1 Today s class Multiple Variable Linear Regression Polynomial Interpolation Lagrange Interpolation Newton

More information

Analysis of Functions

Analysis of Functions Volusia County Mathematics Department Curriculum Map Analysis of Functions Course Number 1201310 Mathematics Department Analysis of Functions Curriculum Map Volusia County Schools 1201310 Revision 8-01-12

More information

Team Problem D Static Force Problem

Team Problem D Static Force Problem Team Problem 20 3-D Static Force Problem 1. General description The model is shown in Fig.1. The center pole and yoke are made of steel. The coil is excited by a dc current. The ampere-turns are 1000,

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Discrete Projection Methods for Integral Equations

Discrete Projection Methods for Integral Equations SUB Gttttingen 7 208 427 244 98 A 5141 Discrete Projection Methods for Integral Equations M.A. Golberg & C.S. Chen TM Computational Mechanics Publications Southampton UK and Boston USA Contents Sources

More information

Ex 12A The Inverse matrix

Ex 12A The Inverse matrix Chapter 12: Matrices II TOPIC The Inverse Matrix TEXT: Essential Further Mathematics DATE SET PAGE(S) WORK 421 Exercise 12A: Q1 4 Applying the Inverse Matrix: Solving Simultaneous Equations 428 Exercise

More information

Higher-dimensional Black Holes. Roberto Emparan ICREA & U. Barcelona

Higher-dimensional Black Holes. Roberto Emparan ICREA & U. Barcelona Higher-dimensional Black Holes Roberto Emparan ICREA & U. Barcelona Motivation: GR as a tool Most basic set up: vacuum GR R µν =0 only one parameter for tuning: D Motivation: GR as a tool Most basic set

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1 Discovering the derivative at x = a: Slopes of secants and tangents to a curve 1 1. Instantaneous rate of change versus average rate of change Equation of

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

Solving Boundary Value Problems (with Gaussians)

Solving Boundary Value Problems (with Gaussians) What is a boundary value problem? Solving Boundary Value Problems (with Gaussians) Definition A differential equation with constraints on the boundary Michael McCourt Division Argonne National Laboratory

More information

Powers, Roots and Radicals. (11) Page #23 47 Column, #51, 54, #57 73 Column, #77, 80

Powers, Roots and Radicals. (11) Page #23 47 Column, #51, 54, #57 73 Column, #77, 80 Algebra 2/Trig Unit Notes Packet Name: Period: # Powers, Roots and Radicals () Homework Packet (2) Homework Packet () Homework Packet () Page 277 # 0 () Page 277 278 #7 6 Odd (6) Page 277 278 #8 60 Even

More information

Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.2 Solving Quadratic Equations

Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.2 Solving Quadratic Equations Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.1.1 Solve Simple Equations Involving Absolute Value 0.2 Solving Quadratic Equations 0.2.1 Use the

More information

Computing Periodic Orbits and their Bifurcations with Automatic Differentiation

Computing Periodic Orbits and their Bifurcations with Automatic Differentiation Computing Periodic Orbits and their Bifurcations with Automatic Differentiation John Guckenheimer and Brian Meloon Mathematics Department, Ithaca, NY 14853 September 29, 1999 1 Introduction This paper

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information