Pattern Classification

Size: px
Start display at page:

Download "Pattern Classification"

Transcription

1 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher

2 Chapter 2 (Part 1): Bayesian Decision Theory (Sections ) Introduction Bayesian Decision Theory Continuous Features

3 2 Introduction The sea bass/salmon example State of nature, prior State of nature is a random variable The catch of salmon and sea bass is equiprobable P(ω 1 ) = P(ω 2 ) (uniform priors) P(ω 1 ) + P( ω 2 ) = 1 (exclusivity and exhaustivity)

4 3 Decision rule with only the prior information Decide ω 1 if P(ω 1 ) > P(ω 2 ) otherwise decide ω 2 PROBLEM!!! If P(ω 1 ) > > P(ω 2 ) correct most of the time If P(ω 1 ) = P(ω 2 ) 50% of being correct Probability of error?

5 4 Use of the class conditional information. Suppose x is the observed lightness. P(x ω 1 ) and P(x ω 2 ) describe the difference in lightness between populations of sea and salmon

6 5 Likelihood

7 6 Posterior, likelihood, evidence Bayes Formula P(ω j x) = P(x ω j ). P (ω j ) / P(x) Where in case of two categories P( x ) = j = 2 j= 1 P( x ω ω j )P( j ) Posterior = (Likelihood. Prior) / Evidence

8 7

9 8 Decision given the posterior probabilities X is an observation for which: if P(ω 1 x) > P(ω 2 x) True state of nature = ω 1 if P(ω 1 x) < P(ω 2 x) True state of nature = ω 2 Therefore: whenever we observe a particular x, the probability of error is : P(error x) = P(ω 1 x) if we decide ω 2 P(error x) = P(ω 2 x) if we decide ω 1

10 9 Minimizing the probability of error Bayes Decision (Minimize the probability of error) Decide ω 1 if P(ω 1 x) > P(ω 2 x); otherwise decide ω 2 Therefore: P(error x) = min [P(ω 1 x), P(ω 2 x)]

11 Bayesian Decision Theory Continuous Features 10 Generalization of the preceding ideas Use of more than one feature Use more than two states of nature Allowing actions and not only decide on the state of nature Introduce a loss of function which is more general than the probability of error

12 11 Allowing actions other than classification primarily allows the possibility of rejection Refusing to make a decision in close or bad cases! The loss function states how costly each action taken is

13 12 Let {ω 1, ω 2,, ω c } be the set of c states of nature (or categories ) Let {α 1, α 2,, α a } be the set of possible actions Let λ(α i ω j ) be the loss incurred for taking action α i when the state of nature is ω j

14 Overall risk R = Sum of all R(α i x) for i = 1,,a 13 Conditional risk Minimizing R Minimizing R(α i x) for i = 1,, a R( α j = c = i x ) λ( α i ω j )P( ω j x ) j= 1 for i = 1,,a

15 14 Select the action α i for which R(α i x) is minimum R is minimum and R in this case is called the Bayes risk = Best performance that can be achieved! Bayes Decision Rule Minimize the overall risk!!!

16 15 Two-category classification α 1 : deciding ω 1 α 2 : deciding ω 2 λ ij = λ(α i ω j ) loss incurred for deciding ω i when the true state of nature is ω j Conditional risk: R(α 1 x) = λ 11 P(ω 1 x) + λ 12 P(ω 2 x) R(α 2 x) = λ 21 P(ω 1 x) + λ 22 P(ω 2 x)

17 16 Our rule is the following: if R(α 1 x) < R(α 2 x) action α 1 : decide ω 1 is taken This results in the equivalent rule : decide ω 1 if: (λ 21 - λ 11 ) P(x ω 1 ) P(ω 1 ) > (λ 12 - λ 22 ) P(x ω 2 ) P(ω 2 ) and decide ω 2 otherwise

18 17 Likelihood ratio: The preceding rule is equivalent to the following rule: P( x ω ) λ 1 12 λ P( ω 22 2 if >. P( x ω ) λ λ P( ω 2 P ) ) Then take action α 1 (decide ω 1 ) Otherwise take action α 2 (decide ω 2 )

19 Optimal decision property 18 If the likelihood ratio exceeds a threshold value independent of the input pattern x, we can take optimal actions

20 19 Minimax Criterion

21 Exercise 20 Select the optimal decision where: Ω= {ω 1, ω 2 } P(x ω 1 ) P(x ω 2 ) N(1.5, 0.2) N(2, 0.5) (Normal distribution) P(ω 1 ) = 2/3 P(ω 2 ) = 1/3 λ =

22 Soln. 21 P(x ω 1 ) P(x ω 2 ) P(x ω 1 ) / P(x ω 2 ) N(2, 0.5) N(1.5, 0.2) P(ω 1 ) = 2/3 P(ω 2 ) = 1/3 λ =

Error Rates. Error vs Threshold. ROC Curve. Biometrics: A Pattern Recognition System. Pattern classification. Biometrics CSE 190 Lecture 3

Error Rates. Error vs Threshold. ROC Curve. Biometrics: A Pattern Recognition System. Pattern classification. Biometrics CSE 190 Lecture 3 Biometrics: A Pattern Recognition System Yes/No Pattern classification Biometrics CSE 190 Lecture 3 Authentication False accept rate (FAR): Proportion of imposters accepted False reject rate (FRR): Proportion

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

Bayesian Decision Theory Lecture 2

Bayesian Decision Theory Lecture 2 Bayesian Decision Theory Lecture 2 Jason Corso SUNY at Buffalo 14 January 2009 J. Corso (SUNY at Buffalo) Bayesian Decision Theory Lecture 2 14 January 2009 1 / 58 Overview and Plan Covering Chapter 2

More information

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Bayesian decision theory 8001652 Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Jussi Tohka jussi.tohka@tut.fi Institute of Signal Processing Tampere University of Technology

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p( ω i ). ω.3.. 9 3 FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value given the pattern is in category ω i.if represents

More information

Minimum Error-Rate Discriminant

Minimum Error-Rate Discriminant Discriminants Minimum Error-Rate Discriminant In the case of zero-one loss function, the Bayes Discriminant can be further simplified: g i (x) =P (ω i x). (29) J. Corso (SUNY at Buffalo) Bayesian Decision

More information

Part 2 Elements of Bayesian Decision Theory

Part 2 Elements of Bayesian Decision Theory Part 2 Elements of Bayesian Decision Theory Machine Learning, Part 2, March 2017 Fabio Roli 1 Introduction ØStatistical pattern classification is grounded into Bayesian decision theory, therefore, knowing

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p(x ω i ).4 ω.3.. 9 3 4 5 x FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Contents 2 Bayesian decision theory

Contents 2 Bayesian decision theory Contents Bayesian decision theory 3. Introduction... 3. Bayesian Decision Theory Continuous Features... 7.. Two-Category Classification... 8.3 Minimum-Error-Rate Classification... 9.3. *Minimax Criterion....3.

More information

44 CHAPTER 2. BAYESIAN DECISION THEORY

44 CHAPTER 2. BAYESIAN DECISION THEORY 44 CHAPTER 2. BAYESIAN DECISION THEORY Problems Section 2.1 1. In the two-category case, under the Bayes decision rule the conditional error is given by Eq. 7. Even if the posterior densities are continuous,

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3 CS434a/541a: attern Recognition rof. Olga Veksler Lecture 3 1 Announcements Link to error data in the book Reading assignment Assignment 1 handed out, due Oct. 4 lease send me an email with your name and

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 6 May 18, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 Review Distance-based Classification

More information

Nearest Neighbor Pattern Classification

Nearest Neighbor Pattern Classification Nearest Neighbor Pattern Classification T. M. Cover and P. E. Hart May 15, 2018 1 The Intro The nearest neighbor algorithm/rule (NN) is the simplest nonparametric decisions procedure, that assigns to unclassified

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Minimum Error Rate Classification

Minimum Error Rate Classification Minimum Error Rate Classification Dr. K.Vijayarekha Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur-613 401 Table of Contents 1.Minimum Error Rate Classification...

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density 0 Minimum-Error-Rate Classification Actions are decisions on classes

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes)

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes) CSE555: Introduction to Pattern Recognition Midterm Exam Solution (00 points, Closed book/notes) There are 5 questions in this exam. The last page is the Appendix that contains some useful formulas.. (5pts)

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 15 Computing Many slides adapted from B. Schiele Machine Learning Lecture 2 Probability Density Estimation 16.04.2015 Bastian Leibe RWTH Aachen

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI Bayes Classifiers CAP5610 Machine Learning Instructor: Guo-Jun QI Recap: Joint distributions Joint distribution over Input vector X = (X 1, X 2 ) X 1 =B or B (drinking beer or not) X 2 = H or H (headache

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 6 Computing Announcements Machine Learning Lecture 2 Course webpage http://www.vision.rwth-aachen.de/teaching/ Slides will be made available on

More information

Chapter 2 Bayesian Decision Theory. Pattern Recognition Soochow, Fall Semester 1

Chapter 2 Bayesian Decision Theory. Pattern Recognition Soochow, Fall Semester 1 Chapter 2 Bayesian Decision Theory Pattern Recognition Soochow, Fall Semester 1 Decision Theory Decision Make choice under uncertainty Pattern Recognition Pattern Category Given a test sample, its category

More information

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda,, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Expect Values and Probability Density Functions

Expect Values and Probability Density Functions Intelligent Systems: Reasoning and Recognition James L. Crowley ESIAG / osig Second Semester 00/0 Lesson 5 8 april 0 Expect Values and Probability Density Functions otation... Bayesian Classification (Reminder...3

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Bayesian Learning. Bayesian Learning Criteria

Bayesian Learning. Bayesian Learning Criteria Bayesian Learning In Bayesian learning, we are interested in the probability of a hypothesis h given the dataset D. By Bayes theorem: P (h D) = P (D h)p (h) P (D) Other useful formulas to remember are:

More information

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart 1 Motivation and Problem In Lecture 1 we briefly saw how histograms

More information

What does Bayes theorem give us? Lets revisit the ball in the box example.

What does Bayes theorem give us? Lets revisit the ball in the box example. ECE 6430 Pattern Recognition and Analysis Fall 2011 Lecture Notes - 2 What does Bayes theorem give us? Lets revisit the ball in the box example. Figure 1: Boxes with colored balls Last class we answered

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Example - basketball players and jockeys. We will keep practical applicability in mind:

Example - basketball players and jockeys. We will keep practical applicability in mind: Sonka: Pattern Recognition Class 1 INTRODUCTION Pattern Recognition (PR) Statistical PR Syntactic PR Fuzzy logic PR Neural PR Example - basketball players and jockeys We will keep practical applicability

More information

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13 Computer Vision Pa0ern Recogni4on Concepts Part I Luis F. Teixeira MAP- i 2012/13 What is it? Pa0ern Recogni4on Many defini4ons in the literature The assignment of a physical object or event to one of

More information

Pattern Classification

Pattern Classification Pattern Classification Introduction Parametric classifiers Semi-parametric classifiers Dimensionality reduction Significance testing 6345 Automatic Speech Recognition Semi-Parametric Classifiers 1 Semi-Parametric

More information

Dimension Reduction and Component Analysis

Dimension Reduction and Component Analysis Dimension Reduction and Component Analysis Jason Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Dimension Reduction and Component Analysis 1 / 103 Plan We learned about estimating parametric models and

More information

Dimension Reduction and Component Analysis Lecture 4

Dimension Reduction and Component Analysis Lecture 4 Dimension Reduction and Component Analysis Lecture 4 Jason Corso SUNY at Buffalo 28 January 2009 J. Corso (SUNY at Buffalo) Lecture 4 28 January 2009 1 / 103 Plan In lecture 3, we learned about estimating

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003 Statistical Approaches to Learning and Discovery Week 4: Decision Theory and Risk Minimization February 3, 2003 Recall From Last Time Bayesian expected loss is ρ(π, a) = E π [L(θ, a)] = L(θ, a) df π (θ)

More information

Bayes Rule for Minimizing Risk

Bayes Rule for Minimizing Risk Bayes Rule for Minimizing Risk Dennis Lee April 1, 014 Introduction In class we discussed Bayes rule for minimizing the probability of error. Our goal is to generalize this rule to minimize risk instead

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Bayesian Reasoning and Recognition

Bayesian Reasoning and Recognition Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIAG 2 / osig 1 Second Semester 2013/2014 Lesson 12 28 arch 2014 Bayesian Reasoning and Recognition Notation...2 Pattern Recognition...3

More information

Machine detection of emotions: Feature Selection

Machine detection of emotions: Feature Selection Machine detection of emotions: Feature Selection Final Degree Dissertation Degree in Mathematics Leire Santos Moreno Supervisor: Raquel Justo Blanco María Inés Torres Barañano Leioa, 31 August 2016 Contents

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Probability Models for Bayesian Recognition

Probability Models for Bayesian Recognition Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIAG / osig Second Semester 06/07 Lesson 9 0 arch 07 Probability odels for Bayesian Recognition Notation... Supervised Learning for Bayesian

More information

MIT Spring 2016

MIT Spring 2016 Decision Theoretic Framework MIT 18.655 Dr. Kempthorne Spring 2016 1 Outline Decision Theoretic Framework 1 Decision Theoretic Framework 2 Decision Problems of Statistical Inference Estimation: estimating

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Naive Bayesian Rough Sets

Naive Bayesian Rough Sets Naive Bayesian Rough Sets Yiyu Yao and Bing Zhou Department of Computer Science, University of Regina Regina, Saskatchewan, Canada S4S 0A2 {yyao,zhou200b}@cs.uregina.ca Abstract. A naive Bayesian classifier

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning Topics Bayesian Learning Sattiraju Prabhakar CS898O: ML Wichita State University Objectives for Bayesian Learning Bayes Theorem and MAP Bayes Optimal Classifier Naïve Bayes Classifier An Example Classifying

More information

Classifier Performance. Assessment and Improvement

Classifier Performance. Assessment and Improvement Classifier Performance Assessment and Improvement Error Rates Define the Error Rate function Q( ω ˆ,ω) = δ( ω ˆ ω) = 1 if ω ˆ ω = 0 0 otherwise When training a classifier, the Apparent error rate (or Test

More information

Detection and Estimation Chapter 1. Hypothesis Testing

Detection and Estimation Chapter 1. Hypothesis Testing Detection and Estimation Chapter 1. Hypothesis Testing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2015 1/20 Syllabus Homework:

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 16

More information

Machine Learning and Deep Learning! Vincent Lepetit!

Machine Learning and Deep Learning! Vincent Lepetit! Machine Learning and Deep Learning!! Vincent Lepetit! 1! What is Machine Learning?! 2! Hand-Written Digit Recognition! 2 9 3! Hand-Written Digit Recognition! Formalization! 0 1 x = @ A Images are 28x28

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2)

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2) This is my preperation notes for teaching in sections during the winter 2018 quarter for course CSE 446. Useful for myself to review the concepts as well. More Linear Algebra Definition 1.1 (Dot Product).

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

Linear Discrimination Functions

Linear Discrimination Functions Laurea Magistrale in Informatica Nicola Fanizzi Dipartimento di Informatica Università degli Studi di Bari November 4, 2009 Outline Linear models Gradient descent Perceptron Minimum square error approach

More information

Probability and (Bayesian) Data Analysis

Probability and (Bayesian) Data Analysis Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ Where to get everything To get all of the material (slides, code, exercises): git clone --recursive https://github.com/eggplantbren/madrid

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 1

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 1 CS434a/541a: Pattern Recognition Prof. Olga Veksler Lecture 1 1 Outline of the lecture Syllabus Introduction to Pattern Recognition Review of Probability/Statistics 2 Syllabus Prerequisite Analysis of

More information

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

From Bayes Theorem to Pattern Recognition via Bayes Rule

From Bayes Theorem to Pattern Recognition via Bayes Rule From Bayes Theorem to Pattern Recognition via Bayes Rule Slecture by Varun Vasudevan (partially based on Prof. Mireille Boutin s ECE 662 lecture) February 12, 2014 What will you learn from this slecture?

More information

STAT 830 Decision Theory and Bayesian Methods

STAT 830 Decision Theory and Bayesian Methods STAT 830 Decision Theory and Bayesian Methods Example: Decide between 4 modes of transportation to work: B = Ride my bike. C = Take the car. T = Use public transit. H = Stay home. Costs depend on weather:

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

ECO421: Communication

ECO421: Communication ECO421: Communication Marcin P ski February 9, 2018 Plan Introduction Asymmetric information means some players know more than the others. In real life, information can be transmitted A simple model of

More information

Necessary Corrections in Intransitive Likelihood-Ratio Classifiers

Necessary Corrections in Intransitive Likelihood-Ratio Classifiers Necessary Corrections in Intransitive Likelihood-Ratio Classifiers Gang Ji and Jeff Bilmes SSLI-Lab, Department of Electrical Engineering University of Washington Seattle, WA 9895-500 {gang,bilmes}@ee.washington.edu

More information

Bayesian Decision Theory Tutorial Visual Recognition Tutorial 1

Bayesian Decision Theory Tutorial Visual Recognition Tutorial 1 Bayesian Decision Theory Tutorial C4 36607 Visual Recognition Tutorial Tutorial the outline Bayesian decision making with discrete probabilities an eample Looking at continuous densities Bayesian decision

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Advanced statistical methods for data analysis Lecture 1

Advanced statistical methods for data analysis Lecture 1 Advanced statistical methods for data analysis Lecture 1 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Pattern Recognition and Machine Learning Course: Introduction. Bayesian Decision Theory.

Pattern Recognition and Machine Learning Course: Introduction. Bayesian Decision Theory. Pattern Recognition and Machine Learning Course: Introduction. Bayesian Decision Theory. lecturer: authors: Jiří Matas, matas@cmp.felk.cvut.cz Václav Hlaváč, Jiří Matas, Ondřej Drbohlav Czech Technical

More information

Learning Theory, Overfi1ng, Bias Variance Decomposi9on

Learning Theory, Overfi1ng, Bias Variance Decomposi9on Learning Theory, Overfi1ng, Bias Variance Decomposi9on Machine Learning 10-601B Seyoung Kim Many of these slides are derived from Tom Mitchell, Ziv- 1 Bar Joseph. Thanks! Any(!) learner that outputs a

More information

Research Article Decision Analysis via Granulation Based on General Binary Relation

Research Article Decision Analysis via Granulation Based on General Binary Relation International Mathematics and Mathematical Sciences Volume 2007, Article ID 12714, 13 pages doi:10.1155/2007/12714 esearch Article Decision Analysis via Granulation Based on General Binary elation M. M.

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information