KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA

Size: px
Start display at page:

Download "KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA"

Transcription

1 SECTION # SERIAL # ID# NAME: KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA STAT 39: PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS Final Examination for Semester 083 on Wednesday, nd September, between 0900 pm and 30 pm at Exhibition Center Please circle the name of your instructor; Write section number, serial number, ID number (with all zeroes) and name (in Capital or block or upper case letters) on the cover page and on any addendum. Instructor Section Time of lecture Esam AlSawi 3 Anwar Joarder / am to 00 am 030 am to 30 am Put the choices of Question 4 in the following table: A B I I A Q S/M Question Marks Marks Obtained 9 Strengths/Weakness of the Student Total 80

2 SECTION # SERIAL # ID# NAME:. (8+7+4=9 Marks) A production filling operation has a historical standard deviation of 6 ounces. When in perfect adjustment, the mean filling weight for the production process is 50 ounces. A quality control inspector periodically selects at random 36 containers and uses the sample mean filling weight to see if the process is in perfect adjustment a. [++++= 8 Marks]Test the hypothesis at the 5% level of significance if the sample mean filling weight is 48.6 ounces. Write clearly the hypotheses, the test statistic, Rejection and Acceptance Regions for the null hypothesis, the sample value of the test statistic, the decision. Population: Let X be the filling weight and X N ( µσ, ) = N ( µ,6 ). Objective: Testing at 5% level of significance H = 50 0 against H 50. Method: Since σ = 6, an exact z -test would be appropriate. The test statistics is Z X µ =. σ / n Rejection Region for the null hypothesis: { z : z <.96, or, z >.96}. x µ Decision: Since the sample produces z = = =.4 which is not σ / n 6 / 36 among the largest (or smallest).5% of the possible z -values, hence we accept the null hypothesis. b. [3++ =7 Marks] Derive the p-value of the test and make a decide on part (a). Also report two values of significance level for which one rejects the null hypothesis and two values of significance level for which one accepts the null hypothesis. The probability value is given by p-value = P( Z <.4) = (0.0808) = Hence one accepts the null hypothesis at α < 0.66, say at 0.0, 0.05, 0.04, 0.03 etc; one rejects if α 0.66 (unsual)! c. [3+ = 4 Marks] Develop a 95% confidence interval and use it to test the hypothesis in part (a). 95% CI for the expected filling weight is given by x z n, 0.05 σ / = / 36 = or, < µ < H = 50 0 is inside the above CI, we accept H = 50 0.

3 SECTION # SERIAL # ID# NAME: 3. [++++= 8 Marks] Two suppliers manufacture a plastic gear used in a laser printer. The impact strength of these gears measured in foot-pounds is an important characteristic. A random sample of n = 0 gears from the first supplier results in x = 90 and s =, while another random sample of n = 6 gears from the second supplier results in x = 3 and s =. Test at % level of significance the claim that the mean impact strength of gears from Supplier is at least 5 foot-pounds higher than that of Supplier. Write clearly the hypotheses, the test statistic, Rejection and Acceptance Regions for the null hypothesis, the sample value of the test statistic, the decision. Population: Let X be the impact strengths of the gears from the first supplier and X be the impact strengths of the gears from the second supplier X i N ( µ i, σ ), i =,. Objective: Testing at 5% level of significance H 0 µ 5, against H µ < 5 i.e., H 0 µ 5 against H µ > 5. Method: Since σ is unknown, an exact t -test would be appropriate. The test statistics is T ( X X ) ( µ µ ) =. ( S / n ) + ( S / n ) Rejection Region for the null hypothesis: { t : t >.49}. 9( ) + 5( ) Decision: Since the sample produces s = = 356.5, ( x x ) ( µ µ ) (90 3) ( 5) t = = = which is not among the ( s / n) + ( s / n) ( s / + 0 ( s )/ ) 5 largest % of the possible z -values, hence we accept the null hypothesis.

4 SECTION # SERIAL # ID# NAME: 4 3. [5 Marks] An engineer wanted to analyze the relationship between the speed of a car (x) and its gas mileage (y). As an experiment a car is operated at several different speeds and for each speed the gas mileage is measured. These data are shown below. Speed Gas Mileage a. [6++=8 Marks] Derive an equation of the least squares regression line for the above sample. Draw the regression line. Check if the line passes through the average point ( x, y ). The sample total and sum of squares for speed ( x ) are given by 350 and 900 respectively so that centered sum of squares is s xx = 600. The sample total and sum of squares for gas mileage ( y ) are given by 3 and 7833 respectively so that so that centered sum of squares s yy = 0. The sum of products between speed and gas mileage is 0985 so that the centered sum of products is s xy = 565. Hence an estimate of the slope is ˆ 565 β = = , and that of slope is ˆ β 0 = Hence the regression line is 600 ˆ( µ x) = x. The average point (50, 33) passes through the regression line.

5 SECTION # SERIAL # ID# NAME: 5 b. [+ = Marks] Estimate the expected gas mileage for a car having speed 5 mph, by using the regression line. Explain why we can or cannot estimate the expected gas mileage for a car having speed 5 mph by y only. ˆ(5) µ = (5) = The sample mean y = 33 will underestimate the expected gas mileage for a car having speed 5 mph c. [ Mark] Estimate the error in estimating the expected gas mileage for a car having speed 5 mph. y ˆ(5) µ = =.885. If ˆ(5) µ is estimated by y = 33, the error will be = 7. d. [ Mark] Estimate the expected gas mileage of a car traveling at 55 mph by a point. ˆ(55) µ = (55) = e. [ Marks] Estimate the variance of the gas mileages. Since CSS = 0, SSR = ˆ βsxy = , SSE = , the variance σ is estimated by MSE SSE /( n ) = =. f. [++++ = 8 Marks] Test the hypothesis at 5% level of significance that the higher the speed the lesser the gas mileage. Write clearly the hypotheses, the test statistic, Rejection and Acceptance Regions for the null hypothesis, the sample value of the test statistic, the decision. Population: Let for a given speed x of a car, the gas mileage Y ~ N ( β0 + βx, σ ) Objective: Testing at 5% level of significance H0 : β 0 against H: β < 0. Method: Since σ is unknown, an exact t -test would be appropriate. The test statistics is T ˆ β 0 =. MSE / S xx Rejection Region for the null hypothesis: { t : t <.05}. Decision: Since the sample produces, ˆ β t = = = mse / s xx /600 which is among the smallest 5% of the possible t -values, hence we reject the null hypothesis.

6 SECTION # SERIAL # ID# NAME: 6 g. [3 Marks] Predict by an interval the gas mileage of a car traveling at 55 mph by using 95% confidence. ( x x) ˆ( µ x ) tα / + + MSE n sxx (55 50) = = MSE Hence the gas mileage is predicted to be in between and Choose the best choice (not the partially true one) in Question 4 and record on to the first page. Note that NOTPC means None Of The Previous Choices. Each question 4.x carries 4 marks. 4. The number of arrivals at a local gas station between 3:00 and 5:00 P.M. has a Poisson distribution with a mean of. Find the probability that the number of arrivals between 4:00 and 5:00 P.M. is exactly two. C A. 6 8e I R. 7e O. NOTPC ( t ) x λ λ t PX ( = x) = e, x! ( 0.5) (0.5) 6 PX ( = ) = e = 8e ! 4. The time it takes a technician to fix a computer problem is exponentially distributed with a mean of 5 minutes. What is the probability that it will take a technician between 0 to 5 minutes to fix a computer problem? D. e /3 /(5) U B. /3 ( e ) / e A I. NOTPC P(0 < X< 5) = PX ( > 0) PX ( > 5) = e e = e e = /3 ( e ) / e /5 5/5 /3 4.3 In order to ensure efficient usage of a server, it is necessary to estimate the mean number of concurrent users. According to records, the number of concurrent users follow a normal distribution with a mean of 75 and standard deviation 6. The number of users are checked at 50 different times. Solve the equation PX ( < k) = 0.9 for k. S Y..8 R..8 I A. NOTPC By standardizing, the given equation can be written as

7 SECTION # SERIAL # ID# NAME: 7 X 75 k 75 P < = / 50 6 / 50 k 75 which yields =.8 which yields 6 / 50 k = µ + z σ n = = ( 0.88) / / The power of supercomputers derives from the idea of parallel processing. Engineers at Cray Research are interested in determining whether one of two parallel processing designs produces faster average computing time, or whether the two designs are equally fast. The following are the results, in seconds, of independent random computation times using the two designs. Design Design Write the hypothesis to check the evidence that one parallel processing design allows for faster average computation than the other? I. H a < µ, or, µ > µ, AH. a µ, The symbols have usual meaning. I. H a < µ, or, µ > µ. < L H a µ µ. : >, Y. NOTPC 4.5 A random sample of 50 suspension helmets used by motorcycle riders and automobile race-car drivers was subjected to an impact test, and 8 of these helmets some damage was observed. Using the point estimate of p obtained from the preliminary sample of 50 helmets, how many helmets must be tested to be 95% confident that the error in estimating the true value of p is less than 0.0? S. 40 P. 69 A. 3 I. 559 N. NOTPC z α /.96 n pq ˆˆ = = (0.36)(0.64) =.766 e There are 9 devices in a box. Five of them are sound and four are faulty. One takes four devices in succession at random without replacement. What is the probability that the first two are faulty but the last two are sound? Q. 5/63 A. 30/63 T. 5/63 I. 0/63 F. NOTPC P( FFS 3S4) = = =

8 SECTION # SERIAL # ID# NAME: There are N devices in a box. A total of K of them are faulty and N K are sound. One takes three devices in succession at random without replacement. The probability that first two are faulty but the third one is not faulty is / 60. What is the probability that in a sample of 3 devices, two are faulty and one is sound? S. 3/5 M. 6/0 I. 9/0 L. 6/56 E. NOTPC 3 PX ( = ) = ( / 60) = 3/ 5. Alternatively, K + 0 ( K ) ( N K) P( FFS 3) =, K + ( N K) ( K ) + ( N K) ( K + ( N ) K) By the given condition, we have preparing the following table: K( K )( N K) = N ( N )( N ) 60 which can be solved by K N K N P( FFS 3) approx approx Notice that there are two solutions K = 3, N K =, or, K = 4, N K =. Hence, we have K N K N PX= ( ) = = 3 3 5

ST Introduction to Statistics for Engineers. Solutions to Sample Midterm for 2002

ST Introduction to Statistics for Engineers. Solutions to Sample Midterm for 2002 ST 314 - Introduction to Statistics for Engineers Solutions to Sample Midterm for 2002 Problem 1. (15 points) The weight of a human joint replacement part is normally distributed with a mean of 2.00 ounces

More information

STAT 212 Business Statistics II 1

STAT 212 Business Statistics II 1 STAT 1 Business Statistics II 1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA STAT 1: BUSINESS STATISTICS II Semester 091 Final Exam Thursday Feb

More information

CHAPTER EIGHT Linear Regression

CHAPTER EIGHT Linear Regression 7 CHAPTER EIGHT Linear Regression 8. Scatter Diagram Example 8. A chemical engineer is investigating the effect of process operating temperature ( x ) on product yield ( y ). The study results in the following

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or.

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or. Chapter Simple Linear Regression : comparing means across groups : presenting relationships among numeric variables. Probabilistic Model : The model hypothesizes an relationship between the variables.

More information

SMAM 314 Exam 3d Name

SMAM 314 Exam 3d Name SMAM 314 Exam 3d Name 1. Mark the following statements True T or False F. (6 points -2 each) T A. A process is out of control if at a particular point in time the reading is more than 3 standard deviations

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X 1.04) =.8508. For z < 0 subtract the value from

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model. Statistical Methods in Business Lecture 5. Linear Regression We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

More information

EXAM 3 Math 1342 Elementary Statistics 6-7

EXAM 3 Math 1342 Elementary Statistics 6-7 EXAM 3 Math 1342 Elementary Statistics 6-7 Name Date ********************************************************************************************************************************************** MULTIPLE

More information

Stats Review Chapter 14. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 14. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter 14 Revised 8/16 Note: This review is meant to highlight basic concepts from the course. It does not cover all concepts presented by your instructor. Refer back to your notes, unit

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Ecn Analysis of Economic Data University of California - Davis February 23, 2010 Instructor: John Parman. Midterm 2. Name: ID Number: Section:

Ecn Analysis of Economic Data University of California - Davis February 23, 2010 Instructor: John Parman. Midterm 2. Name: ID Number: Section: Ecn 102 - Analysis of Economic Data University of California - Davis February 23, 2010 Instructor: John Parman Midterm 2 You have until 10:20am to complete this exam. Please remember to put your name,

More information

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS

12.10 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS CDR4_BERE601_11_SE_C1QXD 1//08 1:0 PM Page 1 110: (Student CD-ROM Topic) Chi-Square Goodness-of-Fit Tests CD1-1 110 (STUDENT CD-ROM TOPIC) CHI-SQUARE GOODNESS- OF-FIT TESTS In this section, χ goodness-of-fit

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information

Midterm 2 - Solutions

Midterm 2 - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis February 24, 2010 Instructor: John Parman Midterm 2 - Solutions You have until 10:20am to complete this exam. Please remember to put

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression AMS 315/576 Lecture Notes Chapter 11. Simple Linear Regression 11.1 Motivation A restaurant opening on a reservations-only basis would like to use the number of advance reservations x to predict the number

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007 LAST NAME: SOLUTIONS FIRST NAME: STUDENT NUMBER: ENROLLED IN: (circle one) STA 302 STA 1001 INSTRUCTIONS: Time: 90 minutes Aids allowed: calculator.

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Midterm 2 - Solutions

Midterm 2 - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis February 23, 2010 Instructor: John Parman Midterm 2 - Solutions You have until 10:20am to complete this exam. Please remember to put

More information

Tests about a population mean

Tests about a population mean October 2 nd, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

Final Exam - Solutions

Final Exam - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis March 17, 2010 Instructor: John Parman Final Exam - Solutions You have until 12:30pm to complete this exam. Please remember to put your

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

ORF 245 Fundamentals of Engineering Statistics. Final Exam

ORF 245 Fundamentals of Engineering Statistics. Final Exam Princeton University Department of Operations Research and Financial Engineering ORF 245 Fundamentals of Engineering Statistics Final Exam May 22, 2008 7:30pm-10:30pm PLEASE DO NOT TURN THIS PAGE AND START

More information

STAT 350 Final (new Material) Review Problems Key Spring 2016

STAT 350 Final (new Material) Review Problems Key Spring 2016 1. The editor of a statistics textbook would like to plan for the next edition. A key variable is the number of pages that will be in the final version. Text files are prepared by the authors using LaTeX,

More information

Solutions to Practice Test 2 Math 4753 Summer 2005

Solutions to Practice Test 2 Math 4753 Summer 2005 Solutions to Practice Test Math 4753 Summer 005 This test is worth 00 points. Questions 5 are worth 4 points each. Circle the letter of the correct answer. Each question in Question 6 9 is worth the same

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Chapter 7: Hypothesis Testing - Solutions

Chapter 7: Hypothesis Testing - Solutions Chapter 7: Hypothesis Testing - Solutions 7.1 Introduction to Hypothesis Testing The problem with applying the techniques learned in Chapter 5 is that typically, the population mean (µ) and standard deviation

More information

Math 2000 Practice Final Exam: Homework problems to review. Problem numbers

Math 2000 Practice Final Exam: Homework problems to review. Problem numbers Math 2000 Practice Final Exam: Homework problems to review Pages: Problem numbers 52 20 65 1 181 14 189 23, 30 245 56 256 13 280 4, 15 301 21 315 18 379 14 388 13 441 13 450 10 461 1 553 13, 16 561 13,

More information

Chapter 10. Correlation and Regression. McGraw-Hill, Bluman, 7th ed., Chapter 10 1

Chapter 10. Correlation and Regression. McGraw-Hill, Bluman, 7th ed., Chapter 10 1 Chapter 10 Correlation and Regression McGraw-Hill, Bluman, 7th ed., Chapter 10 1 Chapter 10 Overview Introduction 10-1 Scatter Plots and Correlation 10- Regression 10-3 Coefficient of Determination and

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

10-6 Confidence Intervals and Hypothesis Testing

10-6 Confidence Intervals and Hypothesis Testing 1. LUNCH A sample of 145 high school seniors was asked how many times they go out for lunch per week. The mean number of times was 2.4 with a standard deviation of 0.7. Use a 90% confidence level to calculate

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 17 Simple Linear Regression and Correlation 17.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

ECN221 Exam 1 VERSION B Fall 2017 (Modules 1-4), ASU-COX VERSION B

ECN221 Exam 1 VERSION B Fall 2017 (Modules 1-4), ASU-COX VERSION B ECN221 Exam 1 VERSION B Fall 2017 (Modules 1-4), ASU-COX VERSION B Choose the best answer. Do not write letters in the margin or communicate with other students in any way; if you do you will receive a

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

MAT 2377C FINAL EXAM PRACTICE

MAT 2377C FINAL EXAM PRACTICE Department of Mathematics and Statistics University of Ottawa MAT 2377C FINAL EXAM PRACTICE 10 December 2015 Professor: Rafal Kulik Time: 180 minutes Student Number: Family Name: First Name: This is a

More information

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression Chapter 14 Student Lecture Notes 14-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Multiple Regression QMIS 0 Dr. Mohammad Zainal Chapter Goals After completing

More information

Linear Regression. Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x).

Linear Regression. Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x). Linear Regression Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x). A dependent variable is a random variable whose variation

More information

Ch. 1: Data and Distributions

Ch. 1: Data and Distributions Ch. 1: Data and Distributions Populations vs. Samples How to graphically display data Histograms, dot plots, stem plots, etc Helps to show how samples are distributed Distributions of both continuous and

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept Interactions Lectures 1 & Regression Sometimes two variables appear related: > smoking and lung cancers > height and weight > years of education and income > engine size and gas mileage > GMAT scores and

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59)

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59) GOALS: 1. Understand that 2 approaches of hypothesis testing exist: classical or critical value, and p value. We will use the p value approach. 2. Understand the critical value for the classical approach

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Math 101: Elementary Statistics Tests of Hypothesis

Math 101: Elementary Statistics Tests of Hypothesis Tests of Hypothesis Department of Mathematics and Computer Science University of the Philippines Baguio November 15, 2018 Basic Concepts of Statistical Hypothesis Testing A statistical hypothesis is an

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

STAT 511. Lecture : Simple linear regression Devore: Section Prof. Michael Levine. December 3, Levine STAT 511

STAT 511. Lecture : Simple linear regression Devore: Section Prof. Michael Levine. December 3, Levine STAT 511 STAT 511 Lecture : Simple linear regression Devore: Section 12.1-12.4 Prof. Michael Levine December 3, 2018 A simple linear regression investigates the relationship between the two variables that is not

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

Final Exam - Solutions

Final Exam - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis March 19, 2010 Instructor: John Parman Final Exam - Solutions You have until 5:30pm to complete this exam. Please remember to put your

More information

Regression Analysis II

Regression Analysis II Regression Analysis II Measures of Goodness of fit Two measures of Goodness of fit Measure of the absolute fit of the sample points to the sample regression line Standard error of the estimate An index

More information

Semester 2, 2015/2016

Semester 2, 2015/2016 ECN 3202 APPLIED ECONOMETRICS 2. Simple linear regression B Mr. Sydney Armstrong Lecturer 1 The University of Guyana 1 Semester 2, 2015/2016 PREDICTION The true value of y when x takes some particular

More information

MAT 2377 Practice Exam

MAT 2377 Practice Exam MAT 2377 Practice Exam 1. Suppose that for a very large delivery of integrated circuits, each circuit has a probability of failure of 0.09. Find the probability that no more than 2 pieces fail in a random

More information

Ch 13 & 14 - Regression Analysis

Ch 13 & 14 - Regression Analysis Ch 3 & 4 - Regression Analysis Simple Regression Model I. Multiple Choice:. A simple regression is a regression model that contains a. only one independent variable b. only one dependent variable c. more

More information

AMCS243/CS243/EE243 Probability and Statistics. Fall Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A

AMCS243/CS243/EE243 Probability and Statistics. Fall Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A AMCS243/CS243/EE243 Probability and Statistics Fall 2013 Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A *********************************************************** ID: ***********************************************************

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Chi-Squared Tests. Semester 1. Chi-Squared Tests

Chi-Squared Tests. Semester 1. Chi-Squared Tests Semester 1 Goodness of Fit Up to now, we have tested hypotheses concerning the values of population parameters such as the population mean or proportion. We have not considered testing hypotheses about

More information

Multiple Regression Methods

Multiple Regression Methods Chapter 1: Multiple Regression Methods Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 1 The Multiple Linear Regression Model How to interpret

More information

Regression used to predict or estimate the value of one variable corresponding to a given value of another variable.

Regression used to predict or estimate the value of one variable corresponding to a given value of another variable. CHAPTER 9 Simple Linear Regression and Correlation Regression used to predict or estimate the value of one variable corresponding to a given value of another variable. X = independent variable. Y = dependent

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

Correlation & Simple Regression

Correlation & Simple Regression Chapter 11 Correlation & Simple Regression The previous chapter dealt with inference for two categorical variables. In this chapter, we would like to examine the relationship between two quantitative variables.

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Chapter 12: Inference about One Population

Chapter 12: Inference about One Population Chapter 1: Inference about One Population 1.1 Introduction In this chapter, we presented the statistical inference methods used when the problem objective is to describe a single population. Sections 1.

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

Chapter 13 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 13 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics Chapter 13 Student Lecture Notes 13-1 Department of Quantitative Methods & Information Sstems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analsis QMIS 0 Dr. Mohammad

More information

BNAD 276 Lecture 10 Simple Linear Regression Model

BNAD 276 Lecture 10 Simple Linear Regression Model 1 / 27 BNAD 276 Lecture 10 Simple Linear Regression Model Phuong Ho May 30, 2017 2 / 27 Outline 1 Introduction 2 3 / 27 Outline 1 Introduction 2 4 / 27 Simple Linear Regression Model Managerial decisions

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal yuppal@ysu.edu Sampling Distribution of b 1 Expected value of b 1 : Variance of b 1 : E(b 1 ) = 1 Var(b 1 ) = σ 2 /SS x Estimate of

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Experiment-I MODULE IX LECTURE - 38 EXERCISES Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Example (Completely randomized

More information

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions Chapter 9 Inferences from Two Samples 9. Inferences About Two Proportions 9.3 Inferences About Two s (Independent) 9.4 Inferences About Two s (Matched Pairs) 9.5 Comparing Variation in Two Samples Objective

More information

Econ 3790: Statistics Business and Economics. Instructor: Yogesh Uppal

Econ 3790: Statistics Business and Economics. Instructor: Yogesh Uppal Econ 3790: Statistics Business and Economics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 14 Covariance and Simple Correlation Coefficient Simple Linear Regression Covariance Covariance between

More information

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above King Abdul Aziz University Faculty of Sciences Statistics Department Final Exam STAT 0 First Term 49-430 A 40 Name No ID: Section: You have 40 questions in 9 pages. You have 90 minutes to solve the exam.

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Two-Sample Inference for Proportions and Inference for Linear Regression

Two-Sample Inference for Proportions and Inference for Linear Regression Two-Sample Inference for Proportions and Inference for Linear Regression Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 24, 2015 Kwonsang Lee STAT111 April 24, 2015 1 / 13 Announcement:

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

The Purpose of Hypothesis Testing

The Purpose of Hypothesis Testing Section 8 1A:! An Introduction to Hypothesis Testing The Purpose of Hypothesis Testing See s Candy states that a box of it s candy weighs 16 oz. They do not mean that every single box weights exactly 16

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

Exercise I.1 I.2 I.3 I.4 II.1 II.2 III.1 III.2 III.3 IV.1 Question (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Answer

Exercise I.1 I.2 I.3 I.4 II.1 II.2 III.1 III.2 III.3 IV.1 Question (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Answer Solutions to Exam in 02402 December 2012 Exercise I.1 I.2 I.3 I.4 II.1 II.2 III.1 III.2 III.3 IV.1 Question (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Answer 3 1 5 2 5 2 3 5 1 3 Exercise IV.2 IV.3 IV.4 V.1

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. 12er12 Chapte Bivariate i Regression (Part 1) Bivariate Regression Visual Displays Begin the analysis of bivariate data (i.e., two variables) with a scatter plot. A scatter plot - displays each observed

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING LECTURE 1 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING INTERVAL ESTIMATION Point estimation of : The inference is a guess of a single value as the value of. No accuracy associated with it. Interval estimation

More information

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered)

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered) Test 3 Practice Test A NOTE: Ignore Q10 (not covered) MA 180/418 Midterm Test 3, Version A Fall 2010 Student Name (PRINT):............................................. Student Signature:...................................................

More information

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure.

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure. STATGRAPHICS Rev. 9/13/213 Calibration Models Summary... 1 Data Input... 3 Analysis Summary... 5 Analysis Options... 7 Plot of Fitted Model... 9 Predicted Values... 1 Confidence Intervals... 11 Observed

More information

STAT Exam Jam Solutions. Contents

STAT Exam Jam Solutions. Contents s Contents 1 First Day 2 Question 1: PDFs, CDFs, and Finding E(X), V (X).......................... 2 Question 2: Bayesian Inference...................................... 3 Question 3: Binomial to Normal

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Inference in Normal Regression Model. Dr. Frank Wood

Inference in Normal Regression Model. Dr. Frank Wood Inference in Normal Regression Model Dr. Frank Wood Remember We know that the point estimator of b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 Last class we derived the sampling distribution of b 1, it being

More information