Core loss spectra (EELS, XAS)

Size: px
Start display at page:

Download "Core loss spectra (EELS, XAS)"

Transcription

1 Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIENk 013 Penn State

2 1. Concepts

3 WIENk calculates ELNES / XANES EELS : Electron Energy Loss Spectroscopy XAS: X-ray Absorption Spectroscopy Ionization edge ELNES EXELFS Energy Loss 3

4 the excitation process 4

5 INTRODUCING EELS Electron Energy Loss Spectroscopy is performed in a Transmission Electron Microscope, using a beam of high-energy electrons as a probe. The energy distribution of the beam gives a loss spectrum similar to XAS. Focussed probes give excellent spatial resolution (~0.5 Å). Energy resolution is improving ( ~ 5meV). Electron microscope equipped with EELS-detector Intuitive picture of EELS EELS spectra of TM oxides Probes local electronic structure 50.0%O- 50.0%Mn 66.7%O-33.3%Mn 55.0%O-45.0%Ti 66.7%O- 33.3%Ti 66.7%O- 33.3%Ti 5

6 Terminology for ionization edges Inner shell ionization. 6

7 instrumentation XAS: synchrotron EELS: microscope 7

8 THEORY OF EELS : A double differential scattering cross-section is calculated by summing over all possible transitions between initial and final states. The transition probabilities are described by Fermi s golden rule. k F ( E, Q) Ik V k F E E E k IF, V is the interaction potential between the fast beam electron and an electron in the sample. F, I the sample states, can be taken from electronic structure calculations. k F and k I the probe states, are typically described as plane waves when Bragg scattering effects are neglected. In experiment, one usually integrates over a range of scattering angles, due to the beam width and spectrometer aperture. differential cross section : k F ( E;, ) d Ik V k F E E E k, I IF, I F I F I I F I F 8

9 Theory (EELS XAS) E I,F I ei q. R F E I,F I ei q. R e RF 9

10 dipole approximation q. R 1 e i q R 1 iq. R ( q. R)! EELS EELS E I q. RF I,F XAS The polarization vector e in XAS plays the same role as momentum transfer q in ELNES within the dipole approximation. This is why people say XAS = EELS. (Beware - there are quite a few differences, too.) E I. RF I,F Probes local, symmetry-selected (l c +1) unoccupied DOS 10

11 . WIENk Calculations. 11

12 calculation of spectra using WIENk Set up structure and initialize SCF calculation x qtl -telnes Prepare case.innes x telnes3 or Prepare case.inxs x xspec EELS x broadening XAS 1

13 ELNES workflow 13

14 wweb ELNES input wweb 14

15 ELNES input file (case.innes) 15

16 16

17 Practical considerations Spectra usually converge easily with respect to RKMAX, k-mesh, SCF criteria But you should check anyway (see Cu L3) Optimizing positions may be necessary You may need to sum over all C atoms in the unit cell. (Especially for orientation-resolved calculations.) You probably need to use a core hole. This can be a lot of work. Your results may be wrong even if you do everything right. (But often they are reasonably good.) To compare to experiment, you ll probably fiddle with the broadening, the onset energy, and the branching ratio (L3/L) 17

18 Convergence of Cu L3 edge with # k-points 18

19 Features of WIENk Orientation dependence Beyond dipole selection rule Several broadening schemes All-electron For EELS: Account for collection/convergence angle Output (E) or () Relativistic ELNES ( anisotropic materials) 19

20 EELS Relativistic theory needed for anisotropic materials Semi-relativistic theory : 4 k ' 1 ( E, Q) I Q.r F EI EF E E a k Q 4 0 IF, V= r-r -1 m -> m E -> E,rel Fully relativistic theory (P. Schattschneider et al., Phys. Rev. B 005) : p.v 4e Up to leading order in c - and using the Lorentz gauge : k ' 1 ( E, Q) I. Q F E E E r Q e E k Q E / c IF, V e1 mc 0 z z I F q q.v 0 c Geometrical interpretation : in the dipole limit, a relativistic Hamiltonian shrinks the impuls transfer in the direction of propagation. (The general case is more complex.) WIENk can also calculate non-dipole relativistic transitions. The equations are so long they make PowerPoint cry. 0

21 Beyond the small q approximation The relativistic DDSCS : 4 a0 k f iqr. v. 0 p f e 1 i Ef Ei E E q ki i, f mec E c Dipole approximation : iv f i d Y t i t 5 iq.r f * * 4 lm q 1 a lm a q.v 0 i... f i r. q l v0 f z z1 ; x, y c l f * * i iv 0 4 ui mi idlm Y q juu l i ju l ui lm m m i mc 3 e r r More general l,m decomposition : f lm f dlm ul () r li 1 li 1 l li 1 li 1 li 1 l li 1 iv0 8 l 5 i mi li mi m f * * i miv i f 04 i md lm Y q t1 mi it m 0 a i mi m mi mc e 3 lm a q q q q unchanged 4 ju l ui r l l f * * i iv0 4 ui mi 4 idlm Y q juu l i ju l ui i i i i i i lm m mi mc e 3 r r li 1 li 1 l li 1 li 1 li 1 l li 1 iv0 8 mi m i 1 1m m i m ili miil i m1i 11m mi mi mi 0m mi mi mi 0m mi mc e 3 ui ju l r li 1 li 1 l li 1 li 1 li 1 l li 1 mi mi 1 1m mi mi mi 1 1m mi e 1iq.r l 1 l 1 l l 1 l 1 l 1 l l 1 1 1

22 Relativistic spectra Graphite C K for 3 tilt angles. Beam energy 300 kev, collection angle =.4mrad. Left: nonrelativistic calculation. Right: relativistic calculation.

23 Orientation dependence graphite C K EELS BN B K XAS 3

24 Spectrum as a function of energy loss E E d E,, f ( ) d k' kk' k k E Cr3C C K edge 4

25 Spectrum as a function of scattering angle e-05 1e-06 1e-07 1e-08 1e-09 1e-10 de E E1 E E q, q all transitions p -> s p -> p p -> d 1e scattering angle in mrad Left : L3 edge of Cr3C Right : the As L3 edge of NiAs (134 ev) Calculated using WIENk+TELNES 5

26 Just the double-differential CS Double differential scattering cross-section (DDSCS) E E, q 6

27 Warning! DFT is a ground state theory! it should fail for the prediction of excited state properties however: for many systems it works pretty well 7

28 The core hole E E E E F E F E F p s 1s p s 1s p s 1s ELECTRON MICROSCOPY FOR MATERIALS RESEARCH

29 Different ways of treating the core hole within WIENk No core hole (= ground state, sudden approximation) Z+1 approximation (eg., replace C by N) Remove 1 core electron, add 1 electron to conduction band Remove 1 core electron, add 1 electron as uniform background charge Fractional core hole: remove between 0 and 1 electron charge (e.g. 0.5) You may still get a bad result correct treatment requires a more advanced theory, e.g. BSE treats electron-hole interaction explicitly (gold standard). Core hole calculations usually require a supercell!!! 9

30 Mg-K in MgO mismatch between experiment and simulation introduction of core hole or Z+1 approximation does not help interaction between neighbouring core holes core hole in a supercell C. Hébert, J. Luitz, P. Schattschneider Micron 34, 19 (003) 30

31 Challenges of WIENk 1. Basis set only meant for limited energy range : forget about EXAFS/EXELFS sometimes adding a LO (case.in1) with a high linearization energy of.0 or 3.0 improves description of high-energy states.. Sometimes Final State Rule (core hole) DFT just isn t good enough and you need Bethe- Salpeter (BSE) calculations codes : OCEAN, AINBSE, Exc!ting, BSE much more expensive not as polished as DFT gets L3/L ratios right reality BSE single-particle 31

32 Challenges of WIENk 3. Core hole supercell size can be hard to converge. size of the cell how much charge to remove? optimal treatment can differ between similar materials; or even different edges in same material above: diamond GaN N K edge S. Lazar, C. Hébert, H. W. Zandbergen Ultramicroscopy 98, -4, 49 (004) 3

33 Challenges of WIENk 4. Killing artifacts (unphysical monopoles) by extending the RMT 33

34 Documentation WIENk Users Guide! C. Hebert, Practical aspects of calculating EELS using the WIENk code, Ultramicroscopy, 007 Jorissen, Hebert & Luitz, submitting ( thesis_jorissen.pdf - Kevin s Ph.D. thesis) 34

35 3. Hands-on exercises 1. XAS of K edge of Cu.. averaged EELS of N K edge of GaN. 3. orientation sensitive, in-plane and out-ofplane EELS of N K edge of GaN. 4. core hole calculation for Cu K-edge XAS & compare. 5. initialize a ** supercell for TiC or TiN core hole EELS calculation. 6. Be K edge. Find the error. 35

36 Thank you: C. Hebert, J. Luitz, P. Schattschneider, and the TELNES team P. Blaha, K. Schwarz, and the WIENk team J. Rehr and the FEFF9 team WIEN013 organizers 36

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan Core-Level spectroscopy Experiments and first-principles calculations Tomoyuki Yamamoto Waseda University, Japan 22 nd WIEN2k workshop Jun. 26 th, 2015@Singapore Outline What is core-level spectroscopy

More information

X-ray Spectroscopy Theory Lectures

X-ray Spectroscopy Theory Lectures TIMES Lecture Series SIMES-SLAC-Stanford Winter, 2017 X-ray Spectroscopy Theory Lectures J. J. Rehr I. Introduction to the Theory of X-ray spectra II. Real-space Green's function Theory and FEFF III. Inelastic

More information

Theory and Parameter Free Calculations of EELS and X-ray Spectra

Theory and Parameter Free Calculations of EELS and X-ray Spectra M&M Conference Columbus, OH 24-28 June, 2016 Theory and Parameter Free Calculations of EELS and X-ray Spectra J.J. Rehr 1, J. J. Kas 1, K. Jorissen 2, and F. Vila 1 1 Department of Physics, University

More information

Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy (EELS) Electron energy loss spectroscopy (EELS) Phil Hasnip Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~pjh503 Many slides courtesy of Jonathan

More information

Real-space multiple-scattering theory of EXAFS and XANES

Real-space multiple-scattering theory of EXAFS and XANES Nordita School on Photon-Matter Interaction Stockholm, Sweden Oct 3-7, 2016 Real-space multiple-scattering theory of EXAFS and XANES J. J. Rehr, J. J. Kas and F. D. Vila Outline Goals: -Real-space multiple-scattering

More information

Analytical Electron Microscopy

Analytical Electron Microscopy Analytical Electron Microscopy Walid Hetaba Fritz-Haber-Institut der MPG MPI für Chemische Energiekonversion hetaba@fhi-berlin.mpg.de 10.11.2017 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy

More information

Optical properties by wien2k

Optical properties by wien2k Optical properties by wienk Robert Laskowski rolask@ihpc.a star.edu.sg Institute of High Performance Computing Singapore outline Theory: independent particle approximation optic, joint, tetra. inputs /

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Theory, Interpretation and Applications of X-ray Spectra*

Theory, Interpretation and Applications of X-ray Spectra* REU Seminar University of Washington 27 July, 2015 Theory, Interpretation and Applications of X-ray Spectra* J. J. Rehr et al. A theoretical horror story Starring Fernando Vila & Anatoly Frenkel with J.

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Applications of core-level spectroscopy

Applications of core-level spectroscopy Applications of core-level spectroscopy Rebecca Nicholls Outline of talk!! Bonding information!! EXELFS!! Core hole!! Magnetism, dichroism, temperature!! Multiplet calculations Combining experiment and

More information

Optical properties by wien2k

Optical properties by wien2k Optical properties by wien2k Robert Laskowski rolask@ihpc.a star.edu.sg Institute of High Performance Computing Singapore outline Basics, formalism What, how? optic, joint, tetra. inputs / outputs, examples

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

Core-level Spectroscopies with FEFF9 and OCEAN

Core-level Spectroscopies with FEFF9 and OCEAN Soleil Theory Day Synchrotron SOLEIL, Grand Amphi 6/5/2014 Core-level Spectroscopies with FEFF9 and OCEAN J. J. Rehr 1,4 K. Gilmore, 2,4 J. Kas, 1 J. Vinson, 3 E. Shirley 3 1 University of Washington,

More information

Electron Energy Loss Spectroscopy

Electron Energy Loss Spectroscopy Electron Energy Loss Spectroscopy EELS: Large signal for Z< 33 90% collection efficiency Spatial resolution is 0.1-1 nm composition and bonding information needs very thin samples (< 50 nm) EDX: Low x-ray

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018 Good Vibrations Studying phonons with momentum resolved spectroscopy D.J. Voneshen 20/6/2018 Overview What probe to use? Types of instruments. Single crystals example Powder example Thing I didn t talk

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

Introduction of X-ray Absorption Near Edge Structure (XANES)

Introduction of X-ray Absorption Near Edge Structure (XANES) Introduction of X-ray Absorption Near Edge Structure (XANES) 2012 년 2 월 29 일 11:00 11:50 Eun Suk Jeong February 29-March 1, 2012 xafs school Outline 1. Introduction of XANES 2. Structural and chemical

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

X-ray Absorption at the Near-edge and Its Applications

X-ray Absorption at the Near-edge and Its Applications X-ray Absorption at the Near-edge and Its Applications Faisal M Alamgir faisal@msegatechedu School of Materials Science and Engineering, Georgia Institute of Technology Cartoon of XAS ln(i 0 /I t ) or

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Theory and Interpretation of Core-level Spectroscopies*

Theory and Interpretation of Core-level Spectroscopies* Summer School: Electronic Structure Theory for Materials and Molecules IPAM Summer School, UCLA Los Angeles, CA 29 July, 2014 Theory and Interpretation of Core-level Spectroscopies* J. J. Rehr Department

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Core level spectroscopy: XPS, XAS, EELS, XES (XSPEC, TELNES)

Core level spectroscopy: XPS, XAS, EELS, XES (XSPEC, TELNES) Coe level spectoscopy: XPS, XAS, EELS, XES (XSPEC, TELNES) Pete Blaha TU Vienna XPS, coe-level shifts Ionizationpotential of coe-e -, IP= E tot (N) E tot (N-1) gives infomation on chage state of the atom

More information

B k k. Fig. 1: Energy-loss spectrum of BN, showing the how K-loss intensities I K (β, ) for boron and nitrogen are defined and measured.

B k k. Fig. 1: Energy-loss spectrum of BN, showing the how K-loss intensities I K (β, ) for boron and nitrogen are defined and measured. The accuracy of EELS elemental analysis The procedure of EELS elemental analysis can be divided into three parts, each of which involves some approximation, with associated systematic or statistical errors.

More information

Simulating Spectra. Travis Jones 19 Jan 2018

Simulating Spectra. Travis Jones 19 Jan 2018 Simulating Spectra Travis Jones 19 Jan 2018 Introduction Why should you care about calculating spectra? What kinds of spectra can you compute? What types of approaches are there? What are the pitfalls?

More information

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals Stefania PIZZINI Laboratoire Louis Néel - Grenoble I) - History and basic concepts of XAS - XMCD at M 4,5

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

The 2p X-ray absorption spectra of transition metal systems: New developments and ab-initio routes.

The 2p X-ray absorption spectra of transition metal systems: New developments and ab-initio routes. The 2p X-ray absorption spectra of transition metal systems: New developments and ab-initio routes. Frank de Groot Department of Chemistry, Utrecht University, Netherlands f.m.f.degroot@uu.nl Introduction

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France - X-ray (Magnetic) Circular

More information

Exercises: In the following you find some suggestions for exercises, which teach you various tasks one may perform with WIEN2k.

Exercises: In the following you find some suggestions for exercises, which teach you various tasks one may perform with WIEN2k. Exercises: In the following you find some suggestions for exercises, which teach you various tasks one may perform with WIEN2k. New WIEN2k users should start with the first basic exercises (1-5), covering:

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Theory and Calculation of X-ray spectra. J. J. Kas

Theory and Calculation of X-ray spectra. J. J. Kas Theory and Calculation of X-ray spectra J. J. Kas Theoretical Spectroscopy Calculations GOAL: Next Generation Theory for Next Generation X-ray Sources TALK I Introduction II State-of-the-art III Next generation

More information

Electron inelastic scattering and anisotropy: The two-dimensional point of view

Electron inelastic scattering and anisotropy: The two-dimensional point of view Ultramicroscopy 106 (2006) 1082 1090 www.elsevier.com/locate/ultramic Electron inelastic scattering and anisotropy: The two-dimensional point of view G. Radtke a, G.A. Botton a,, J. Verbeeck b a Brockhouse

More information

EELS Electron Energy Loss Spectroscopy

EELS Electron Energy Loss Spectroscopy EELS Electron Energy Loss Spectroscopy (Thanks to Steve Pennycook, Quan Li, Charlie Lyman, Ondre Krivenak, David Muller, David Bell, Natasha Erdman, Nestor Zaluzec and many others) Nestor Zaluzec,

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Matthew Newville Center for Advanced Radiation Sources University of Chicago 12-Sept-2014 SES VI SES VI 12-Sept-2014 SES VI What Is XAFS? X-ray Absorption Fine-Structure (XAFS)

More information

Atomic Motion via Inelastic X-Ray Scattering

Atomic Motion via Inelastic X-Ray Scattering Atomic Motion via Inelastic X-Ray Scattering Cheiron School Beamline Practical - Tuesday ONLY at BL43LXU Alfred Q.R. Baron with H. Uchiyama We will introduce students to the use of inelastic x-ray scattering,

More information

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Overview of spectroscopies III Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Motivation: why we need theory Spectroscopy (electron dynamics) Theory of electronic

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

(Supporting Information)

(Supporting Information) Atomic and Electronic Structure of Graphene-Oxide (Supporting Information) K. Andre Mkhoyan, 1,2 * Alexander W. Contryman, 1 John Silcox, 1 Derek A. Stewart, 3 Goki Eda, 4 Cecilia Mattevi, 4 Steve Miller,

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

Electron and electromagnetic radiation

Electron and electromagnetic radiation Electron and electromagnetic radiation Generation and interactions with matter Stimuli Interaction with sample Response Stimuli Waves and energy The energy is propotional to 1/λ and 1/λ 2 λ λ 1 Electromagnetic

More information

Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration

Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration Photoelectron Interference Pattern (PEIP): A Two-particle Bragg-reflection Demonstration Application No. : 2990 Beamlime: BL25SU Project Leader: Martin Månsson 0017349 Team Members: Dr. Oscar Tjernberg

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

X-Ray Microscopy with Elemental, Chemical, and Structural Contrast

X-Ray Microscopy with Elemental, Chemical, and Structural Contrast Institut für Strukturphysik, TU Dresden, Christian Schroer (schroer@xray-lens.de) X-Ray Microscopy with Elemental, Chemical, and Structural Contrast Christian G. Schroer Institute of Structural Physics,

More information

Monte Carlo study of medium-energy electron penetration in aluminium and silver

Monte Carlo study of medium-energy electron penetration in aluminium and silver NUKLEONIKA 015;60():361366 doi: 10.1515/nuka-015-0035 ORIGINAL PAPER Monte Carlo study of medium-energy electron penetration in aluminium and silver Asuman Aydın, Ali Peker Abstract. Monte Carlo simulations

More information

Chapter II: Interactions of ions with matter

Chapter II: Interactions of ions with matter Chapter II: Interactions of ions with matter 1 Trajectories of α particles of 5.5 MeV Source: SRIM www.srim.org 2 Incident proton on Al: Bohr model v=v 0 E p =0.025 MeV relativistic effect E p =938 MeV

More information

Supporting Information. High Selectivity of Supported Ru Catalysts in the Selective. CO Methanation - Water Makes the Difference

Supporting Information. High Selectivity of Supported Ru Catalysts in the Selective. CO Methanation - Water Makes the Difference S1 Supporting Information High Selectivity of Supported Ru Catalysts in the Selective CO Methanation - Water Makes the Difference Ali M. Abdel-Mageed,, Stephan Eckle, and R. Ju rgen Behm *, Institute of

More information

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30 Today s Outline - April 07, 2015 C. Segre (IIT) PHYS 570 - Spring 2015 April 07, 2015 1 / 30 Today s Outline - April 07, 2015 PHYS 570 days at 10-ID C. Segre (IIT) PHYS 570 - Spring 2015 April 07, 2015

More information

The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects in

The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects in Home Search Collections Journals About Contact us My IOPscience The near-edge structure in energy-loss spectroscopy: many-electron and magnetic effects in transition metal nitrides and carbides This article

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis Introduction to XAFS Part 1: What is XAFS? What does it tell us? The EXAFS equation Part 2: Basic steps in the analysis Quick overview of typical analysis Tomorrow Measurement methods and examples The

More information

COMPUTATIONAL TOOL. Fig. 4.1 Opening screen of w2web

COMPUTATIONAL TOOL. Fig. 4.1 Opening screen of w2web CHAPTER -4 COMPUTATIONAL TOOL Ph.D. Thesis: J. Maibam CHAPTER: 4 4.1 The WIEN2k code In this work, all the calculations presented are performed using the WIEN2k software package (Blaha et al., 2001). The

More information

Generation of X-Rays in the SEM specimen

Generation of X-Rays in the SEM specimen Generation of X-Rays in the SEM specimen The electron beam generates X-ray photons in the beam-specimen interaction volume beneath the specimen surface. Some X-ray photons emerging from the specimen have

More information

Optical Properties with Wien2k

Optical Properties with Wien2k Optical Properties with Wien2k Elias Assmann Vienna University of Technology, Institute for Solid State Physics WIEN2013@PSU, Aug 13 Menu 1 Theory Screening in a solid Calculating ϵ: Random-Phase Approximation

More information

X-ray non-resonant and resonant magnetic scattering Laurent C. Chapon, Diamond Light Source. European School on Magnetism L. C.

X-ray non-resonant and resonant magnetic scattering Laurent C. Chapon, Diamond Light Source. European School on Magnetism L. C. X-ray non-resonant and resonant magnetic scattering Laurent C. Chapon, Diamond Light Source 1 The Diamond synchrotron 3 GeV, 300 ma Lienard-Wiechert potentials n.b: Use S.I units throughout. rq : position

More information

IMAGING DIFFRACTION SPECTROSCOPY

IMAGING DIFFRACTION SPECTROSCOPY TEM Techniques TEM/STEM IMAGING DIFFRACTION SPECTROSCOPY Amplitude contrast (diffracion contrast) Phase contrast (highresolution imaging) Selected area diffraction Energy dispersive X-ray spectroscopy

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

The photoelectric effect

The photoelectric effect The photoelectric effect E K hν-e B E F hν E B A photoemission experiment Lifetime broadening ΔE.Δτ~ħ ΔE~ħ/Δτ + Experimental resolution Hüfner, Photoelectron Spectroscopy (Springer) A photoemission experiment

More information

Sub-Angstrom Edge Relaxations Probed by Electron. Microscopy in Hexagonal Boron Nitride (h-bn)

Sub-Angstrom Edge Relaxations Probed by Electron. Microscopy in Hexagonal Boron Nitride (h-bn) Supplementary Material for Sub-Angstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride (h-bn) Nasim Alem 1,2,3, Quentin M. Ramasse 4,*, Che R. Seabourne 5, Oleg V. Yazyev 1,3,6,

More information

III. Inelastic losses and many-body effects in x-ray spectra

III. Inelastic losses and many-body effects in x-ray spectra TIMES Lecture Series SIMES-SLAC-Stanford March 2, 2017 III. Inelastic losses and many-body effects in x-ray spectra J. J. Rehr TALK: Inelastic losses and many-body effects in x-ray spectra Inelastic losses

More information

Introduction to X-ray Absorption Near Edge Spectroscopy (XANES) Ritimukta Sarangi SSRL, SLAC Stanford University June 28, 2010

Introduction to X-ray Absorption Near Edge Spectroscopy (XANES) Ritimukta Sarangi SSRL, SLAC Stanford University June 28, 2010 Introduction to X-ray Absorption Near Edge Spectroscopy (XANES) Ritimukta Sarangi SSRL, SLAC Stanford University June 28, 2010 Basics of X-ray Absorption Spectroscopy (XAS) An edge results when a core

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? EPMA - what is it? Precise and accurate quantitative chemical analyses of micron-size

More information

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE Jay D. Bourke Postdoctoral Fellow in X-ray Science! School of Physics,! University

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Femtosecond X-Ray Experiments

Femtosecond X-Ray Experiments Femtosecond X-Ray Experiments Christian Bressler FXE Hamburg, January 25, 2017 FXE Workshop Dec 2016: Users overall very happy with implemented components 2 Scientific Instrument FXE The FXE scientific

More information

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1)

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1) Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1) Atoms or molecules are physisorbed into a porous structure

More information

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln X-ray Absorption Spectroscopy Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln Interaction of X-rays with matter Incident X-ray beam Fluorescent X-rays (XRF) Scattered

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Supporting information for:

Supporting information for: Supporting information for: Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled

More information

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr TIMES Lecture Series SLAC-Stanford U March 2, 2017 IV. Calculations of X-ray Spectra in Real-space and Real-time J. J. Rehr Calculations of X-ray Spectra in Real-space and Real-time Goal: Real-space, real

More information

Simo Huotari University of Helsinki, Finland European Synchrotron Radiation Facility, Grenoble, France

Simo Huotari University of Helsinki, Finland European Synchrotron Radiation Facility, Grenoble, France X-ray Raman spectroscopy Simo Huotari University of Helsinki, Finland European Synchrotron Radiation Facility, Grenoble, France Outline of today Part 1 Introduction Part 2 Theory Part 3 Applications I

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: An electron energy loss study

Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: An electron energy loss study Available online at www.sciencedirect.com Micron 39 (2008) 685 689 www.elsevier.com/locate/micron Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers:

More information

SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS In memory of J.C. Fuggle & L. Fonda. 19 April - 21 May Miramare - Trieste, Italy

SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS In memory of J.C. Fuggle & L. Fonda. 19 April - 21 May Miramare - Trieste, Italy united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

The Use of Synchrotron Radiation in Modern Research

The Use of Synchrotron Radiation in Modern Research The Use of Synchrotron Radiation in Modern Research Physics Chemistry Structural Biology Materials Science Geochemical and Environmental Science Atoms, molecules, liquids, solids. Electronic and geometric

More information

Lecture 3. Applications of x-ray spectroscopy to inorganic chemistry

Lecture 3. Applications of x-ray spectroscopy to inorganic chemistry Lecture 3. Applications of x-ray spectroscopy to inorganic chemistry 1. Bioinorganic chemistry/enzymology. Organometallic Chemistry 3. Battery materials MetE (cobalamin independent MetSyn) contains Zn

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 SEM/EDS mapping of LiNi 0.4 Mn 0.4 Co 0.18 Ti 0.02 O 2. The experimental error of the mapping is ±1%. The atomic percentages of each element are based on multiple

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

Lecture 5: Characterization methods

Lecture 5: Characterization methods Lecture 5: Characterization methods X-Ray techniques Single crystal X-Ray Diffration (XRD) Powder XRD Thin film X-Ray Reflection (XRR) Microscopic methods Optical microscopy Electron microscopies (SEM,

More information