Incremental Formulations for SOS1 Variables

Size: px
Start display at page:

Download "Incremental Formulations for SOS1 Variables"

Transcription

1 Incremental Formulations for SOS Variables Juan Pablo Vielma Massachusetts Institute of Technology joint work with Sercan Yıldız arnegie Mellon University INFORMS nnual Meeting, October 22 Phoenix, rizona

2 Outline Introduction Encodings General Incremental Formulation Incremental Formulation and ranching omputational Results Summary 2/3

3 Introduction Logarithmic Formulation for SOS i= i = i= bi i = y 2 R n + y 2 {, } m b i n i= = {, }log 2 n Li and Lu 29, dams and Henry 2, V. and Nemhauser 28. Sommer, TIMS 972. Log = inary Encoding Other choices of lead to standard and b i n i= incremental formulations 3/3

4 Introduction General Logarithmic Formulation P i k i= polytopes kx X v i v = x i= v2ext(p i ) x 2 k[ i= P i, kx i= kx X v2ext(p i ) X b i i v = i v = y i= v2ext(p i ) y 2 {, } dlog 2 (k)e, i v V., hmed and Nemhauser 2; V /3

5 Introduction General Logarithmic Formulation P i k i= polytopes kx X v i v = x i= v2ext(p i ) k[ x 2 P i, i= lso for general polyhedron with common recession cones. kx X i= v2ext(p i ) kx X i= v2ext(p i ) b i y 2 {, } dlog 2 (k)e, i v = i v = y i v V., hmed and Nemhauser 2; V /3

6 Encodings Unary and inary Encodings = y Unary, i = y i = y inary 5/3

7 Encodings Incremental Encoding = y, X 8 i= i =, 2 R 8,y2 {, } 7 y y 2... y 7 Linear transformation of -formulation gives generalization of incremental -formulation of Lee and Wilson /3

8 Incremental Formulation Incremental Delta Formulation v 2 2 v 2 3 P 2 v 2 4 x = v + kx i= r i X j=2 v i j v i i j v kx v i v i r i y i v 2 v 3 i=2 v 3 P 3 P v i j 2 [, ], y i 2 {, } v 2 Yıldız and V. 22 7/3

9 Incremental Formulation Incremental Delta Formulation v 2 2 v 2 3 P 2 v 2 4 x = v + kx i= r i X j=2 v i j v i i j v kx v i v i r i y i v 2 v 3 i=2 v 3 v 2 P v P 3 r i X j=2 i j apple, i j Yıldız and V. 22 7/3

10 Incremental Formulation Incremental Delta Formulation v 2 2 v 2 3 P 2 v 2 4 x = v + kx i= r i X j=2 v i j v i i j v kx v i v i r i y i v 2 v 3 i=2 v 3 P v P 3 r i X i j apple y i v 2 j=2 Yıldız and V. 22 7/3

11 Incremental Formulation Incremental Delta Formulation v 2 2 v 2 3 P 2 v 2 4 x = v + kx i= r i X j=2 v i j v i i j v kx v i v i r i y i v 2 v 3 i=2 v 3 P 3 P v y i+ apple i r i, y i+ apple y i v 2 Yıldız and V. 22 7/3

12 ranching Example: # of & Nodes min s.t. x x 2 { i } n i= /3

13 ranching Example: # of & Nodes min s.t. x x 2 { i } n i= min s.t. i= i= i= t i = i= bi i = y 2R n y 2 {, } m /3 8

14 ranching Example: Unary Encoding min s.t. i= i= i= t i = i= bi i = y 2R n + y 2 {, } m 9/3

15 ranching Example: Unary Encoding t =,t LP = min s.t. i= i= i= t i = i= bi i = y 2R n + y 2 {, } m 9/3

16 ranching Example: Unary Encoding t =,t LP = + min s.t. i= i= i= t i = i= bi i = y 2R n + y 2 {, } m 9/3

17 ranching Example: Unary Encoding min t s.t. t =,t LP = = y y 2 y 3 y 4 i= i= i= i = i= bi i = y 2R n + y 2 {, } m 9/3

18 ranching Example: Unary Encoding min t s.t. t =,t LP = = y = y y 2 y 3 y 4 i= i= i= i = i= bi i = y 2R n + y 2 {, } m 9/3

19 ranching Example: Unary Encoding t =,t LP = = y = y y 2 y 3 y 4 min s.t. i= i= i= t i = i= bi i = y 2R n + y 2 {, } m 9/3

20 ranching Example: Unary Encoding t =,t LP = = y = y y 2 y 3 y 4 min s.t. i= i= i= t i = i= bi i = y 2R n + y 2 {, } m 9/3

21 ranching Example: Unary Encoding t =,t LP = = y y 2 y 3 y 4 min s.t. y = y 4 = i= i= i= t i = i= bi i = y 2R n + y 2 {, } m 9/3

22 = y y 2 y 3 y 4 t =,t LP = t LP =unless: y i = 8i apple n/2 or y i = 8i n/2 /3 ranching Example: Unary Encoding 9 ( ( n/2 n/2

23 ranching Example: Unary Encoding t LP =unless: y i = 8i apple n/2 or y i = 8i n/2 ( ( = n/2 n/2 y y 2 y 3 y 4 Need n/2 branches to solve. t =,t LP = 9/3

24 ranching Example: inary Encoding (... 2 k t =,t LP = = y y 2 y 3 /3

25 ranching Example: inary Encoding (... 2 k = y y 2 y 3 t =,t LP = y = y 2 = /3

26 ranching Example: inary Encoding t LP =unless: y i = 8i (... 2 k = y y 2 y 3 t =,t LP = y = y 2 = /3

27 ranching Example: inary Encoding t LP =unless: y i = 8i... = y y 2 y 3 Need all k = log n 2 branches ( 2 k to solve. t =,t LP = y = y 2 = /3

28 ranching Example: Incremental Encoding t =,t LP = /3

29 /3 ranching Example: Incremental Encoding t =,t LP = = y y 2 y 3 y 4

30 /3 ranching Example: Incremental Encoding t =,t LP = = y y 2 y 3 y 4 y 3 =_ y 3 =

31 t LP =if: y i =_ y i = Only need branch! /3 ranching Example: Incremental Encoding t =,t LP = = y y 2 y 3 y 4 y 3 =_ y 3 =

32 omputational Revisiting Transportation Instances Discontinuous Piecewise Linear Disc. PWL + Semicontinuous 2/3

33 omputational Piecewise Linear L-Inc Log /3

34 omputational Piecewise Linear + Semi ontinuous L-Inc Log /3

35 Summary General encoding formulation General incremental formulation Incremental formulation can be better than logarithmic formulation! Paper ready soon, meanwhile: Survey: V., Mixed Integer Linear Programming Formulation Techniques, Web and Opt-Online. 5/3

Encodings in Mixed Integer Linear Programming

Encodings in Mixed Integer Linear Programming Encodings in Mixed Integer Linear Programming Juan Pablo Vielma Sloan School of usiness, Massachusetts Institute of Technology Universidad de hile, December, 23 Santiago, hile. Mixed Integer er inary Formulations

More information

Mixed Integer Programming Models for Non-Separable Piecewise Linear Cost Functions

Mixed Integer Programming Models for Non-Separable Piecewise Linear Cost Functions Mixed Integer Programming Models for Non-Separable Piecewise Linear Cost Functions Juan Pablo Vielma H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Joint

More information

Split Cuts for Convex Nonlinear Mixed Integer Programming

Split Cuts for Convex Nonlinear Mixed Integer Programming Split Cuts for Convex Nonlinear Mixed Integer Programming Juan Pablo Vielma Massachusetts Institute of Technology joint work with D. Dadush and S. S. Dey S. Modaresi and M. Kılınç Georgia Institute of

More information

A note on : A Superior Representation Method for Piecewise Linear Functions

A note on : A Superior Representation Method for Piecewise Linear Functions A note on : A Superior Representation Method for Piecewise Linear Functions Juan Pablo Vielma Business Analytics and Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights,

More information

Split Cuts for Convex Nonlinear Mixed Integer Programming

Split Cuts for Convex Nonlinear Mixed Integer Programming Split Cuts for Convex Nonlinear Mixed Integer Programming Juan Pablo Vielma University of Pittsburgh joint work with D. Dadush and S. S. Dey S. Modaresi and M. Kılınç Georgia Institute of Technology University

More information

Embedding Formulations and Complexity for Unions of Polyhedra

Embedding Formulations and Complexity for Unions of Polyhedra Embedding Formulations and Complexity for Unions of Polyhedra Juan Pablo Vielma Sloan School of Management, Massachusetts Institute of Technology, jvielma@mit.edu It is well known that selecting a good

More information

A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu

A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu A note on : A Superior Representation Method for Piecewise Linear Functions by Li, Lu, Huang and Hu Juan Pablo Vielma, Shabbir Ahmed and George Nemhauser H. Milton Stewart School of Industrial and Systems

More information

Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints

Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints Noname manuscript No. (will be inserted by the editor) Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints Juan Pablo Vielma George L. Nemhauser the date of receipt

More information

Mixed Integer Programming (MIP) for Causal Inference and Beyond

Mixed Integer Programming (MIP) for Causal Inference and Beyond Mixed Integer Programming (MIP) for Causal Inference and Beyond Juan Pablo Vielma Massachusetts Institute of Technology Columbia Business School New York, NY, October, 2016. Traveling Salesman Problem

More information

Cutting Planes and Elementary Closures for Non-linear Integer Programming

Cutting Planes and Elementary Closures for Non-linear Integer Programming Cutting Planes and Elementary Closures for Non-linear Integer Programming Juan Pablo Vielma University of Pittsburgh joint work with D. Dadush and S. S. Dey S. Modaresi and M. Kılınç Georgia Institute

More information

Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints

Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints Juan Pablo Vielma and George L. Nemhauser H. Milton Stewart School of Industrial and Systems Engineering,

More information

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University Joint work with Sercan Yıldız

More information

Ellipsoidal Methods for Adaptive Choice-based Conjoint Analysis (CBCA)

Ellipsoidal Methods for Adaptive Choice-based Conjoint Analysis (CBCA) Ellipsoidal Methods for Adaptive Choice-based Conjoint Analysis (CBCA) Juan Pablo Vielma Massachusetts Institute of Technology Joint work with Denis Saure Operations Management Seminar, Rotman School of

More information

Structure of Valid Inequalities for Mixed Integer Conic Programs

Structure of Valid Inequalities for Mixed Integer Conic Programs Structure of Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University 18 th Combinatorial Optimization Workshop Aussois, France January

More information

Solving LP and MIP Models with Piecewise Linear Objective Functions

Solving LP and MIP Models with Piecewise Linear Objective Functions Solving LP and MIP Models with Piecewise Linear Obective Functions Zonghao Gu Gurobi Optimization Inc. Columbus, July 23, 2014 Overview } Introduction } Piecewise linear (PWL) function Convex and convex

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Lifting for conic mixed-integer programming

Lifting for conic mixed-integer programming Math. Program., Ser. A DOI 1.17/s117-9-282-9 FULL LENGTH PAPER Lifting for conic mixed-integer programming Alper Atamtürk Vishnu Narayanan Received: 13 March 28 / Accepted: 28 January 29 The Author(s)

More information

Advanced Mixed Integer Programming (MIP) Formulation Techniques

Advanced Mixed Integer Programming (MIP) Formulation Techniques Advanced Mixed Integer Programming (MIP) Formulation Techniques Juan Pablo Vielma Massachusetts Institute of Technology Center for Nonlinear Studies, Los Alamos National Laboratory. Los Alamos, New Mexico,

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

BCOL RESEARCH REPORT 07.04

BCOL RESEARCH REPORT 07.04 BCOL RESEARCH REPORT 07.04 Industrial Engineering & Operations Research University of California, Berkeley, CA 94720-1777 LIFTING FOR CONIC MIXED-INTEGER PROGRAMMING ALPER ATAMTÜRK AND VISHNU NARAYANAN

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

First some basics from multivariable calculus directly extended to complex functions.

First some basics from multivariable calculus directly extended to complex functions. Complex Integration Tuesday, October 15, 2013 2:01 PM Our first objective is to develop a concept of integration of complex functions that interacts well with the notion of complex derivative. A certain

More information

Integer programming, Barvinok s counting algorithm and Gomory relaxations

Integer programming, Barvinok s counting algorithm and Gomory relaxations Integer programming, Barvinok s counting algorithm and Gomory relaxations Jean B. Lasserre LAAS-CNRS, Toulouse, France Abstract We propose an algorithm based on Barvinok s counting algorithm for P max{c

More information

MIXED INTEGER PROGRAMMING APPROACHES FOR NONLINEAR AND STOCHASTIC PROGRAMMING

MIXED INTEGER PROGRAMMING APPROACHES FOR NONLINEAR AND STOCHASTIC PROGRAMMING MIXED INTEGER PROGRAMMING APPROACHES FOR NONLINEAR AND STOCHASTIC PROGRAMMING A Thesis Presented to The Academic Faculty by Juan Pablo Vielma Centeno In Partial Fulfillment of the Requirements for the

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Search Algorithms. Analysis of Algorithms. John Reif, Ph.D. Prepared by

Search Algorithms. Analysis of Algorithms. John Reif, Ph.D. Prepared by Search Algorithms Analysis of Algorithms Prepared by John Reif, Ph.D. Search Algorithms a) Binary Search: average case b) Interpolation Search c) Unbounded Search (Advanced material) Readings Reading Selection:

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mied Integer Conic Quadratic Programs Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser H. Milton Stewart School of Industrial and Systems Engineering

More information

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21 1 / 21 Linear Programming Operations Research Anthony Papavasiliou Contents 2 / 21 1 Primal Linear Program 2 Dual Linear Program Table of Contents 3 / 21 1 Primal Linear Program 2 Dual Linear Program Linear

More information

Lecture 2: Scheduling on Parallel Machines

Lecture 2: Scheduling on Parallel Machines Lecture 2: Scheduling on Parallel Machines Loris Marchal October 17, 2012 Parallel environment alpha in Graham s notation): P parallel identical Q uniform machines: each machine has a given speed speed

More information

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

Convex hull of two quadratic or a conic quadratic and a quadratic inequality Noname manuscript No. (will be inserted by the editor) Convex hull of two quadratic or a conic quadratic and a quadratic inequality Sina Modaresi Juan Pablo Vielma the date of receipt and acceptance should

More information

Advanced Mixed Integer Programming Formulations for Non-Convex Optimization Problems in Statistical Learning

Advanced Mixed Integer Programming Formulations for Non-Convex Optimization Problems in Statistical Learning Advanced Mixed Integer Programming Formulations for Non-Convex Optimization Problems in Statistical Learning Juan Pablo Vielma Massachusetts Institute of Technology 2016 IISA International Conference on

More information

Separation Techniques for Constrained Nonlinear 0 1 Programming

Separation Techniques for Constrained Nonlinear 0 1 Programming Separation Techniques for Constrained Nonlinear 0 1 Programming Christoph Buchheim Computer Science Department, University of Cologne and DEIS, University of Bologna MIP 2008, Columbia University, New

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Two-Term Disjunctions on the Second-Order Cone

Two-Term Disjunctions on the Second-Order Cone Noname manuscript No. (will be inserted by the editor) Two-Term Disjunctions on the Second-Order Cone Fatma Kılınç-Karzan Sercan Yıldız the date of receipt and acceptance should be inserted later Abstract

More information

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 13. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 13 Dr. Ted Ralphs ISE 418 Lecture 13 1 Reading for This Lecture Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6 Wolsey Chapter 8 CCZ Chapters 5 and 6 Valid Inequalities

More information

ON THE INTEGRALITY OF THE UNCAPACITATED FACILITY LOCATION POLYTOPE. 1. Introduction

ON THE INTEGRALITY OF THE UNCAPACITATED FACILITY LOCATION POLYTOPE. 1. Introduction ON THE INTEGRALITY OF THE UNCAPACITATED FACILITY LOCATION POLYTOPE MOURAD BAÏOU AND FRANCISCO BARAHONA Abstract We study a system of linear inequalities associated with the uncapacitated facility location

More information

Math 16 - Practice Final

Math 16 - Practice Final Math 16 - Practice Final May 28th 2007 Name: Instructions 1. In Part A, attempt every question. In Part B, attempt two of the five questions. If you attempt more you will only receive credit for your best

More information

Mixed Integer Linear Programming Formulation Techniques

Mixed Integer Linear Programming Formulation Techniques SIAM REVIEW Vol. 57, No. 1, pp. 3 57 c 215 Society for Industrial and Applied Mathematics Mixed Integer Linear Programming Formulation Techniques Juan Pablo Vielma Abstract. A wide range of problems can

More information

The Value function of a Mixed-Integer Linear Program with a Single Constraint

The Value function of a Mixed-Integer Linear Program with a Single Constraint The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu OPT 008, Atlanta, March 4, 008 Thanks:

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

MEP123: Master Equality Polyhedron with one, two or three rows

MEP123: Master Equality Polyhedron with one, two or three rows 1/17 MEP123: Master Equality Polyhedron with one, two or three rows Oktay Günlük Mathematical Sciences Department IBM Research January, 29 joint work with Sanjeeb Dash and Ricardo Fukasawa 2/17 Master

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Operations Research Methods in Constraint Programming

Operations Research Methods in Constraint Programming Operations Research Methods in Constraint Programming John Hooker Carnegie Mellon University Prepared for Lloret de Mar, Spain June 2007 2007 Slide 1 CP and OR Have Complementary Strengths CP: Inference

More information

Mixed Integer Linear Programming Formulations for Probabilistic Constraints

Mixed Integer Linear Programming Formulations for Probabilistic Constraints Mixed Integer Linear Programming Formulations for Probabilistic Constraints J. P. Vielma a,, S. Ahmed b, G. Nemhauser b a Department of Industrial Engineering, University of Pittsburgh 1048 Benedum Hall,

More information

The β-model for random hypergraphs

The β-model for random hypergraphs The β-model for random hypergraphs espina Stasi (IIT) ased on joint work with Kayvan Sadeghi (MU) Sonja Petrović (IIT) lessandro Rinaldo (MU) Stephen E. Fienberg (MU) lgebraic Statistics 2014 Illinois

More information

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA Alternative Methods for Obtaining Optimization Bounds J. N. Hooker Carnegie Mellon University AFOSR Program Review, April 2012 Grant FA9550-11-1-0180 Integrating OR and CP/AI Early support by AFOSR First

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope

Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Nonconvex Quadratic Programming: Return of the Boolean Quadric Polytope Kurt M. Anstreicher Dept. of Management Sciences University of Iowa Seminar, Chinese University of Hong Kong, October 2009 We consider

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

The structure of the infinite models in integer programming

The structure of the infinite models in integer programming The structure of the infinite models in integer programming January 10, 2017 Not Again! Well, Aussois is partly responsible... Some years ago: Not Again! Well, Aussois is partly responsible... Some years

More information

Local Probability Models

Local Probability Models Readings: K&F 3.4, 5.~5.5 Local Probability Models Lecture 3 pr 4, 2 SE 55, Statistical Methods, Spring 2 Instructor: Su-In Lee University of Washington, Seattle Outline Last time onditional parameterization

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

Robust Integer Programming

Robust Integer Programming Robust Integer Programming Technion Israel Institute of Technology Outline. Overview our theory of Graver bases for integer programming (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

Piecewise-Linear Approximation: Multidimensional

Piecewise-Linear Approximation: Multidimensional OptIntro 1 / 38 Piecewise-Linear Approximation: Multidimensional Eduardo Camponogara Department of Automation and Systems Engineering Federal University of Santa Catarina October 2016 OptIntro 2 / 38 Summary

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

Recent Advances in Mixed Integer Programming Modeling and Computation

Recent Advances in Mixed Integer Programming Modeling and Computation Recent Advances in Mixed Integer Programming Modeling and Computation Juan Pablo Vielma Massachusetts Institute of Technology MIT Center for Transportation & Logistics. Cambridge, Massachusetts, June,

More information

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

Mixed-integer nonlinear programming, Conic programming, Duality, Cutting

Mixed-integer nonlinear programming, Conic programming, Duality, Cutting A STRONG DUAL FOR CONIC MIXED-INTEGER PROGRAMS DIEGO A. MORÁN R., SANTANU S. DEY, AND JUAN PABLO VIELMA Abstract. Mixed-integer conic programming is a generalization of mixed-integer linear programming.

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE General e Image Coder Structure Motion Video x(s 1,s 2,t) or x(s 1,s 2 ) Natural Image Sampling A form of data compression; usually lossless, but can be lossy Redundancy Removal Lossless compression: predictive

More information

Mixed Integer Programming Approaches for Experimental Design

Mixed Integer Programming Approaches for Experimental Design Mixed Integer Programming Approaches for Experimental Design Juan Pablo Vielma Massachusetts Institute of Technology Joint work with Denis Saure DRO brown bag lunch seminars, Columbia Business School New

More information

Sufficiency of Cut-Generating Functions

Sufficiency of Cut-Generating Functions Sufficiency of Cut-Generating Functions Gérard Cornuéjols 1, Laurence Wolsey 2, and Sercan Yıldız 1 1 Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United

More information

Cutting planes from extended LP formulations

Cutting planes from extended LP formulations Cutting planes from extended LP formulations Merve Bodur University of Wisconsin-Madison mbodur@wisc.edu Sanjeeb Dash IBM Research sanjeebd@us.ibm.com March 7, 2016 Oktay Günlük IBM Research gunluk@us.ibm.com

More information

Split cuts and extended formulations for Mixed Integer Conic Quadratic Programming

Split cuts and extended formulations for Mixed Integer Conic Quadratic Programming Split cuts and extended formulations for Mixed Integer Conic Quadratic Programming The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

Cutting Plane Methods I

Cutting Plane Methods I 6.859/15.083 Integer Programming and Combinatorial Optimization Fall 2009 Cutting Planes Consider max{wx : Ax b, x integer}. Cutting Plane Methods I Establishing the optimality of a solution is equivalent

More information

Mathematical Programming Formulations for Piecewise Polynomial Functions

Mathematical Programming Formulations for Piecewise Polynomial Functions Noname manuscript No. (will be inserted by the editor) Mathematical Programming Formulations for Piecewise Polynomial Functions Bjarne Grimstad Brage Rugstad Knudsen Received: date / Accepted: date Abstract

More information

AP Calculus AB Summer Review Packet

AP Calculus AB Summer Review Packet AP Calculus AB Summer Review Packet 016-017 Mr. Le jtle1@gmail.com Leuzinger High School Rm. G-0 The following packet is designed to help you review topics that are important to your SUCCESS in AP Calculus.

More information

Computing with multi-row Gomory cuts

Computing with multi-row Gomory cuts Computing with multi-row Gomory cuts Daniel G. Espinoza Departamento de Ingeniería Industrial, Universidad de Chile, Av. República 71, Santiago, 837-439, Chile Abstract Recent advances on the understanding

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Optimization Bounds from Binary Decision Diagrams

Optimization Bounds from Binary Decision Diagrams Optimization Bounds from Binary Decision Diagrams J. N. Hooker Joint work with David Bergman, André Ciré, Willem van Hoeve Carnegie Mellon University ICS 203 Binary Decision Diagrams BDDs historically

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 13: Branch and Bound (I) Yiling Chen SEAS Example: max 5x 1 + 8x 2 s.t. x 1 + x 2 6 5x 1 + 9x 2 45 x 1, x 2 0, integer 1 x 2 6 5 x 1 +x

More information

Strong Dual for Conic Mixed-Integer Programs

Strong Dual for Conic Mixed-Integer Programs Strong Dual for Conic Mixed-Integer Programs Diego A. Morán R. Santanu S. Dey Juan Pablo Vielma July 14, 011 Abstract Mixed-integer conic programming is a generalization of mixed-integer linear programming.

More information

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS LECTURE-5 : LOGARITHMS AND COMPLEX POWERS VED V. DATAR The purpose of this lecture is twofold - first, to characterize domains on which a holomorphic logarithm can be defined, and second, to show that

More information

PART 4 INTEGER PROGRAMMING

PART 4 INTEGER PROGRAMMING PART 4 INTEGER PROGRAMMING 102 Read Chapters 11 and 12 in textbook 103 A capital budgeting problem We want to invest $19 000 Four investment opportunities which cannot be split (take it or leave it) 1.

More information

Some cut-generating functions for second-order conic sets

Some cut-generating functions for second-order conic sets Some cut-generating functions for second-order conic sets Asteroide Santana 1 and Santanu S. Dey 1 1 School of Industrial and Systems Engineering, Georgia Institute of Technology June 1, 2016 Abstract

More information

Intersection cuts for nonlinear integer programming: convexification techniques for structured sets

Intersection cuts for nonlinear integer programming: convexification techniques for structured sets Noname manuscript No. (will be inserted by the editor Intersection cuts for nonlinear integer programming: convexification techniques for structured sets Sina Modaresi Mustafa R. Kılınç Juan Pablo Vielma

More information

Ellipsoidal Mixed-Integer Representability

Ellipsoidal Mixed-Integer Representability Ellipsoidal Mixed-Integer Representability Alberto Del Pia Jeff Poskin September 15, 2017 Abstract Representability results for mixed-integer linear systems play a fundamental role in optimization since

More information

Intersection cuts for nonlinear integer programming: convexification techniques for structured sets

Intersection cuts for nonlinear integer programming: convexification techniques for structured sets Noname manuscript No. (will be inserted by the editor) Intersection cuts for nonlinear integer programming: convexification techniques for structured sets Sina Modaresi Mustafa R. Kılınç Juan Pablo Vielma

More information

Combinational Logic (mostly review!)

Combinational Logic (mostly review!) ombinational Logic (mostly review!)! Logic functions, truth tables, and switches " NOT, N, OR, NN, NOR, OR,... " Minimal set! xioms and theorems of oolean algebra " Proofs by re-writing " Proofs by perfect

More information

Integer Programming Methods LNMB

Integer Programming Methods LNMB Integer Programming Methods LNMB 2017 2018 Dion Gijswijt homepage.tudelft.nl/64a8q/intpm/ Dion Gijswijt Intro IntPM 2017-2018 1 / 24 Organisation Webpage: homepage.tudelft.nl/64a8q/intpm/ Book: Integer

More information

A new family of facet defining inequalities for the maximum edge-weighted clique problem

A new family of facet defining inequalities for the maximum edge-weighted clique problem A new family of facet defining inequalities for the maximum edge-weighted clique problem Franklin Djeumou Fomeni June 2016 Abstract This paper considers a family of cutting planes, recently developed for

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Minimal Valid Inequalities for Integer Constraints

Minimal Valid Inequalities for Integer Constraints Minimal Valid Inequalities for Integer Constraints Valentin Borozan LIF, Faculté des Sciences de Luminy, Université de Marseille, France borozan.valentin@gmail.com and Gérard Cornuéjols Tepper School of

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Contents 6 Exponential and Logarithmic Functions 6.1 The Exponential Function 2 6.2 The Hyperbolic Functions 11 6.3 Logarithms 19 6.4 The Logarithmic Function 27 6.5 Modelling Exercises 38 6.6 Log-linear

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Wild coverings of Berkovich curves. Conference in honor of Arthur Ogus

Wild coverings of Berkovich curves. Conference in honor of Arthur Ogus Wild coverings of Berkovich curves M. Temkin September 24, 2015 Conference in honor of Arthur Ogus M. Temkin (Hebrew University) Wild coverings of Berkovich curves 1 / 27 Introduction The goals Fix a complete

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem

Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem Online Companion for Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem Germán Morales-España, Jesus M. Latorre, and Andres Ramos Universidad Pontificia Comillas, Spain Institute

More information

Multi-water-bag model and method of moments for Vlasov

Multi-water-bag model and method of moments for Vlasov and method of moments for the Vlasov equation 1, Philippe Helluy 2, Nicolas Besse 3 FVCA 2011, Praha, June 6. 1 INRIA Nancy - Grand Est & University of Strasbourg - IRMA crestetto@math.unistra.fr (PhD

More information

On Counting Lattice Points and Chvátal-Gomory Cutting Planes

On Counting Lattice Points and Chvátal-Gomory Cutting Planes On Counting Lattice Points and Chvátal-Gomory Cutting Planes Andrea Lodi 1, Gilles Pesant 2, and Louis-Martin Rousseau 2 1 DEIS, Università di Bologna - andrea.lodi@unibo.it 2 CIRRELT, École Polytechnique

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

COS597D: Information Theory in Computer Science October 19, Lecture 10

COS597D: Information Theory in Computer Science October 19, Lecture 10 COS597D: Information Theory in Computer Science October 9, 20 Lecture 0 Lecturer: Mark Braverman Scribe: Andrej Risteski Kolmogorov Complexity In the previous lectures, we became acquainted with the concept

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

Information Theory, Statistics, and Decision Trees

Information Theory, Statistics, and Decision Trees Information Theory, Statistics, and Decision Trees Léon Bottou COS 424 4/6/2010 Summary 1. Basic information theory. 2. Decision trees. 3. Information theory and statistics. Léon Bottou 2/31 COS 424 4/6/2010

More information

Understanding Branch Cuts of Expressions

Understanding Branch Cuts of Expressions The University of Bath Joint work with: Russell Bradford, James Davenport & David Wilson (Bath) and Edgardo Cheb-Terrab (Maplesoft) University of Waterloo 21st June 2013 Supported by the Engineering and

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Polyhedral Approach to Integer Linear Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Polyhedral Approach to Integer Linear Programming Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh 1 / 30 Brief history First Algorithms Polynomial Algorithms Solving

More information

Boolean cubes EECS150. Mapping truth tables onto cubes. Simplification. The Uniting Theorem. Three variable example

Boolean cubes EECS150. Mapping truth tables onto cubes. Simplification. The Uniting Theorem. Three variable example EES5 Section 5 Simplification and State Minimization Fall 2 -cube X oolean cubes Visual technique for indentifying when the uniting theorem can be applied n input variables = n-dimensional "cube" Y 2-cube

More information