The Value function of a Mixed-Integer Linear Program with a Single Constraint

Size: px
Start display at page:

Download "The Value function of a Mixed-Integer Linear Program with a Single Constraint"

Transcription

1 The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu OPT 008, Atlanta, March 4, 008 Thanks: Work supported in part by the National Science Foundation

2 Outline Definitions Linear Approximation Properties 4

3 Motivation The goal of this work is to study the structure of the value function of a general MILP. Eventually, we hope this will lead to methods for approximation useful for sensitivity analysis warm starting other methods that requires dual information Computing the value function (or even an approximation) is difficult even in a small neighborhood Our approach is to begin by considering the value functions of various single-row relaxations.

4 Previous Work Johnson [97,974,979], Jeroslow [978] : the theory of subadditive duality for integer linear programs. Pure Integer Programs: Jeroslow [98] : Gomory functions - maximum of finitely many subadditive functions. Lasserre [004] : generating functions, two-sided Z transformation. Loera et al. [004] : generating functions, global test set. Mixed Integer Programs: Jeroslow [98] : minimum of finitely many Gomory functions. Blair [995] : Jeroslow formula - consisting of a Gomory function and a correction term.

5 Definitions Definitions Linear Approximation Properties We consider the primal problem min cx, x S (P) c R n, S = {x Z r + R n r + a x = b} with a Q n, b R. The value function of (P) is z(d) = min x S(d) cx, where for a given d R, S(d) = {x Z r + R n r + a x = d}. Assumptions: Let I = {,...,r}, C = {r +,...,n}, N = I C. z(0) = 0 = z : R R {+ }, N + = {i N a i > 0} and N = {i N a i < 0}, r < n, that is, C = z : R R.

6 Example Definitions Linear Approximation Properties min x + x + x 4 + x x 6 s.t x x + x + x 4 x 5 + x 6 = b and x, x, x Z +, x 4, x 5, x 6 R +. z F d

7 Lower Bound (LP Relaxation) Definitions Linear Approximation Properties The value function of the LP relaxation yields a lower bound. In this case, it has a convenient closed form: ηd if d > 0, F L (d) = max{ud ζ u η, u R} = 0 if d = 0, ζd if d < 0. where F L z. η = min{ c i a i i N + } and ζ = max{ c i a i i N }.

8 Definitions Linear Approximation Properties Upper Bound (Continuous Relaxation) To get an upper bound, we consider only the continuous variables: F U (d) = min{ c i x i η C d if d > 0 a i x i = d, x i 0 i C} = 0 if d = 0 i C i C ζ C d if d < 0 where η C = min{ c i a i i C + = {i C a i > 0}} and ζ C = max{ c i a i i C = {i C a i < 0}} By convention: C + η C =. C ζ C =. F U z

9 Example (cont d) Definitions Linear Approximation Properties We have η =, ζ = 0, ηc = and ζ C =. Consequently, { F L (d) = d if d 0 { d if d 0 and F 0 if d < 0 U (d) = d if d < 0 z(d) F U(d) F L(d) ζ C 5 η C ζ η d

10 Observations Definitions Linear Approximation Properties {η = η C } {z(d) = F U (d) = F L (d) d R + } {ζ = ζ C } {z(d) = F U (d) = F L (d) d R } z(d) F U(d) F L(d) ζ C 5 η C ζ η d

11 Observations Definitions Linear Approximation Properties Let d + U = sup{d 0 z(d) = F U (d)} d U = inf{d 0 z(d) = F U (d)}, d + L = inf{d > 0 z(d) = F L (d)} d L = sup{d < 0 z(d) = F L (d)}. z(d) F U(d) F L(d) 5 d d L U d + d + U L d

12 Observations Definitions Linear Approximation Properties z(d) = F U (d) d (d U, d+ U ) d + L d+ U if d+ L > 0 and d L d U if d L < 0 if b {d R z(d) = F L (d)}, then, z(kb) = kf L (b), k Z + z(d) F U(d) F L(d) 5 d d d L L U d + d + d + U L L d

13 Observations Definitions Linear Approximation Properties Notice the relation between F U and the linear segments of z: {η C,ζ C } z(d) F U(d) F L(d) 5 d d d L L U d + d + d + U L L d

14 Redundant Variables Definitions Linear Approximation Properties Let T C be such that t + T if and only if η C < and η C = c t + a t + t T if and only if ζ C > and ζ C = c t a t. and define and similarly, ν(d) = min s.t. c I x I + c T x T a I x I + a T x T = d x I Z I +, x T R T + Then ν(d) = z(d) for all d R. The variables in C\T are redundant. z can be represented with at most continuous variables.

15 Jeroslow Formula Definitions Linear Approximation Properties Let M Z + be such that for any t T, Maj a t Z for all j I. Then there is a Gomory function g such that z(d) = min {g( d t T t ) + c t (d d a t )} d R t where d t = at Md M a t. The Gomory function above is the value function of a related PILP: g(q) = min c I x I + M c Tx T + z(ϕ)v s.t a I x I + M a Tx T + ϕv = q x I Z I +, x T Z+, T v Z + for all q R, where ϕ = M t T a t.

16 Definitions Linear Approximation Properties Piecewise-Linearity of the Value Function For t T, setting we can write ω t (d) = g( d t ) + c t a t (d d t ) d R, z(d) = min t T ω t(d) d R For t T, ω t is piecewise linear with finitely many linear segments on any closed interval and each of those linear segments has a slope of η C if t = t + or ζ C if t = t. Thus, z is also piecewise-linear with finitely many linear segments on any closed interval. Furthermore, each of those linear segments has a slope of η C or ζ C.

17 Structure of Linear Pieces Definitions Linear Approximation Properties Theorem If the value function z is linear on an interval U R, then there exists a ȳ Z I + such that ȳ is the integral part of an optimal solution for any d U. Consequently, for some t T, z can be written as z(d) = c I ȳ + c t a t (d a I ȳ) d U. Furthermore, for any d U, we have d a I ȳ 0 if t = t + and d a I ȳ 0 if t = t.

18 Example (cont d) Definitions Linear Approximation Properties T = {4, 5} and hence, x 6 is redundant. η C = and ζ C =, z d U = [0, /], U = [/, ], U = [, 7/6], U 4 = [7/6, /],... y = (0 0 0), y = ( 0 0), y = ( 0 0), y 4 = (0 0 ),... d if d U d + / if d U z(d) = d / if d U d + if d U 4...

19 Continuity Definitions Linear Approximation Properties ω t + is continuous from the right and ω t is continuous from the left. ω t + and ω t are both lower-semicontinuous. Theorem If z is discontinuous at a right-hand-side b R, then there exists a ȳ Z I + such that b a I ȳ = 0. z is lower-semicontinuous. η C < if and only if z is continuous from the right. ζ C > if and only if z is continuous from the left. Both η C and ζ C are finite if and only if z is continuous everywhere.

20 Example Definitions Linear Approximation Properties η c = /, ζ C =. min x /4x + /4x s.t 5/4x x + /x = b, x, x Z +, x R For each discontinuous point d i, we have d i (5/4y i y i ) = 0 and each linear segment has the slope of η C = /.

21 Let f : [0, h] R, h > 0 be subadditive and f(0) = 0. The maximal subadditive extension of f from [0, h] to R + is f(d) if d [0, h] f S (d) = inf f(ρ) if d > h, C C(d) ρ C C(d) is the set of all finite collections {ρ,..., ρ R} such that ρ i [0, h], i =,..., R and P R i= ρi = d. Each collection {ρ,..., ρ R} is called an h-partition of d. We can also extend a subadditive function f : [h, 0] R, h < 0 to R similarly. f S is subadditive and if g is any other subadditive extension of f from [0, h] to R +, then g f S (maximality).

22 Lemma What if we use z as the seed function? We can change the inf to min : Let the function f : [0, h] R be defined by f(d) = z(d) d [0, h]. Then, z(d) if d [0, h] f S (d) = min z(ρ) if d > h. C C(d) ρ C For any h > 0, z(d) f S (d) d R +. Observe that for d R +, f S (d) z(d) while h. Is there an h < such that f S (d) = z(d) d R +?

23 We can get the value function by extending it from a specific neighborhood. Theorem Let d r = max{a i i N} and d l = min{a i i N} and let the functions f r and f l be the maximal subadditive extensions of z from the intervals [0, d r ] and [d l, 0] to R + and R, respectively. Let { fr (d) d R F(d) = + f l (d) d R then, z = F. Outline of the Proof. z F : By construction. z F : Using MILP duality, F is dual feasible. In other words, the value function is completely encoded by the breakpoints in [d l, d r ] and slopes.

24 Constructing The Value Function Two questions Can we obtain the list of breakpoints efficiently? Can we obtain z(d) for some d [d l, d r] from the resulting encoding? We address the second question first. Consider evaluating z(d) = min C C(d) ρ C Can we limit C, C C(d)? Yes! Can we limit C(d)? Yes! z(ρ) for d [d l, d r ].

25 Theorem Let d > d r and let k d be the integer such that d ( k d d r, k d+ d r ]. Then z(d) = min{ k d i= z(ρ i ) k d i= ρ i = d,ρ i [0, d r ], i =,..., k d }. Therefore, C k d for any C C(d). How about C(d)?

26 Lower Break Points Theorem Set Ψ be the lower break points of z in [0, d r ]. For any d R + \[0, d r ] there is an optimal d r -partition C C(d) such that C\Ψ. In particular, we only need to consider the collection Λ(d) {H {µ} H C(d µ) Ψ k d, ρ Hρ + µ = d, µ [0, d r ]} In other words, z(d) = min C Λ(d) ρ C Observe that the set Λ(d) is finite. z(ρ) d R + \[0, d r ]

27 Example (cont d) For the interval [ 0, ], we have Ψ = {0,, }. For b = 5 8, C = { 8,, } is an optimal d r -partition with C\Ψ =. z(d) U-bp L-bp d

28 Combinatorial Approach We can formulate the problem of evaluating z(d) for d R + \[0, d r ] as a Constrained Shortest Path Problem. Among the paths (feasible partitions) of size k b with exactly k b edges (members of each partition) of each path chosen from Ψ, we need to find the minimum-cost path with a total length of d.

29 Recursive Construction Set Ψ(p) to the set of the lower break points of z in the interval (0, p] p R +. Let p := d r. For any d `p, p + p, let z(d) = min{z(ρ ) + z(ρ ) ρ + ρ = d, ρ Ψ(p), ρ (0, p]} Let p := p + p and repeat this step.

30 We can also do the following: z(d) = min g j (d) d j ( p, p + p ] where, for each d j Ψ(p), the functions g j : [ 0, p + p ] R { } are defined as z(d) if d d j, g j (d) = z(d j ) + z(d d j ) if d j < d p + d j, otherwise. Because of subadditivity, we can then write z(d) = min g j (d) d j ( 0, p + p ].

31 Example (cont d) Extending the value function of () from [ [ ] 0, ] to 0, 9 4 z(d) F U(d) F L(d) d

32 Example (cont d) Extending the value function of () from [ [ ] 0, ] to 0, 9 4 z(d) F U(d) F L(d) 5 g g d

33 Example (cont d) Extending the value function of () from [ [ ] 0, ] to 0, 9 4 z(d) F U(d) F L(d) d

34 Example (cont d) Extending the value function of () from [ [ ] 0, 4] 9 to 0, 7 8 z(d) F U(d) F L(d) d

35 Example (cont d) Extending the value function of () from [ [ ] 0, 4] 9 to 0, 7 8 z(d) F U(d) F L(d) 5 g g g g d

36 Example (cont d) Extending the value function of () from [ [ ] 0, 4] 9 to 0, 7 8 z(d) F U(d) F L(d) d

37 Finding the Breakpoints Note that z overlaps with F U = η C d in a right-neighborhood of origin and with F U = ζ C d in a left-neighborhood of origin. The slope of each linear segment is either η C or ζ C. Furthermore, if both η C and ζ C are finite, then the slopes of linear segments alternate between η C and ζ C (continuity). For d, d [0, d r] (or [d l, 0]), if z(d ) and z(d ) are on the line with the slope of η C (or ζ C ), then z is linear over [d, d ] with the same slope (subadditivity). With these observations, we can formulate a finite algorithm to evaluate z in [d l, d r ].

38 Example (cont d) η C ζ C 0 Figure: Evaluating z in [0, ]

39 Example (cont d) η C ζ C 0 Figure: Evaluating z in [0, ]

40 Example (cont d) η C ζ C 0 Figure: Evaluating z in [0, ]

41 Example (cont d) η C ζ C 0 Figure: Evaluating z in [0, ]

42 Computational experiments Extending our results to bounded case. Extending results to multiple rows. Approximating the value function of a general MILP using the value functions of single constraint relaxations. Applying results to bilevel programming.

43 Jeroslow Formula - General MILP Let the set E consist of the index sets of dual feasible bases of the linear program min{ M c Cx C : M A Cx C = b, x 0} where M Z + such that for any E E, MA E aj Z m for all j I. Theorem (Jeroslow Formular) There is a g G m such that z(d) = min E E g( d E ) + v E(d d E ) d R m with S(d), where for E E, d E = A E A E d and v E is the corresponding basic feasible solution.

The Value function of a Mixed-Integer Linear Program with a Single Constraint

The Value function of a Mixed-Integer Linear Program with a Single Constraint The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu University of Wisconsin February

More information

On the Value Function of a Mixed Integer Linear Program

On the Value Function of a Mixed Integer Linear Program On the Value Function of a Mixed Integer Linear Program MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University ted@lehigh.edu AIRO, Ischia, Italy, 11 September 008 Thanks: Work supported

More information

Bilevel Integer Linear Programming

Bilevel Integer Linear Programming Bilevel Integer Linear Programming TED RALPHS SCOTT DENEGRE ISE Department COR@L Lab Lehigh University ted@lehigh.edu MOPTA 2009, Lehigh University, 19 August 2009 Thanks: Work supported in part by the

More information

Integer Programming Duality

Integer Programming Duality Integer Programming Duality M. Guzelsoy T. K. Ralphs July, 2010 1 Introduction This article describes what is known about duality for integer programs. It is perhaps surprising that many of the results

More information

Duality for Mixed-Integer Linear Programs

Duality for Mixed-Integer Linear Programs Duality for Mixed-Integer Linear Programs M. Guzelsoy T. K. Ralphs Original May, 006 Revised April, 007 Abstract The theory of duality for linear programs is well-developed and has been successful in advancing

More information

Bilevel Integer Linear Programming

Bilevel Integer Linear Programming Bilevel Integer Linear Programming SCOTT DENEGRE TED RALPHS ISE Department COR@L Lab Lehigh University ted@lehigh.edu Université Bordeaux, 16 December 2008 Thanks: Work supported in part by the National

More information

Bilevel Integer Programming

Bilevel Integer Programming Bilevel Integer Programming Ted Ralphs 1 Joint work with: Scott DeNegre 1, Menal Guzelsoy 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University Norfolk Southern Ralphs, et al.

More information

On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction

On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction Ted K. Ralphs and Anahita Hassanzadeh Department of Industrial and Systems Engineering, Lehigh

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

Bilevel Integer Optimization: Theory and Algorithms

Bilevel Integer Optimization: Theory and Algorithms : Theory and Algorithms Ted Ralphs 1 Joint work with Sahar Tahernajad 1, Scott DeNegre 3, Menal Güzelsoy 2, Anahita Hassanzadeh 4 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Multiobjective Mixed-Integer Stackelberg Games

Multiobjective Mixed-Integer Stackelberg Games Solving the Multiobjective Mixed-Integer SCOTT DENEGRE TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu EURO XXI, Reykjavic, Iceland July 3, 2006 Outline Solving the 1 General

More information

Duality, Warm Starting, and Sensitivity Analysis for MILP

Duality, Warm Starting, and Sensitivity Analysis for MILP Duality, Warm Starting, and Sensitivity Analysis for MILP Ted Ralphs and Menal Guzelsoy Industrial and Systems Engineering Lehigh University SAS Institute, Cary, NC, Friday, August 19, 2005 SAS Institute

More information

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology

Asteroide Santana, Santanu S. Dey. December 4, School of Industrial and Systems Engineering, Georgia Institute of Technology for Some for Asteroide Santana, Santanu S. Dey School of Industrial Systems Engineering, Georgia Institute of Technology December 4, 2016 1 / 38 1 1.1 Conic integer programs for Conic integer programs

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set ON THE FACETS OF THE MIXED INTEGER KNAPSACK POLYHEDRON ALPER ATAMTÜRK Abstract. We study the mixed integer knapsack polyhedron, that is, the convex hull of the mixed integer set defined by an arbitrary

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

IP Duality. Menal Guzelsoy. Seminar Series, /21-07/28-08/04-08/11. Department of Industrial and Systems Engineering Lehigh University

IP Duality. Menal Guzelsoy. Seminar Series, /21-07/28-08/04-08/11. Department of Industrial and Systems Engineering Lehigh University IP Duality Department of Industrial and Systems Engineering Lehigh University COR@L Seminar Series, 2005 07/21-07/28-08/04-08/11 Outline Duality Theorem 1 Duality Theorem Introduction Optimality Conditions

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

A non-standart approach to Duality

A non-standart approach to Duality Department of Industrial and Systems Engineering Lehigh University COR@L Seminar Series, 2005 10/27/2005 Outline 1 Duality Integration & Counting Duality for Integration Brion and Vergne s continuous formula

More information

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem Network Interdiction Stochastic Network Interdiction and to Solve a Stochastic Network Interdiction Problem Udom Janjarassuk Jeff Linderoth ISE Department COR@L Lab Lehigh University jtl3@lehigh.edu informs

More information

Strong Dual for Conic Mixed-Integer Programs

Strong Dual for Conic Mixed-Integer Programs Strong Dual for Conic Mixed-Integer Programs Diego A. Morán R. Santanu S. Dey Juan Pablo Vielma July 14, 011 Abstract Mixed-integer conic programming is a generalization of mixed-integer linear programming.

More information

Chapter 1 Linear Programming. Paragraph 5 Duality

Chapter 1 Linear Programming. Paragraph 5 Duality Chapter 1 Linear Programming Paragraph 5 Duality What we did so far We developed the 2-Phase Simplex Algorithm: Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution

More information

Mixed-integer nonlinear programming, Conic programming, Duality, Cutting

Mixed-integer nonlinear programming, Conic programming, Duality, Cutting A STRONG DUAL FOR CONIC MIXED-INTEGER PROGRAMS DIEGO A. MORÁN R., SANTANU S. DEY, AND JUAN PABLO VIELMA Abstract. Mixed-integer conic programming is a generalization of mixed-integer linear programming.

More information

Subadditive Approaches to Mixed Integer Programming

Subadditive Approaches to Mixed Integer Programming Subadditive Approaches to Mixed Integer Programming by Babak Moazzez A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO350 Linear Programming Chapter 6: The Simplex Method 8th June 2005 Chapter 6: The Simplex Method 1 Minimization Problem ( 6.5) We can solve minimization problems by transforming it into a maximization

More information

1 Review of last lecture and introduction

1 Review of last lecture and introduction Semidefinite Programming Lecture 10 OR 637 Spring 2008 April 16, 2008 (Wednesday) Instructor: Michael Jeremy Todd Scribe: Yogeshwer (Yogi) Sharma 1 Review of last lecture and introduction Let us first

More information

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Laura Galli 1 Adam N. Letchford 2 Lancaster, April 2011 1 DEIS, University of Bologna, Italy 2 Department of Management Science,

More information

Some cut-generating functions for second-order conic sets

Some cut-generating functions for second-order conic sets Some cut-generating functions for second-order conic sets Asteroide Santana 1 and Santanu S. Dey 1 1 School of Industrial and Systems Engineering, Georgia Institute of Technology June 1, 2016 Abstract

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University MOA 2016, Beijing, China, 27 June 2016 What Is This Talk

More information

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts

Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Structure in Mixed Integer Conic Optimization: From Minimal Inequalities to Conic Disjunctive Cuts Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University Joint work with Sercan Yıldız

More information

Minimal Valid Inequalities for Integer Constraints

Minimal Valid Inequalities for Integer Constraints Minimal Valid Inequalities for Integer Constraints Valentin Borozan LIF, Faculté des Sciences de Luminy, Université de Marseille, France borozan.valentin@gmail.com and Gérard Cornuéjols Tepper School of

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

4. The Dual Simplex Method

4. The Dual Simplex Method 4. The Dual Simplex Method Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell Problem Solving and Constraint Programming (RPAR) Session 4 p.1/34 Basic Idea (1) Algorithm as explained so far known

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University COLGEN 2016, Buzios, Brazil, 25 May 2016 What Is This Talk

More information

Multi-Row Cuts in Integer Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh

Multi-Row Cuts in Integer Programming. Tepper School of Business Carnegie Mellon University, Pittsburgh Multi-Row Cuts in Integer Programming Gérard Cornuéjols Tepper School o Business Carnegie Mellon University, Pittsburgh March 2011 Mixed Integer Linear Programming min s.t. cx Ax = b x j Z or j = 1,...,

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

On Sublinear Inequalities for Mixed Integer Conic Programs

On Sublinear Inequalities for Mixed Integer Conic Programs Noname manuscript No. (will be inserted by the editor) On Sublinear Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Daniel E. Steffy Submitted: December 2014; Revised: July 7, 2015 Abstract

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

Linear Programming Redux

Linear Programming Redux Linear Programming Redux Jim Bremer May 12, 2008 The purpose of these notes is to review the basics of linear programming and the simplex method in a clear, concise, and comprehensive way. The book contains

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover duality 1 Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover Guy Kortsarz duality 2 The set cover problem with uniform costs Input: A universe U and a collection of subsets

More information

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 13. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 13 Dr. Ted Ralphs IE406 Lecture 13 1 Reading for This Lecture Bertsimas Chapter 5 IE406 Lecture 13 2 Sensitivity Analysis In many real-world problems,

More information

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

On the Relative Strength of Split, Triangle and Quadrilateral Cuts On the Relative Strength of Split, Triangle and Quadrilateral Cuts Amitabh Basu Pierre Bonami Gérard Cornuéjols François Margot Abstract Integer programs defined by two equations with two free integer

More information

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming

Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Discrete Optimization 2010 Lecture 7 Introduction to Integer Programming Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Intro: The Matching

More information

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009

Lessons from MIP Search. John Hooker Carnegie Mellon University November 2009 Lessons from MIP Search John Hooker Carnegie Mellon University November 2009 Outline MIP search The main ideas Duality and nogoods From MIP to AI (and back) Binary decision diagrams From MIP to constraint

More information

Sufficiency of Cut-Generating Functions

Sufficiency of Cut-Generating Functions Sufficiency of Cut-Generating Functions Gérard Cornuéjols 1, Laurence Wolsey 2, and Sercan Yıldız 1 1 Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United

More information

Structure of Valid Inequalities for Mixed Integer Conic Programs

Structure of Valid Inequalities for Mixed Integer Conic Programs Structure of Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University 18 th Combinatorial Optimization Workshop Aussois, France January

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Lagrangean relaxation

Lagrangean relaxation Lagrangean relaxation Giovanni Righini Corso di Complementi di Ricerca Operativa Joseph Louis de la Grange (Torino 1736 - Paris 1813) Relaxations Given a problem P, such as: minimize z P (x) s.t. x X P

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Lift-and-Project Inequalities

Lift-and-Project Inequalities Lift-and-Project Inequalities Q. Louveaux Abstract The lift-and-project technique is a systematic way to generate valid inequalities for a mixed binary program. The technique is interesting both on the

More information

Mixing Inequalities and Maximal Lattice-Free Triangles

Mixing Inequalities and Maximal Lattice-Free Triangles Mixing Inequalities and Maximal Lattice-Free Triangles Santanu S. Dey Laurence A. Wolsey Georgia Institute of Technology; Center for Operations Research and Econometrics, UCL, Belgium. 2 Outline Mixing

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

On the Relative Strength of Split, Triangle and Quadrilateral Cuts On the Relative Strength of Split, Triangle and Quadrilateral Cuts Amitabh Basu Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 53 abasu@andrew.cmu.edu Pierre Bonami LIF, Faculté

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

On Subadditive Duality for Conic Mixed-Integer Programs

On Subadditive Duality for Conic Mixed-Integer Programs arxiv:1808.10419v1 [math.oc] 30 Aug 2018 On Subadditive Duality for Conic Mixed-Integer Programs Diego A. Morán R. Burak Kocuk Abstract It is known that the subadditive dual of a conic mixed-integer program

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity Mohammadreza Samadi, Lehigh University joint work with Frank E. Curtis (stand-in presenter), Lehigh University

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Lecture 7: Lagrangian Relaxation and Duality Theory

Lecture 7: Lagrangian Relaxation and Duality Theory Lecture 7: Lagrangian Relaxation and Duality Theory (3 units) Outline Lagrangian dual for linear IP Lagrangian dual for general IP Dual Search Lagrangian decomposition 1 / 23 Joseph Louis Lagrange Joseph

More information

The Strong Duality Theorem 1

The Strong Duality Theorem 1 1/39 The Strong Duality Theorem 1 Adrian Vetta 1 This presentation is based upon the book Linear Programming by Vasek Chvatal 2/39 Part I Weak Duality 3/39 Primal and Dual Recall we have a primal linear

More information

Semidefinite Programming

Semidefinite Programming Chapter 2 Semidefinite Programming 2.0.1 Semi-definite programming (SDP) Given C M n, A i M n, i = 1, 2,..., m, and b R m, the semi-definite programming problem is to find a matrix X M n for the optimization

More information

Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds

Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds Kenya Ueno The Young Researcher Development Center and Graduate School of Informatics, Kyoto University kenya@kuis.kyoto-u.ac.jp Abstract.

More information

Introduction to integer programming II

Introduction to integer programming II Introduction to integer programming II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

On Sublinear Inequalities for Mixed Integer Conic Programs

On Sublinear Inequalities for Mixed Integer Conic Programs Noname manuscript No. (will be inserted by the editor) On Sublinear Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Daniel E. Steffy Submitted: December 2014; Revised: July 2015 Abstract

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization February 12, 2002 Overview The Practical Importance of Duality ffl Review of Convexity ffl A Separating Hyperplane Theorem ffl Definition of the Dual

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21 1 / 21 Linear Programming Operations Research Anthony Papavasiliou Contents 2 / 21 1 Primal Linear Program 2 Dual Linear Program Table of Contents 3 / 21 1 Primal Linear Program 2 Dual Linear Program Linear

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Corner Polyhedron and Intersection Cuts

Corner Polyhedron and Intersection Cuts Corner Polyhedron and Intersection Cuts Michele Conforti 1,5, Gérard Cornuéjols 2,4 Giacomo Zambelli 3,5 August 2010 Revised March 2011 Abstract Four decades ago, Gomory introduced the corner polyhedron

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

On the knapsack closure of 0-1 Integer Linear Programs

On the knapsack closure of 0-1 Integer Linear Programs On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti 1 Dipartimento di Ingegneria dell Informazione University of Padova Padova, Italy Andrea Lodi 2 Dipartimento di Elettronica, Informatica

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

March 13, Duality 3

March 13, Duality 3 15.53 March 13, 27 Duality 3 There are concepts much more difficult to grasp than duality in linear programming. -- Jim Orlin The concept [of nonduality], often described in English as "nondualism," is

More information

A New Subadditive Approach to Integer Programming: Theory and Algorithms

A New Subadditive Approach to Integer Programming: Theory and Algorithms A New Subadditive Approach to Integer Programming: Theory and Algorithms Diego Klabjan Department of Mechanical and Industrial Engineering University of Illinois at Urbana-Champaign Urbana, IL email: klabjan@uiuc.edu

More information

Column basis reduction and decomposable knapsack problems

Column basis reduction and decomposable knapsack problems Column basis reduction and decomposable knapsack problems Bala Krishnamoorthy Gábor Pataki Abstract We propose a very simple preconditioning method for integer programming feasibility problems: replacing

More information

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Gérard Cornuéjols 1 and Yanjun Li 2 1 Tepper School of Business, Carnegie Mellon

More information

Chapter 3, Operations Research (OR)

Chapter 3, Operations Research (OR) Chapter 3, Operations Research (OR) Kent Andersen February 7, 2007 1 Linear Programs (continued) In the last chapter, we introduced the general form of a linear program, which we denote (P) Minimize Z

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Cut-Generating Functions for Integer Linear Programming

Cut-Generating Functions for Integer Linear Programming Cut-Generating Functions for Integer Linear Programming By: Masumi Sugiyama Faculty advisor: Matthias Köppe Senior thesis June 2015 UNIVERSITY OF CALIFORNIA, DAVIS COLLEGE OF LETTERS AND SCIENCE DEPARTMENT

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

Integer Programming. The focus of this chapter is on solution techniques for integer programming models.

Integer Programming. The focus of this chapter is on solution techniques for integer programming models. Integer Programming Introduction The general linear programming model depends on the assumption of divisibility. In other words, the decision variables are allowed to take non-negative integer as well

More information

Robust Integer Programming

Robust Integer Programming Robust Integer Programming Technion Israel Institute of Technology Outline. Overview our theory of Graver bases for integer programming (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

More information

Introduction to optimization

Introduction to optimization Introduction to optimization Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 24 The plan 1. The basic concepts 2. Some useful tools (linear programming = linear optimization)

More information

New Class of duality models in discrete minmax fractional programming based on second-order univexities

New Class of duality models in discrete minmax fractional programming based on second-order univexities STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING Stat., Optim. Inf. Comput., Vol. 5, September 017, pp 6 77. Published online in International Academic Press www.iapress.org) New Class of duality models

More information