Non equilibrium ionization in magnetized twotemperature thermal plasma


 Rodney Warren
 1 years ago
 Views:
Transcription
1 Non equilibrium ionization in magnetized twotemperature thermal plasma Isabelle Choquet Brigitte LucquinDesreux Abstract A thermal plasma is studied accounting for both impact ionization, and an electromagnetic field. This plasma problem is modeled based on a system of Boltzmann type transport equations. Electronneutral collisions are assumed to be much more frequently elastic than inelastic, to complete previous investigations of thermal plasma [4][6]. A viscous hydrodynamic/diffusion limit is derived in two stages doing an Hilbert expansion and using the ChapmanEnskog method. The resultant viscous fluid model is characterized by two temperatures, and non equilibrium ionization. Its diffusion coefficients depend on the magnetic field, and can be computed explicitely. Keywords: gas mixture, disparate masses, impact ionization, inelastic collisions, diffusion approximation, fluid limit, Hilbert expansion, ChapmanEnskog theory, partial thermal equilibrium, nonequilibrium ionization. Introduction In this study we pursue the investigation of arc discharges in thermal regime treated in the references [4][6], and extend this investigation of thermal plasma to induction thermal plasma. A thermal plasma is characterized by dominant thermal effects coupled with fluid dynamic. When made by an arc discharge or an imposed magnetic field, its thermal and kinetic energies result from a transfer of electromagnetic AMS Classification : 4A60, 76P05, 76X05, 82B40, 82C05, 82C70, 82D0 Department of Engineering Science, University West, Gustava Melins gata 2, Trollhättan, Sweden, UPMC Univ Paris 6, UMR 7598, LJLL, Paris, F France, CNRS, UMR 7598, LJLL, Paris, F France,
2 energy. Examples of applications of thermal plasma concern i material processing based on thermal energy transfer [0]: cutting, melting, welding, plasma spraying and vitrification, and ii propulsion with electrothermal thrusters [5]. Material processing generally makes a direct use of the thermal energy, while electrothermal thrusters further convert it into directed kinetic energy. Plasma with a lower ionization degree than a thermal plasma, or glow plasma, was studied by Degond et al. in [8], and by Choquet et al. in [6] accounting for impact ionization. On the other hand, the case of a fully ionized plasma was investigated by Degond et al. in [7], [9], and by LucquinDesreux in [8] for multicharged ions and in [7] in the presence of a magnetic field. The remaining part of this introduction is organized as follows: we first recall some properties of thermal plasma usefull for setting the problem, the scaling, and discussing the results. Next we do summarize specificities of previous studies on thermal plasma modelling [4][6], to underline the new aspects of the present study. Then we do present some of the main results of this paper. Based on reference models available in the literature, we discuss the inviscid fluid model obtained in this study. Finaly we outline the steps of the model derivation, which are further developed in the rest of this paper. Physical properties of thermal plasma  A thermal plasma can be made in different ways. A traditional way consists in forming an arc dicharge by applying a potential difference between electrodes separated by a neutral gas, as in [2], [4], [26], and [29]. More details about arc discharges and comparisons with other electric discharges can be found in [5]. The structure of a thermal plasma arc is not homogeneous. For this reason it is usually modeled by doing a splitting into different subregions: the main core or plasma column, and the thin electrode layers made of an ionization zone or presheath and a space charge layer or sheath. A further detailed description of these subregions can be found in [4]. A thermal plasma can also be made applying instead a magnetic field to a neutral gas, to form a socalled induction thermal plasma as in [30], [3]. It can as well result from the interaction of a glow discharge cold, luminous and selfsustained electric arc with an electron beam for instance, as modeled in [6]. Or it can result from a very strong compression wave, as in hypersonic flow. In the sequel we focus on the first cases, cases in which an external electric or magnetic field is imposed. From now on we 2
3 will simply call them thermal plasma. Two important physical characteristics specific to thermal plasma except in an arc sheath, and useful for the present study are [22], [27] : i a weak ionization degree δ of the order of 0 3 to 0, and ii a moderate electromagnetic field. The ionization degree δ is defined as the ratio of the electron number density ρ e to the neutral number density ρ n : δ = ρ e /ρ n. The electromagnetic field comprises the imposed electric or magnetic field and the resultant induced field. This last one can be obtained based on the Maxwell equations. A moderate electromagnetic field means here a field large enough to promote impact ionization but small enough to avoid runaway electrons. In this context neutrals, ions and electrons coexist. The numerical density of neutrals is much larger than the numerical density of any charged particle, so that collisions between neutral particles are the most frequent. These neutralneutral collisions define in the sequel the smallest time scale for collisions. They govern the velocity of neutral particles, which is random. Charged particles are also subject to collisions mostly with neutrals that govern the random component of their velocity. They do have an additional velocity component: the drift velocity induced by the electromagnetic field. The proportionality factor between drift velocity and electromagnetic field, or mobility, is inversely proportional to the mass of the charged particle. Because of a much lower mobility, the drift velocity of an ion is at least two orders of magnitude lower than the drift velocity of an electron. In the context of a moderate field, the drift velocity is then negligible for ions while significant for electrons. Furthermore, the characteristic drift velocity of electrons does not exceed their characteristic random velocity no runaway. This last property dictates in the sequel the scaling of the electromagnetic forces. If the thermal plasma is locally neutral, the electric current only results from the drift motion of charged particles. It is then mainly due to electron drift. The electron drift is damped by the electron collisions resulting in a loss of electron momentum along the electromagnetic field. Electronelectron and electronion collisions do not produce any significant resistance to electron drift. The former because it conserves the total current of the pair, and the later because it happens too rarely in a weakly ionized plasma. Electronneutral collision is here the most frequent type 3
4 of collision for electrons. When elastic, it can allow transferring to a neutral the momentum and energy gained by an electron from the electromagnetic field along its free flight. Electronneutral collisions can thereby significantly impede the electron drift along the field. This mechanism is also the basic principle of operation of thermal plasma used for propulsion and material processing : the plasma ability to transfer electromagnetic energy into thermal energy via Joule heating. The thermal energy is distributed among the particles via various elastic and inelastic collision processes. The elastic ones include: i collisions between charged particles, governed by long range Coulomb interaction modeled by FokkerPlanck Landau operator, and ii binary collisions involving at least one neutral particle modeled by Boltzmann operator. The inelastic collision retained here is the impact ionization and its reverse recombination, where the ionization energy is provided by an electron. We thus consider a plasma pressure of the order of the atmospheric pressure, so that radiative ionization and recombination are negligible compared with impact ionization and recombination. In addition we do the usual assumption of optically thin plasma, implying that the emitted radiation is not reabsorbed and radiative phenomena can be neglected compared with collision phenomena. Notice that in practice thermal plasmas are often optically thick to some wavelength [27]. The efficiency of energy transfer by elastic collision is proportional to the mass ratio of the colliding particles. This may lead to differences in thermal equilibrium for the various types of species present in the plasma. The energy transfer between heavy particles neutrals, ions is indeed much more efficient than the energy transfer between heavy particle and electron. As a result, the heavy particles can tend towards the same thermal equilibrium. In contrast, electrons may have a larger temperature assuming that they do reach a thermal equilibrium in regions where their frequency of elastic collision with heavy particles is low, such as in the presheath of and arc. In a similar way, in regions where the frequency of inelastic collision between electron and neutral is low, the ionization balance also called Saha balance is not reached. These two types of deviations from equilibrium thermal and Saha can decisively determine the thermal plasma behavior. They do increase when the electron density decreases, such as in the outer regions of the plasma. The density threshold below which thermal and Saha deviation appears is not strictly the same. The characteristic frequency of both elastic and inelastic collisions between electrons and neutrals are thus important parameters that dictate the order of magnitude of 4
5 collision operators and in turn govern the behavior of the macroscopic limit. Context of this study  Thermal plasmas were previously studied in [4][6] in the presence of an electric field but no magnetic field and accounting for impact ionization. These studies share a common point with the present work: the small parameters defined by the ionisation degree δ and the mass ratio of electron to neutral ε = m e /m n are in all cases of same order, δ = ε. The developments done below thus involve only one small parameter, namely ε. The basic difference lies in the ordering of the elastic and inelastic collision frequencies between electrons and neutrals, ν el τ en and ν inel τ ir, respectively. Thermal plasma with strong ionisation ν inel = ν el is treated in [6]. The impact ionization is then a leading collisional process for both ions and electrons. As a main consequence, the equilibrium distribution function of electrons is a Maxwellian, ionization equilibrium is satisfied Saha balance, and the diffusion coefficients of the fluid model derived for electrons depend on the ionization process. These coefficients are defined implicitely as functions of the first order correction of the electron distribution function. Thermal plasma with moderate ionisation ν inel = εν el is investigated in [4] [5]. The impact ionization is then a leading collisional process for ions, but no longer for electrons. The equilibrium distribution function of electrons is still Maxwellian, ionization equilibrium is also satisfied Saha balance, but the diffusion coefficients of the fluid model derived for electrons do not depend on the ionization process. These coefficients are again defined implicitely as functions of the first order correction of the electron distribution function. The case of thermal plasma with weak ionization ν inel = ε 2 ν el is investigated in the present study. Results of this study  Some of the main results of this paper are now summarized and discussed. In the frame of a thermal plasma with ν inel = ε 2 ν el, the impact ionization is no longer a leading order collisional process. The equilibrium states obtained for neutral particles and ions are Maxwellians characterized by the same mean velocity u and temperature T. As expected at the order ε 0 and for low concentrations of charged particles, electrons do not affect the heavy particle distributions, ions do not affect the neutrals, and the energy gained by ion drift along the electric field is negligible a higher order development is needed 5
6 to observe it. The resultant Euler system governing the density, momentum and energy of the neutral species is thus totally independant of the other species. The equilibrium distribution obtained for the electrons is a centered Maxwellian at temperature. The electrons mean velocity thus differs from the mean velocity of the whole fluid. The partial local thermal equilibrium T expresses the poor efficiency of energy transfer in collisions between particles of disparate masses. During elastic lightheavy collisions, the velocity of the heavy particle is indeed almost unchanged, the velocity norm of the electron is also almost unchanged, only its velocity direction is changed. The energy relaxation occurs at the higher order in the developments. Ionization is not at equilibrium no Saha balance so that the density of electrons is governed by a continuity equation, instead of being defined from the electron temperature and the densities of the heavy particles via a generalized Saha law as in [4][6]. The electron density and temperature satisfy an energytransport model in which electrons gain energy by drift along the electric field, and the diffusion matrix depends on the magnetic field B. Each submatrix of the diffusion matrix is anisotropic due to the presence of the magnetic field. It is moreover perfectly computable in terms of B, the neutral density, and the Boltzmann kernel. The first order correction derived for the electron distribution function can be computed explicitely. This allows pushing further the developments to account for viscous effects, and deriving a macroscopic hydrodynamic/diffusion limit at a higher order than previously done in [4][6], using here the rigorous ChapmanEnskog theory. Notice that a particular attention to the scaling of the forces applied on the charge particles is then needed. Computing the corrective terms of higher order, we do obtain a viscous fluid model which is globally conservative, up to the second order. This system governs the number density of neutrals ρ n, ions ρ i, electrons ρ e, the momentum ρ n u and energy W n of neutrals, and the electron energy. It is given in scaled form in theorem 6, section 5. The variables are now changed to the total density ϱ, the total charge χ, the electron density, the heavy species momentum ϱu and energy W, and the electron energy to facilitate the discussion. The scaled 6
7 system then reads, up to the second order ε 2 : t ϱ + divϱu = 0, t χ + divj tot = 0, t ρ e + divj ρe = ρ e, t ϱu + div [ϱ u u] + x ϱt ε div [µ n T σu] = ε[ x ρ e χe + u B + ρ e u J B], t W + div[u W + ρt ] ε div [µ n T σuu] ε div [κt x T ] = ερ i ZE u + εẇch, with t 3 2 ρ e + div j Te = j ρe E Ẇch ρ e, Ẇ ch = u [ x ρ e + ρ e E + ρ e u J B + 3λρ e ρ n T ] 2 The density of electrons does not enter the total density ϱ, as the fluid system 2 results from developments at the order ε. ϱ = α m αρ α is thus the mass density of the mixture made of heavy species of mass m α and number density ρ α, and u is the plasma also heavy particle velocity. χ = Zρ i ρ e is the charge number density of the plasma where Z denotes the ion charge number. From now on we will assume that Z =, to simplify the computations. j tot = χu ρ e u J is the total current density per unit charge, j ρe = ρ e u + u J is the electron current density per unit charge with u J given in and 4345, and j ρt is given in 5. The first term χu of the total current density, j tot, represents charge conduction by the plasma flow. The second term ρ e u J contains the following contributions: the electron drift induced by the electric field, and the diffusion current. The diffusion current is induced by both the ordinary diffusion of electrons, and the thermal diffusion Soret effect resulting from electron temperature gradients. Notice that induction current and Hall current are not observed at this order ε. The diffusion coefficients, obtained from the explicit computation of the first order correction of the electron distribution function do depend on the magnetic field. They are given by and In regions where local electroneutrality is satisfied such as in the plasma core of an arc the charge conservation equation reduces to the usual current continuity law div j tot = 0 and the diffusion coefficients to ambipolar diffusion coefficients. 7
8 The source term in the continuity equation governing the electron number density is the rate of change of number density due to impact ionization and its reverse recombination reaction. This source term ρ e = R e, is given in 34, 40. It represents a relaxation term towards a generalized Saha law that depends on the electron temperature and not on the heavy particle temperature. This Saha law turns out to be a dimensionless version of Eindhoven s formulation [], as previously underlined in [4]. This result thus supports previous argumentations, such as in [], in favour of Eindhoven s generalization of the Saha law. Other generalized formulations, given by Potapov [2] and Van de Sanden [28], can depend on both the electron and the heavy particle temperature. In that case they do not seem to be consistent with the entropy inequality, which is needed to derive the macrosopic limit. The heavy species energy is W = 2 ϱ u ϱT, and σu is the traceless rate of strain tensor where σ ij = u i x j + u j x i 2 3 divuδ ij. µ n T and κ n T are the usual viscosity and thermal conductivity of neutrals [2], [3]. At this order ε the contribution of ions and not only of electrons to the viscosity and thermal conductivity of the plasma indeed turns out to be negligible. The source terms of energy for the heavy species are at the order ε, and include the rate of drift energy gained by ions while moving along the electric field first term and the energy gained per unit time by neutrals during collisions with electrons in Ẇch. Notice that in regions where local electroneutrality is verified the energy gained by electrons and ions from the electric field do cancel each other. As expected, Ẇ ch also appears as a sink term in the equation governing the thermal energy of electrons. Ẇ ch consists of electron thermal diffusion in the first term, energy flux due to electron concentration gradients or Dufour effect, also in the first term, electron drift energy built up along the electric field second term, induced magnetic energy third term, and thermal relaxation due to cooling of electrons by neutrals last term. Comparison with models used for simulating thermal plasma  Models used for simulating thermal plasma often assume thermodynamic and chemical equilibrium. A model in chemical nonequilibrium and thermodynamic equilibrium proposed by Tanaka et al. for a pulsed arc can be found in [25]. The discussion will focus here on models accounting for partial thermodynamic equilibrium. Examples of such models have been proposed by Selezneva et al. for induction plasma [3], 8
9 by Ghorui et al. [2] to study oxygenplasma arc cuting torches, by Gleizes et al. [4] to simulate a SF 6 arc plasma, by Trelles et al. [26] to investigate arc plasma torches used in plasma spraying for instance, and by Wendelstorf [29] to study gas tugnsten arc welding. An important difference compared with the present study is that most of these models except in [29] are obtained assuming local electroneutrality, implying that χ = 0. So the arc models above listed do apply to the plasma core and do not adress the presheath. All these models generally assume that each species satisfy the ideal gas law. However, the closure equation is not yet specified in the fluid system 2. An ideal gas law or a closure equation for thermaly expansible plasma could either be used. For consistency, the comparison with existing models is now done considering also the ideal gas model, and in the particular case χ = 0 except for [29]. Then the main differences are the following:  In the fluid system 2 derived here, ions do not contribute to the heavy species viscosity and thermal conductivity simply as a result of the low ionization degree of a thermal plasma. This is a difference compared with models used in practice for simulating thermal plasma, where the viscosity and thermal conductivity are instead computed for the mixture of heavy species so accounting for ions too, as clearly detailed in [29] for instance.  A term of thermal diffusion of electrons is present in both the momentum and the energy equation for the heavy particles, in the system 2 derived here using the ChapmanEnskog method. This term is not accounted for in [3], [2], [4], [26], and [29].  The magnetic induction is handled differently depending on the author. It is neglected in [4], and [29]. It is accounted for into the current in [2], and [26]. In the fluid model 2 derived here, the magnetic induction comes out at an intermediate order, through the term of energy exchange Ẇch between electrons and heavy particles.  The diffusion matrix derived in this study depends on the magnetic field. On the contrary, the diffusion matrix used in [3] for an induction thermal plasma, for the thermal arc plasma of [2] and [26] based on Murphy s model [9], and [4] based on Gleize et al. model [], and in [29], do not account for the magnetic field. The magnetic field should be significant when applied as external field, such as for induction thermal plasma [30], [3]. When the external field is electric, the 9
10 magnetic field is induced. In regions of the plasma where local electroneutrality is not verified such as in the presheath of an arc the nonzero conductive current induces a magnetic field that should also be significant and could in turns influence the diffusion coefficients. In regions where local electroneutrality is satisfied, such as in most of the plasma core of a thermal arc, the induced magnetic field is generally rather small, and it could thus be neglected in the diffusion matrix. However, this simplification may not hold if the electric potential presents large gradients. Notice that there exist studies focussing on the modeling of transport properties for a twotemperature thermal plasma, such as [24] and [23] for instance. Compared with the present work, the form of the first order perturbation function is presumed in [24] and [23], rather than derived. The expressions proposed in [24] and [23] differ from each other: the electron temperature is scaled by the heavy species temperature in [24] and not in [23]. On the other hand the diffusion coefficients account for the magnetic field in [23] and not in [24]. Outline  To obtain the fluid system 2 we start this study at the kinetic level, introducing in section 2 a system of Boltzmann type transport equations governing the distribution functions of electrons, ions and neutral molecules. This system is coupled through collision operators that involve three collision processes: i elastic binary collisions where at least one particle is neutral Boltzmann, ii elastic binary collisions between charged particles FokkerPlanck, and iii inelastic collisions with impact ionization and its reverse recombination. This system is scaled in section 3. The system involves two small parameters: the ionization level of the plasma, δ, and the relative smallness of the electron mass with respect to the neutral particles, ε 2. Within the frame of thermal plasma these parameters are of same order [5]: δ ε, so that the scaling is done as function of ε alone. An inviscid fluid limit is then derived rigorously in section 5, doing a first order Hilbert expansion at the electron diffusion scale. For readability purpose, preparatory results concerning some properties of the collision operators, and conservation relations of the collision terms, as well as proofs of the inviscid fluid limit, are postponed to appendix A in section 7, appendix B in section 8, and section 6, respectively. The higher order or viscous fluid limit discussed above is derived rigorously in section 6, doing a Chapman Enskog expansion. The entropy of this system is also determined in view of a forthcoming numerical study. 0
11 2 The kinetic model We consider a magnetized plasma made of electrons e, ions i and neutrals n, which interact all together, through elastic and inelastic collisions. The inelastic collision processes is related to ionization and its reverse recombination. Denoting by f α α = e, i, n the distribution function of the α species of mass m α and charge q α, the kinetic system modeling this mixture is given by [4]: t f α + v α x f α + F α m α vα f α = t f α c, 3 where F α denotes the Lorentz force given in terms of the electric field E and the magnetic field B by : F α = q α E + v α B. We suppose that the charges are of the same order of magnitude, more precisely that q i = Zq e = Ze, where e is the elementary charge of an electron and Z = 0. For simplificity, we will suppose from now on that Z =. The notation t f n c stands for the collision terms which are given by: t f α c = Q αα f α, f α + Q αβ f α, f β + Q αγ f α, f γ + Q α,ir f α, f β, f γ, 4 where the superscript ir stands for ionizationrecombination, and α, β, γ = e, i, n with α β γ α. terms, starting with the elastic ones. We now recall the expressions of these different collision When at least one of the two particles α or β is neutral, binary collisions are governed by short range forces and described by Boltzmann operators of the form: Q αβ f α, f β v α = σαβ B v α v β f α f β f α f β dv β dω. 5 IR 3 S 2 + In this expression, v α [resp. v β ] is the velocity of particle α [resp. β] before collision, and f α [resp. f β ] denotes: f α = f α t, x, v α [resp. f β = f β t, x, v β ]. The postcollisional velocities v α and v β are defined from the precollisional velocities v α and v β by: v α = v α 2 µ αβ v α v β Ω Ω and v β = v β + 2 µ αβ v α v β Ω Ω, 6 m α m β where µ αβ = m α m β /m α + m β is the reduced mass, and Ω S+ 2 denotes a unit { vector of part of the unit sphere S 2 of IR 3 defined by: S+ 2 := Ω S 2 ; v α } v β Ω > 0. The notations f α and f β stand for f α t, x, v α and f β t, x, v β,
12 respectively. The scattering cross section σαβ B is a function of the reduced kinetic energy E = µ αβ v α v β 2 vα v and of the angle β v α v β., Ω Elastic collisions between two charged particles α and β are conversely governed by long range Coulomb interactions ; they are modelled by FokkerPlanckLandau operators: Q αβ f α, f β v α = µ2 [ αβ vα σαβ F m v α v β 3 Sv α v β α IR 3 vα f α f β vβ f β f α dv β ], m α m β where α, β = e, i and vα f α = f α v α, while Sw denotes the matrix Sw = Id w w, Id being the identity matrix. Here, the scattering cross section for grazing w 2 collisions σαβ F only depends on the reduced kinetic energy. Radiative ionization and recombination are supposed to be negligible; the ionization process we consider is thus impact ionization. schematized by the following direct and reverse reactions: As Z =, its mechanism can be e + A σd e + e + A + and e + A σr e + e + A +, 7 where e represents an electron, A + a single charged ion, and A the related neutral atom or molecule, while σ d and σ r which are positive stand for the direct and reverse reaction cross sections. Applying the principle of detailed balance, we assume in the sequel that these cross sections are linked through σ d = F 0 σ r, where F 0 is a positive constant, which represents the efficiency of the dissociation with respect to the recombination. The ionizationrecombination operators are then given by: Q e,ir f e, f i, f n v e = σ r δ v δ E f e f e f i F 0 f e f n dv e dve dv i dv n IR 2 8a +2 σ r δ v δ E F 0 f e f n f e f e f i dv e dve dv i dv n, IR 2 Q i,ir f e, f i, f n v i = σ r δ v δ E F 0 f e f n f e f e f i dv e dv e dve dv n, IR 2 8b Q n,ir f e, f i, f n v n = σ r δ v δ E f e f e f i F 0 f e f n dv e dv e dve dv i. IR 2 8c We suppose that the activation energy of impact ionization reactions is given by the electron, so that σ r = σ r v e, v e; v e, and σ r = σ r v e, v e; v e. The notations 2
13 δ E and δ v hold for the energy and momentum conservation during the ionizationrecombination process; more precisely, we have: δ E = δ m e v e 2 + m n v n 2 [m e v e 2 + ve 2 + m i v i ], δ v = δ m e v e + m n v n [m e v e + ve 9 + m i v i ], where δ denotes the Dirac measure, and the ionization energy which is a constant. In the same way, the notations δ E and δ v stand for: δ E = δ m e v e 2 + m n v n 2 [m e v e 2 + ve 2 + m i v i ], δ v = δ m e v e + m n v n [m e v e + ve + m i v i ]. 0 Notice that the indistinguishability of the two electrons in the right hand side of equations 7 and the principle of detailed balance imply that σ r = σ r. We now introduce the characteristic physical units of the problem, in order to scale the kinetic system 3. 3 Scaling of the kinetic system We first introduce the small parameter ε that represents the mass ratio between the electron and the neutral particles : me me ε = = <<. m n m i + m e We suppose that electrons, ions and neutral species have temperatures of same order of magnitude T 0. The characteristic velocities are the respective thermal velocities given by v α 0 = kb T 0 m α, with α = e, i, n, k B being the Boltzmann constant. Consequently, these velocities only depend on the masses, and more precisely we have: v n 0 = ε 2 v i 0 = ε v e 0. We choose x 0 = t 0 v e 0 as reference length ; the reference time t 0 is specified latter on. Concerning the force fields, we choose the electric field unit E 0 and the magnetic 3
14 one B 0 such that the drift energy gained during a mean free path does not exceed the thermal energy: E 0 ex 0 = k B T 0 and B 0 v e 0 = E 0. We assume that the mean numerical densities of the charged particles ρ e 0 and ρ i 0 are both ε smaller than the typical numerical density ρ n 0 of the neutral particles, i.e. : ρ e 0 ρ n 0 = ρ i 0 ρ n 0 = ε. We then get the following orderings : τ ee = ε 2 2 τ ei = ε ε 2 3/2 τ ie = ε ε 2 τ ii, and: τ en = ε ε 2 τ in = ετ nn = ετ ne = ε 2 ε 2 τ ni. All along the present study, we assume that the smallest time scale unit is the one related to the collisions with the neutrals, and more precisely that we set: t 0 = τ en << τ ir = τ ee ε = τ en ε 2. As underlined in the introduction in the subsection Context of this study, these orderings are completely new compared with previous ones [4], [5], [6]. The dimensionless kinetic equations then write: t f e + v e x f e E + v e B ve f e = Q ε ef e, f i, f n, t f i + ε ε 2 v i x f i + E + εv i B vi f i = Q ε i f e, f i, f n, 2 t f n + ε v n x f n = Q ε nf e, f i, f n, where the collision terms have the following orderings : Q ε ef e, f i, f n = Q ε enf e, f n + ε [Q ee f e, f e + Q ε ei f e, f i ] + ε 2 Q ε e,ir f e, f i, f n, Q ε i f ε e, f i, f n = ε 2 Qε in f i, f n [ ] +ε 2 Q iif i, f i + Q ε ε 2 ief i, f e + Q ε i,irf e, f i, f n, Q ε nf e, f i, f n = ε Q nn f n, f n + ε 2 [ Q ε nef n, f e + ] ε 2 Qε nif n, f i 3 + ε 3 Q ε n,ir f e, f i, f n. 4
15 The scaled collision operators are now detailed. In the Boltzmann case, we have note that the factor /ε just below is due to the fact that the integral term in the expression of Q ε ni is of order ε; we refer to [7] for details, and to Lemma A.: + ε Q ε 2 ε nef n, f e v n = B B vn v e ε, Ω f ε IR 3 S 2 + ε 2 n f e ε f nf e dv e dω, Q ε enf e, f n v e = ve + ε 2 ε v n, Ω f ε + ε 2 e f n ε f ef n dv n dω, IR 3 S 2 B B Q ε ni f n, f i v n = 2 ε2 Q ε in f i, f n v i = 2 ε2 IR 3 S 2 B B IR 3 S 2 B B ε 2 v n v i, Ω f ε 2 n f i ε f nf i dv i dω, ε2 vi ε 2 v n, Ω f ε 2 i f n ε f if n dv n dω, ε2 and Q nn f n, f n v n = B B v n vn, Ω f n f n f n f n dvn dω. IR 3 S 2 The scaled FokkerPlanckLandau operators read α = e, i: Q αα f α, f α v α = vα B F v α vα S v α vα vα f α f α v f α α f α dvα, IR 3 Q ε ei f e, f i v e = ε 2 ve B F ε 2 ε v e ε v i S v e v i IR 3 ε 2 ε ve f e f i v ε 2 i f i f e dv i, and Q ε ie f i, f e v i = vi IR 3 B F ε v i ε 2 ε v e S v i v e ε 2 ε ve f e f i v ε 2 i f i f e dv e. We refer to Lemma A. and A.2 for a precise expansion, in terms of the small parameter ε, of these elastic inter species collision operators. Let us finally consider the inelastic collision operators. The scaled conservation equations 9 are written: δ E = δ v e 2 + v n 2 [ v e 2 + ve 2 + v i ], δ v = δ ε v e + v n [ε v e + ve + 4 ε 2 v i ], where holds for the ionization energy scaled by the thermal energy k B T 0, so that these operators also depend on ε. Moreover, the factor F 0 has to be rescaled 5
16 according to the relation: 3/2 me F 0 = δ e δ i ρ n 0 F kt 0, 0 where F 0 which will be later simply denoted by F 0 is of order one. We refer to Lemma A.5 for a development of these operators in terms of ε and also to some properties weak formulation, entropy,... of their leading order terms. Within this framework, we remark that impact ionization is no longer a leading order collisional process, compared with references [4], [5], [6]. As a consequence, the fluid model we will derive at the macroscopic scale will no longer contain any Saha law, like in previous works. The Saha law will just appear here as a relaxation term in the right hand side of the equations see Proposition 3 below. In order to derive a fluid model, we first consider the above kinetic system at the macroscopic level, more precisely at the electron diffusion scale, and then use a classical Hilbert method : this is the object of the following paragraph. 4 Hilbert expansion at the electron diffusion scaling We start from the scaled system of kinetic equations 2 with the collision terms given by 3, and rewrite it at the most relevant macroscopic scale, which is the electron diffusion scale t 0 /ε 2, x 0 /ε, εe 0, B 0. At this scale, the equations write : t fe ε + ε v e x fe ε E ve fe ε = [Q ε ε ef ε 2 e, fi ε, f n ε + v e B ve fe ε ], 5 t f ε i + v i x f ε i + E + εv i B vi f ε i = ε 2 Q ε i f ε e, f ε i, f ε n, 6 t fn ε + v n x fn ε = Q ε ε nf ε 2 e, fi ε, f n, ε 7 showing in particular that the magnetic field is a leading order term for the dynamic of the electrons, like in [7], [8]. We point out that the source terms in 6 and 7 are in fact of order ε because Qε i and Qε n are both of order ε. The aim is now to look for the limit ε 0 in this microscopic system, in order to derive a macroscopic model. We first replace in 3 the collision operators by their expansions in terms of ε see Lemma A., A.2 and A.5. Then we expand the solutions in powers of ε according to: fα ε = fα 0 + ε fα + Oε 2, α = e, i, n, 8 6
17 and insert these expansions in the system 57. Finally, we identify terms of equal powers of ε, starting with the lowest order terms, which are of order ε 2 for the electrons in equation 5 and ε for the other species i.e. in equations 6 7. We get: Q 0 en fe 0, fn 0 v e + v e B ve fe 0 = 0, 9 Q nn f 0 n, f 0 n v n = 0, 20 Q 0 in fi 0, fn 0 v i = 0. 2 Concerning the first equation, we deduce, thanks to Lemma A.3, that f 0 e is an isotropic function with respect to the velocity variable. Then, using the classical monospecies theory [2], we get from 3 that f 0 n is a standard Maxwellian. Last, Lemma A.4 shows that the solution of equation 2 that we can write as f 0 i = M u,t φ 0 i, with φ0 i unknown is the same Maxwellian, up to a multiplicative constant. We then deduce the Lemma : The equilibrium states for neutral particles f 0 n and ions f 0 i are Maxwellians characterized by the same mean velocity u and temperature T : fαv 0 ρ α α = ρ α M u,t v α = 2πT 3/2 exp v α u 2, with α = i, n, 22 2T while f 0 e is an isotropic function. We remark that, at this stage, the electrons do not seem to have reached their local thermodynamic equilibrium; they will however reach it, as now shown by looking at higher order terms. Identifying terms of order ε in equation 5, and recalling that Q 0 ei f e 0,. = Q 0 enfe 0,. = 0 because fe 0 is isotropic, we indeed get : v e x fe 0 v e + E ve fe 0 v e + Q 0 en fe, fn 0 v e + v e B ve fe v e 23 +Q en fe 0, fn v 0 e + Q ee fe 0, fe 0 v e = 0. The solvability condition for this equation of unknown f e specifies the equilibrium state for the electrons. We find that the isotropic function f 0 e is actually at local thermodynamic equilibrium, so that it is a centered Maxwellian see Proposition 2 below, which proof is postponed to section 6. Moreover, it is possible to compute 7
18 explicitely the first order correction f e up to the addition of an arbitrary isotropic function, which is specific to Lorentz operators see also [8] in the FokkerPlanck context. Proposition 2: The distribution function f 0 e following form: f 0 e v e = ρ e M 0,Te v e = ρ e 2π 3/2 is a centered Maxwellian, i.e. of the exp v e Introducing the entropic variables µe,, where µ e is the chemical potential defined by: µ e ρe = Log Te 3/2, 25 the general solution of equation 23 writes: where φ,o e f e = f,o e + f,e e, with f,e e isotropic and f,o e = f 0 e φ,o e, 26 is the odd function given by: φ,o e v e = v e u Φ T ev e e with see [8] : Φ ev e = 2αv e ρ n + B 2 2αv eρ n [ x µe + v e 2 2 x [ v e + 2αv e ρ n v e B + + E + u B ], 27 ] 2αv e ρ n 2 v e BB. 28 In this expression, α is the isotropic function defined by: αv = α v = B B v, Ω2 v, Ω v 2 dω. 29 S 2 + Remark. As expected, we recover that the velocity vector of an electron after collision is of average zero, so completely randomized. During its free flight, the electron builds up the drift momentum and the related drift kinetic energy along the electromagnetic field. In the next collision, this gained momentum and energy is transferred from drift to random part. Identifying terms of order ε 0 in equation 7, and remarking that Q 0 ni f 0 n, f 0 i = 0 and Q 0 ne., f 0 e = 0 because f 0 e is an even function, we get the following equation of unknown f n : t f 0 nv n v n x f 0 nv n + 2Q nn f n, f 0 n v n = 0, 30 8
19 which does not depend on the other species. Thanks to the classical monospecies Boltzmann theory [2], the solvability conditions for this equation give a classical Euler system for the density, mean velocity and temperature of the neutral species, which is totally independant on the other species see Proposition 3 below. Let us now look for the ion order one correction fi, by identifying terms of order ε 0 in equation 6. Noting that Q 0 ii f 0 i, f 0 i = 0 and Q0 ie., f 0 e = 0 still because f 0 e is even, we get the following equation : t fi 0v i v i x fi 0v i E vi fi 0v i + Q 0 in fi, f n 0 v i +Q 0 in fi 0, f n v i + Q 0 i,ir fe 0, fi 0, f n 0 v i = 0. Again, we look for fi = M u,t φ i, with φ i unknown. Thanks to Lemma A.4, the solvability condition reduces to one equation on the ion density, with a source term which is directly linked to the nonconservative property of the ionizationrecombination operator Q 0 i,ir. On the contrary, this source term does not depend on the operator Q 0 in, as this last one conserves mass. We then deduce the forthcoming result : Proposition 3: The density ρ n of neutral particles, their velocity u and their temperature T are governed by the following fluid system t > 0, x IR 3 t ρ n + divρ n u = 0, 3 t ρ n u + div [ρ n u u] + x ρ n T = 0, 32 t W n + div[u W n + ρ n T ] = 0, where W n = 2 ρ n u ρ nt. The ion density ρ i satisfies the following equation : t ρ i + divρ i u = R i, 33 with : R i = R Q 3 i,ir fe 0, fi 0, f n 0 dv i = A fe 0 ρ n Afe 0 ρ i, = a 0 [F 0 ρ n ρ iρ e exp 2π 3/2 ], 34 with A and A defined in Lemma A.5 and the constant a 0 given by : a 0 = σ r δe 0 f e v e dv e dv e dve. IR 9 9
20 Remark. The relation R i = 0, or equivalently ρ e = F 0 ρ n ρ i 2π 3/2 exp, 35 is called Saha law see [4], [5]. In the general case, the source term R i is not equal to zero ; it can thus be interpreted as a relaxation term to this Saha law. In order to derive a fluid model for the electrons, we have to go further and identify terms of order ε 0 in the kinetic equation 5 ; this gives the following equation of unknown fe 2 : ] t fe 0 [v e x E ve fe + Q 0 enfe 2, fn 0 + v e B ve fe 2 +Q 0 enf e, f n + Q enf e, f 0 n + Q enf 0 e, f n + Q 2 enf 0 e, f 0 n 36 +2Q ee fe, fe 0 + Q 0 ei f e, fi 0 + Q ei f e 0, fi 0 + Q0 e,ir f e 0, fi 0, f n 0 = 0, as Q 0 enfe 0,. = Q 0 ei f e 0,. = 0. Establishing the solvability condition, we get see section 6 for the proof : Proposition 4: The electron density ρ e and the temperature satisfy the following energytransport model : t ρ e + divρ e u + u J = R e, [ ] t 3 2 ρ e + div 5 2 ρ eu + ρ e v J + ρ e u + u J E = U e. 37 with: u J v J µe = D x + E x, 38 where the diffusion matrix D = D D 2 D 2 D is a positive definite matrix which subblocks are given by: D ij = Moreover, we have : R3 ψ i φ j M 0,Te dv, with ψ = v, ψ 2 = v v 2 2, φ = Φ e, φ 2 = Φ v 2 e 2. R e = R i, 40 20
21 and U e = u [ x ρ e + ρ e E + ρ e u J B] + 3λρ e ρ n T R e, 4 where the relaxation coefficient λ is defined by: λ = 2 α v v 2 M 0,Te vdv R 3 Remark. The matrix D = DB actually depends on the magnetic field B ; it satisfies the relation DB symmetry [20]. = D B, which represents the so called Onsager Moreover, thanks to the explicit computation of Φ e done in Proposition 2, it is also possible to write each subblock D ij in the following form with W = v 2 /2 : D ij = + 0 DW W i+j 2 M 0,Te W dw, where DW is an isotropic matrix. This matrix is obtained as in [8] but with the notations of Lemma A.3, and setting NW = S W by: DW = = with the notation dnv = 4π 2W. It is defined Ψ Φ ev dnv S W 43 2W 3 NW [Id+ 2ρ n αw + 2ρ n αw B + [2ρ n αw ] 2B B], 44 B = B2 2ρ nαw 0 B 3 B 2 B 3 0 B, 45 B 2 B 0 B, B 2, B 3 being the coordinates of the magnetic field B. We remark that each submatrix D ij is anisotropic, due to the presence of the magnetic field. It is moreover perfectly computable in terms of the magnetic field B and of the Boltzmann kernel B B via the isotropic function α. If we introduce for simplicity the three scalar isotropic functions defined by : d 0 W = 2W 3 NW 2ρ n αw + B2 2ρ nαw, d W = 2ρ n αw d0 W, d W = [2ρ n αw ] 2 d0 W, so that : DW = d 0 W Id + d W B + d W B B, we get : D ij = d 0 ij Id + d ij B + d ij B B, 2
22 where the different scalars are given by : d ij = + 0 d W W i+j 2 M 0,Te W dw, with = 0,,. 46 Note that these scalars are all computable in terms of the kernel B B ; they depend on the magnitude of the magnetic field B and also on the neutral density ρ n. In the particular case B = 0, we have : D ij = d 0 ij Id, i.e. each submatrix D ij is scalar, and : d 0 ij = 3ρ n R 3 α v v 2 2 i+j M 0,Te v dv. 47 In summary, we have shown that the discharge satisfies the following coupled fluid model : Theorem 5: The equilibrium states for the heavy species, defined by 22, are characterized by the same mean velocity u and temperature T, while the electron distribution function fe 0 is the centered Maxwellian given by 24. The neutral particles satisfy an Euler system setting W n = 2 ρ n u ρ nt : t ρ n + divρ n u = 0, t ρ n u + div [ρ n u u] + x ρ n T = 0, 48 t W n + div[u W n + ρ n T ] = 0, which is totally independant on the other species. The ion density ρ i satisfies the following equation : t ρ i + divρ i u = R i, 49 with R i given by 34. Finally, the electron macroscopic quantities ρ e, satisfy the following modified energytransport model: t ρ e + div j ρe = R e, t 3 2 ρ e + div j Te + j ρe E = U e, 50 with R e, U e given by 40, 4 and where we have introduced, for simplicity: with u J and v J defined by 38. j ρe = ρ e u + u J, j Te = 5 2 ρ eu + ρ e v J, 5 22
23 Remark. The first equation in 48 corresponds, at the macroscopic level, to the conservation of the number of heavy particles. The two last ones represent the global momentum and energy conservation laws. The first equation in 50, coupled with 49 and the relation R e = R i, is linked to the charge conservation. The last equation in 50 reflects the balancesheet of the electron energy. 5 A fully conservative fluid model Starting from the inviscid fluid model derived in Theorem 5, the aim is now to take into account corrective terms of order ε in order to obtain a viscous fluid model which would be globally conservative up to the order ε 2. This can be achieved doing a classical Chapman Enskog expansion. As the numerical densities of the two charged species are here ε smaller than the numerical density of neutrals, it is in fact sufficient to find corrective terms of order ε only for the neutral fluid system. We obtain the following globally conservative fluid system : Theorem 6: The neutral particles satisfy the following NavierStokes system setting W n = 2 ρ n u ρ nt : t ρ n + divρ n u = εr n, t ρ n u + div [ρ n u u] + x ρ n T ε div π = εs n, 52 t W n + div[u W n + ρ n T ] ε div πu ε div q = εu n, where π = µt σu, with σu the traceless rate of strain tensor σu ij = u i x j + u j x i 2 3 divuδ ij. q is the classical heat flux defined by : q = κt x T and µt and κt are the usual viscosity and thermal conductivity of neutrals [2], [3]. The source terms are given by : R n = R i = R e, S n = R i u + ρ i [E + u B T [ U n = R i u T 2 + ρ iu E T xρi ρ i xρi ρ i xρn ρ n ] [ x ρ e + ρ e E + j ρe B] xρn ρ n ] u [ x ρ e + ρ e E + ρ e u J B] 3λρ e ρ n T 53 23
24 with λ defined by 42. The two other species satisfy : t ρ i + divρ i u = R i, t ρ e + div j ρe = R e, 54 t 3 2 ρ e + div j Te + j ρe E = U e, with j ρe, j Te given by 5, and the source terms R i, and R e, U e by 34, 40 and 4. Moreover, up to the order ε 2, this coupled fluid model globally conserves mass, momentum and energy. Proof : The ε viscosity and heat flux terms in system 52 are quite classical see [2], [3] and also [7], [8]. It thus remains to compute the corrective source terms, which are nothing but the three first moments of the term of order ε 3 in the asymptotic expansion of Q ε n. As all the elastic collision terms conserve mass see 00 and 0 below, we first have : R n = Q 0 n,irfe 0, fi 0, fn 0 dv n = [A fe 0 ρ n Afe 0 ρ i ] = R i, R 3 according to 98. Let us now compute S n. Using again 00, it remains : S n = R 3 Q 0 n,ir f 0 e, f 0 i, f 0 n v n dv n + R 3 Q 0 nef 0 n, f e v n dv n + R 3 Q nef 0 n, f 0 e v n dv n + R 3 Q 0 ni f 0 n, f i v n dv n + R 3 Q 0 ni f n, f 0 i v n dv n 55 According to 98, we get for the first term on the right hand side: Then, easy computations show that : R 3 Q 0 n,irf 0 e, f 0 i, f 0 n v n dv n = R n u = R i u. 56 Q nef 0 n, f 0 e + Q 0 nef 0 n, f e = M u,t [ x ρ e + ρ e E + j ρe B] v u T + v u 2 T T T 3λρ e ρ e n T, 57 which gives : R 3 [Q nef 0 n, f 0 e + Q 0 nef 0 n, f e ] v n dv n = [ x ρ e + ρ e E + j ρe B], 58 recalling that : M u,t v v u R 3 T v dv = Id, 24 R3 v u 2 M u,t v 3 dv = 0. T
25 The two last terms in S n are finally computed using the conservation relation 04. It gives in particular, for the 0ε 0 term : R 3 Q 0 ni f 0 n, f i v ndv n + R 3 Q 0 ni f n, f 0 i v ndv n = [ R 3 Q 0 in f i, f 0 nv i dv i + R 3 Q 0 in f 0 i, f nv i dv i ] = R 3 [ t f 0 i + v i x f 0 i + E + v i B vi f 0 i Q0 i,ir fe 0, fi 0, f n 0 ] v i dv i = [ t ρ i u + div [ρ i u u] + x ρ i T ρ i E + u B R i u ] ] = ρ i [E + u B T xρi xρn ρ n. ρ i where the second equality results from equation 3. The last equality arises from 49 and the second equation in 48. The following conservation for the ion momentum up to the order 0ε is then deduced from 59 : t ρ i u + div [ρ i u u] + x ρ i T ρ i E + u B = S i, with a source term which writes : x ρ i S i = R i u ρ i [E + u B T ρ i ] xρ n. 6 ρ n Gathering 56, 58 and 59, we get the expression given in 53 for S n. Let us now compute U n. Following the same steps, we first have : From 57, we get : R3 Q 0n,irf 0e, f 0i, f 0n v n 2 R3 [Q nef 0n, f 0e +Q 0nef 0n, f e ] v n 2 recalling that : M u,t v v u v 2 dv = u, R 3 T 2 and 2 2 dv n = R n u T dv n = u [ x ρ e +ρ e E+j ρe B] 3λρ e ρ n T 63 R3 M u,t v v u 2 T v 2 R 3 M u,t v v 2 2 dv = 2 3T + u 2. 2 dv = 3 2 5T + u 2, 25
26 Next, using the conservation relation 07, we successively get : R Q 0 3 ni f n, 0 fi vn 2 2 dv n + R Q 0 3 ni f n, fi 0 vn 2 2 dv n [ = R Q 0 3 in f i, f n 0 v i 2 2 dv i + ] R Q 0 3 in f i 0, f n v i 2 2 dv i = R [ 3 t fi 0 + v i x fi 0 + ZE + v i B vi fi 0 Q0 i,ir [ ] = ρ i u E T xρi ρ i xρn ρ n. fe 0, fi 0, f n ] 0 v i 2 2 dv i 64 The last equality results from the following conservation for the ion energy W i = 2 ρ i u ρ it still up to the order 0ε: where we have set for simplicity: t W i + div[uw i + ρ i T ] ρ i E u = U i, 65 U i = R i u T 2 ρ iu [ x ρ i E T ] xρ n. 66 ρ i ρ n The final expression of U n then results from 62, 63 and 64. To conclude, let us introduce the source term S e given by : S e = R 3 Q enf 0 e, f 0 n v e dv e + R 3 Q 0 enf e, f 0 n v e dv e = [ R 3 Q nef 0 n, f 0 e v n dv n + R 3 Q 0 nef 0 n, f e v n dv n ] 67 = [ x ρ e + ρ e E + j ρe B]. This is nothing but the momentum of the collisional term of order /ε in the kinetic equation 5. The first equality results from the conservation relation 02 and the last one from 58. We then get from the above expressions of the different source terms the following relations : R i + R n = 0, S e + S i + S n = 0, 68 U e + R e + U i + U n = 0. This shows that, up to the order ε 2, our fluid model globally conserves mass first equation, momentum second one and energy last one, as the electron energy conserved at the microscopic level is v 2 /
27 Let us now determine an entropy for this system. We have : Theorem 7: Let us set : H = H n + ε H e + H i, with H n = ρ n [ Log ρn F 0 T 3/2 [ ] H i = ρ i Log ρi T 3/2 ], [ ] and H e = ρ e Log ρe. 2πTe 3/2 69 Then, if ε < 2 ρ n 3 ρi, H is a strictly convex function with respect to ρ n, ρ n u, W n, ρ i, ρ e, W e, which satisfies, up to the order ε 2, the following relation : [ ] t H + div Hu + div ε ρeu J ρ e u J Log ρ e 2πTe 3/2 u B + ε div [ κ xt T where P is the non negative term given by : + ρ e v J ] + ε P = 0, 70 P = R e [Log ρ eρ i +D x + E x + T T 2πTe 3/2 F 0 ρ n ] + 3λρ e ρ e n T µe µe x + E x + κ xt 2 T 2 + T π : xu 7 The function H is thus an entropy for the whole system which is compatible with both the diffusion and the source terms. Remark : Let us remark that the unusual term ρeu J u B is a function, so that it can be considered as a source term ; it does not load the shocks. The other terms in equation 70 are either non negative or conservative. Proof : Let us first show 70, starting from system 52 which can be equivalently written : t ρ n + u x ρ n + ρ n divu = εr n, t u + u x u + x T + T xρn ρ n = ε Sn+divπ urn ρ n, 72 t T + u x T T divu = ε 2λρ e T Te + ε 2 3ρ n [divq + π : x u], remarking that : U n = S n u + R i u 2 2 3T 2 3λρ eρ n T. 27
A hierarchy of diffusion models for partially ionized plasmas.
A hierarchy of diffusion models for partially ionized plasmas. Isabelle Choquet Pierre Degond Brigitte LucquinDesreux October 6, 26 Abstract Partially ionized plasmas corresponding to different ionization
More information14. Energy transport.
Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. ChapmanEnskog theory. ([8], p.5175) We derive macroscopic properties of plasma by calculating moments of the kinetic equation
More information12. MHD Approximation.
Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal
More informationFluid equations, magnetohydrodynamics
Fluid equations, magnetohydrodynamics Multifluid theory Equation of state Singlefluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics
More informationFigure 1.1: Ionization and Recombination
Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does
More informationKinetic relaxation models for reacting gas mixtures
Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma  ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.
More informationPhysical models for plasmas II
Physical models for plasmas II Dr. L. Conde Dr. José M. Donoso Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Physical models,... Plasma Kinetic Theory
More informationTheory of Gas Discharge
Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of
More informationWaves in plasma. Denis Gialis
Waves in plasma Denis Gialis This is a short introduction on waves in a nonrelativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.
More informationFluid Equations for Rarefied Gases
1 Fluid Equations for Rarefied Gases JeanLuc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel
More informationThe Boltzmann Equation and Its Applications
Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations SpringerVerlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC
More informationSolution of timedependent Boltzmann equation for electrons in nonthermal plasma
Solution of timedependent Boltzmann equation for electrons in nonthermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ61137,
More informationRecent advances in kinetic theory for mixtures of polyatomic gases
Recent advances in kinetic theory for mixtures of polyatomic gases Marzia Bisi Parma University, Italy Conference Problems on Kinetic Theory and PDE s Novi Sad (Serbia), September 25 27, 2014 M. Bisi,
More informationFluid Equations for Rarefied Gases
1 Fluid Equations for Rarefied Gases JeanLuc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel
More informationLecture Note 1. 99% of the matter in the universe is in the plasma state. Solid > liquid > Gas > Plasma (The fourth state of matter)
Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid > liquid > Gas > Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium
More informationCharacteristics and classification of plasmas
Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development
More informationElectron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.
10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains
More informationarxiv: v1 [physics.plasmph] 19 Oct 2018
Astronomy & Astrophysics manuscript no. aa c ESO 2018 October 22, 2018 Consistent transport properties in multicomponent twotemperature magnetized plasmas: Application to the Sun chromosphere Q. Wargnier
More informationLattice Boltzmann Method
3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata  a simplified, fictitious molecular model. It consists of
More informationn v molecules will pass per unit time through the area from left to
3 iscosity and Heat Conduction in Gas Dynamics Equations of OneDimensional Gas Flow The dissipative processes  viscosity (internal friction) and heat conduction  are connected with existence of molecular
More informationAnalysis of recombination and relaxation of nonequilibrium air plasma generated by short time energetic electron and photon beams
22 nd International Symposium on Plasma Chemistry July 510, 2015; Antwerp, Belgium Analysis of recombination and relaxation of nonequilibrium air plasma generated by short time energetic electron and
More informationMonte Carlo Collisions in Particle in Cell simulations
Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGFJunior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or lowtemperature
More informationElectrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8
Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized
More informationA hybrid method for hydrodynamickinetic flow  Part II  Coupling of hydrodynamic and kinetic models
A hybrid method for hydrodynamickinetic flow  Part II  Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain
More informationExponential methods for kinetic equations
Exponential methods for kinetic equations Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara, Italy http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Joint research
More informationLaserplasma interactions
Chapter 2 Laserplasma interactions This chapter reviews a variety of processes which may take place during the interaction of a laser pulse with a plasma. The discussion focuses on the features that are
More informationCHAPTER 22. Astrophysical Gases
CHAPTER 22 Astrophysical Gases Most of the baryonic matter in the Universe is in a gaseous state, made up of 75% Hydrogen (H), 25% Helium (He) and only small amounts of other elements (called metals ).
More informationLecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma
Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 2. Introduction to plasma physics Dr. Ashutosh Sharma Zoltán
More informationPHYSICS OF HOT DENSE PLASMAS
Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced
More information1.3 Molecular Level Presentation
1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of
More informationCollisions and transport phenomena
Collisions and transport phenomena Collisions in partly and fully ionized plasmas Typical collision parameters Conductivity and transport coefficients Conductivity tensor Formation of the ionosphere and
More informationIntroduction. Chapter Plasma: definitions
Chapter 1 Introduction 1.1 Plasma: definitions A plasma is a quasineutral gas of charged and neutral particles which exhibits collective behaviour. An equivalent, alternative definition: A plasma is a
More informationFundamentals of Fluid Dynamics: Elementary Viscous Flow
Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research
More informationAnomalous transport of particles in Plasma physics
Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University
More informationSimulation of Coulomb Collisions in Plasma Accelerators for Space Applications
Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications D. D Andrea 1, W.Maschek 1 and R. Schneider 2 Vienna, May 6 th 2009 1 Institut for Institute for Nuclear and Energy Technologies
More informationPhysique des plasmas radiofréquence Pascal Chabert
Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:
More informationCollisional Excitation and NLevel Atoms.
Collisional Excitation and NLevel Atoms. 1 Collisional Excitation & Deexcitation Consider an atom or ion with a lower energy level 1 and an upper level. Collision of a free electron with kinetic energy
More informationChapter 3. Coulomb collisions
Chapter 3 Coulomb collisions Coulomb collisions are longrange scattering events between charged particles due to the mutual exchange of the Coulomb force. Where do they occur, and why they are of interest?
More informationCHAPTER 4. Basics of Fluid Dynamics
CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,
More informationChapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current
Chapter 5 MAGNETIZED PLASMAS 5.1 Introduction We are now in a position to study the behaviour of plasma in a magnetic field. In the first instance we will reexamine particle diffusion and mobility with
More informationPlasma collisions and conductivity
e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in nonmagnetized and magnetized plasmas Collision frequencies In weakly ionized
More informationLecture 5: Kinetic theory of fluids
Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities
More informationFundamentals of Plasma Physics Transport in weakly ionized plasmas
Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas
More informationSimple examples of MHD equilibria
Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will
More informationPlasma Spectroscopy Inferences from Line Emission
Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often
More informationTheory of optically thin emission line spectroscopy
Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous
More informationMulticomponent diffusion in gases and plasma mixtures
High Temperatures ^ High Pressures, 2002, volume 34, pages 109 ^ 116 15 ECTP Proceedings pages 1337 ^ 1344 DOI:10.1068/htwu73 Multicomponent diffusion in gases and plasma mixtures Irina A Sokolova Institute
More informationCondensed matter theory Lecture notes and problem sets 2012/2013
Condensed matter theory Lecture notes and problem sets 2012/2013 Dmitri Ivanov Recommended books and lecture notes: [AM] N. W. Ashcroft and N. D. Mermin, Solid State Physics. [Mar] M. P. Marder, Condensed
More informationQuantum Hydrodynamics models derived from the entropy principle
1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.upstlse.fr
More informationFluid models of plasma. Alec Johnson
Fluid models of plasma Alec Johnson Centre for mathematical Plasma Astrophysics Mathematics Department KU Leuven Nov 29, 2012 1 Presentation of plasma models 2 Derivation of plasma models Kinetic Twofluid
More informationOn the Boltzmann equation: global solutions in one spatial dimension
On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators
More informationPlasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National TsingHua University
Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National TsingHua University What is a Plasma? A plasma is a quasineutral gas consisting of positive and negative
More informationMacroscopic plasma description
Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) twofluid (multifluid, separate equations for electron and ion
More informationUne décomposition micromacro particulaire pour des équations de type BoltzmannBGK en régime de diffusion
Une décomposition micromacro particulaire pour des équations de type BoltzmannBGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5
More informationFluidParticles Interaction Models Asymptotics, Theory and Numerics I
FluidParticles Interaction Models Asymptotics, Theory and Numerics I J. A. Carrillo collaborators: T. Goudon (Lille), P. Lafitte (Lille) and F. Vecil (UAB) (CPDE 2005), (JCP, 2008), (JSC, 2008) ICREA
More informationA quantum heat equation 5th Spring School on Evolution Equations, TU Berlin
A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS  Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing
More informationSimulation of Low Pressure Plasma Processing Reactors: Kinetics of Electrons and Neutrals
Simulation of Low Pressure Plasma Processing Reactors: Kinetics of Electrons and Neutrals R. R. Arslanbekov and V. I. Kolobov CFD Research Corporation, Huntsville, AL, USA Abstract. In this paper, we illustrate
More informationMatti Laan Gas Discharge Laboratory University of Tartu ESTONIA
Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in nonequilibrium plasma 6.
More informationANALYSIS OF THE INFLUENCE OF THE COMPOSITION OF THE SHIELDING GAS ON PRESSURE FORCE AND HEAT FLUXES IN ARC WELDING
ANALYSIS OF THE INFLUENCE OF THE COMPOSITION OF THE SHIELDING GAS ON PRESSURE FORCE AND HEAT FLUXES IN ARC WELDING Isabelle Choquet 1, Håkan Nilsson 2 1 University West, Dept. of Engineering Science, Trollhättan,
More informationAnalysis of the Reaction Rate of Binary Gaseous Mixtures near from the Chemical Equilibrium
Analysis of the Reaction Rate of Binary Gaseous Mixtures near from the Chemical Equilibrium Adriano W. da Silva May 30, 2013 Abstract A binary gaseous mixture with reversible reaction of type A + A = B
More informationMAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT
MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX
More informationFluid Dynamics from Kinetic Equations
Fluid Dynamics from Kinetic Equations François Golse Université Paris 7 & IUF, Laboratoire J.L. Lions golse@math.jussieu.fr & C. David Levermore University of Maryland, Dept. of Mathematics & IPST lvrmr@math.umd.edu
More informationPRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING
PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE
More informationEntropic structure of the Landau equation. Coulomb interaction
with Coulomb interaction Laurent Desvillettes IMJPRG, Université Paris Diderot May 15, 2017 Use of the entropy principle for specific equations Spatially Homogeneous Kinetic equations: 1 FokkerPlanck:
More informationAnisotropic fluid dynamics. Thomas Schaefer, North Carolina State University
Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding
More informationSCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGENIODINE LASERS
SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGENIODINE LASERS D. Shane Stafford and Mark J. Kushner Department of Electrical and Computer Engineering Urbana, IL 61801 http://uigelz.ece.uiuc.edu
More informationOne dimensional hybrid MaxwellBoltzmann model of shearth evolution
Technical collection One dimensional hybrid MaxwellBoltzmann model of shearth evolution 27  Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin
More informationThe Physics of Fluids and Plasmas
The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the
More informationSimulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil
Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling Henrik Nordborg HSR University of Applied Sciences Rapperswil What is an electrical arc? 2 Technical applications of arcs and industrial
More informationFrom a Mesoscopic to a Macroscopic Description of FluidParticle Interaction
From a Mesoscopic to a Macroscopic Description of FluidParticle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy
More informationDissipation Scales & Small Scale Structure
Dissipation Scales & Small Scale Structure Ellen Zweibel zweibel@astro.wisc.edu Departments of Astronomy & Physics University of Wisconsin, Madison and Center for Magnetic SelfOrganization in Laboratory
More informationKINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS
KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low
More informationThermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in
Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that
More informationPlasmas as fluids. S.M.Lea. January 2007
Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider
More informationGas Dynamics: Basic Equations, Waves and Shocks
Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks Susanne Höfner Susanne.Hoefner@fysast.uu.se Astrophysical Dynamics, VT 010 Gas Dynamics: Basic Equations, Waves and Shocks
More informationIonosphères planétaires (introduction)
Ionosphères planétaires (introduction) email: arnaud.zaslavsky@obspm.fr Structure de l atmosphère terrestre Temperature gradients determined by IR radiation from Earth (low altitude Troposhere) And from
More informationIntroduction to the School
Lucio Crivellari Instituto de Astrofísica de Canarias D.pto de Astrofísica, Universidad de La Laguna & INAF Osservatorio Astronomico di Trieste (Italy) Introduction to the School 10/11/17 1 Setting the
More informationAtomic Physics 3 ASTR 2110 Sarazin
Atomic Physics 3 ASTR 2110 Sarazin Homework #5 Due Wednesday, October 4 due to fall break Test #1 Monday, October 9, 1111:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any
More informationarxiv:compgas/ v1 28 Apr 1993
Lattice Boltzmann Thermohydrodynamics arxiv:compgas/9304006v1 28 Apr 1993 F. J. Alexander, S. Chen and J. D. Sterling Center for Nonlinear Studies and Theoretical Division Los Alamos National Laboratory
More informationMagnetohydrodynamic waves in a plasma
Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.
More informationKinetic theory of the ideal gas
Appendix H Kinetic theory of the ideal gas This Appendix contains sketchy notes, summarizing the main results of elementary kinetic theory. The students who are not familiar with these topics should refer
More informationAn asymptoticpreserving micromacro scheme for VlasovBGKlike equations in the diffusion scaling
An asymptoticpreserving micromacro scheme for VlasovBGKlike equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 SaintMalo 13 December 2016 1 Université
More informationLorentz invariant scattering cross section and phase space
Chapter 3 Lorentz invariant scattering cross section and phase space In particle physics, there are basically two observable quantities : Decay rates, Scattering crosssections. Decay: p p 2 i a f p n
More informationCHAPTER V. Brownian motion. V.1 Langevin dynamics
CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid
More informationSensors Plasma Diagnostics
Sensors Plasma Diagnostics Ken Gentle Physics Department Kenneth Gentle RLM 12.330 k.gentle@mail.utexas.edu NRL Formulary MIT Formulary www.psfc.mit.edu/library1/catalog/ reports/2010/11rr/11rr013/11rr013_full.pdf
More informationThe ideal Maxwellian plasma
The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a
More informationNONEQUILIBRIUM THERMODYNAMICS
NONEQUILIBRIUM THERMODYNAMICS S. R. DE GROOT Professor of Theoretical Physics University of Amsterdam, The Netherlands E MAZUR Professor of Theoretical Physics University of Leiden, The Netherlands DOVER
More informationPLASMANEUTRAL MODELING IN NIMROD. Uri Shumlak*, Sina Taheri*, Jacob King** *University of Washington **TechX Corporation April 2016
PLASMANEUTRAL MODELING IN NIMROD Uri Shumlak*, Sina Taheri*, Jacob King** *University of Washington **TechX Corporation April 2016 PlasmaNeutral Model Physical Model is derived by E. Meier and U. Shumlak*
More informationCausal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases
Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Heinrich Freistühler and Blake Temple Proceedings of the Royal SocietyA May 2017 Culmination of a 15 year project: In this we propose:
More informationNumerical simulation of Vibrationally Active ArH2 Microwave Plasma
Numerical simulation of Vibrationally Active ArH2 Microwave Plasma F. Bosi 1, M. Magarotto 2, P. de Carlo 2, M. Manente 2, F. Trezzolani 2, D. Pavarin 2, D. Melazzi 2, P. Alotto 1, R. Bertani 1 1 Department
More informationChapter 1 Nature of Plasma
Chapter 1 Nature of Plasma Abstract Charge neutrality is one of fundamental property of plasma. Section 1.2 explains Debye length λ D in (1.2), a measure of shielding distance of electrostatic potential,
More informationPlasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas
Plasma Physics Prof. Vijayshri School of Sciences, IGNOU Lecture No. # 38 Diffusion in Plasmas In today s lecture, we will be taking up the topic diffusion in plasmas. Diffusion, why do you need to study
More informationReview of Fluid Mechanics
Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may
More informationDiffusion during Plasma Formation
Chapter 6 Diffusion during Plasma Formation Interesting processes occur in the plasma formation stage of the Basil discharge. This early stage has particular interest because the highest plasma densities
More informationvan Quantum tot Molecuul
10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based
More informationMultifluid Simulation Models for Inductively Coupled Plasma Sources
Multifluid Simulation Models for Inductively Coupled Plasma Sources Madhusudhan Kundrapu, Seth A. Veitzer, Peter H. Stoltz, Kristian R.C. Beckwith TechX Corporation, Boulder, CO, USA and Jonathan Smith
More informationBOLTZMANN KINETIC THEORY FOR INELASTIC MAXWELL MIXTURES
BOLTZMANN KINETIC THEORY FOR INELASTIC MAXWELL MIXTURES Vicente Garzó Departamento de Física, Universidad de Extremadura Badajoz, SPAIN Collaborations Antonio Astillero, Universidad de Extremadura José
More informationUne décomposition micromacro particulaire pour des équations de type BoltzmannBGK en régime de diffusion
Une décomposition micromacro particulaire pour des équations de type BoltzmannBGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe
More informationTURBULENT TRANSPORT THEORY
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical
More informationIdeal Magnetohydrodynamics (MHD)
Ideal Magnetohydrodynamics (MHD) Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics
More information