7 Kinematics and kinetics of planar rigid bodies II


 Ruth Garrison
 1 years ago
 Views:
Transcription
1 7 Kinematics and kinetics of planar rigid bodies II 7.1 Inclass A rigid circular cylinder of radius a and length h has a hole of radius 0.5a cut out. The density of the cylinder is ρ. Assume that the cylinder rolls without slipping on the floor. Compute the kinetic energy and the potential energy of the cylinder using the generalized coordinate θ shown. Solution 0. Notation We use the following notation for vectors: v = vi I. Choose the reference system Set the reference system as shown below. II. Moment of inertia The mass of the cylinder is M = ρh [ πa 2 π(0.5a) 2] = 3 4 πa2 ρh. (7.1) The moment of inertia of a cylinder of radius R without the hole is I O = π 2 R4 ρh. (7.2) 71
2 7 Kinematics and kinetics of planar rigid bodies II 72 Considering a new reference system as shown below, the center of mass of the cylinder is X C = 0 because of symmetry, (7.3) Y C = πa2 (a) π( a 2 )2 (a + a 2 ) πa 2 π( a 2 )2 = 5 6 a. (7.4) The center of mass of the cylinder without the hole and the center of mass of the hole are denoted by O, O respectively. Applying the parallel axis theorem and the additive property of the moment of inertia, we get ( [ π π ( a ) 4 ( ]) a 2 I C = ρh 2 a4 + πa 2 r OC 2 + π ro 2 2 2) C 2 = πa4 ρh. (7.5) III. Potential and kinetic energy The potential energy of the cylinder is V = Mgy C = 3 4 πa2 ρgh(a r OC cos θ) = 3 4 πa2 ρgha The kinetic energy of the cylinder is ( 1 cos θ ). (7.6) 6 T = 1 2 Mv2 C I Cω 2. (7.7) The angular velocity is ω(t) = θ(t)k. (7.8) Since point A is the instantaneous center of rotation (v A = 0) v C (t) = θ(t) r AC. (7.9) Note that r AC depends on time. Considering the geometry (7.9) becomes v C (t) = θ(t) r OC 2 + r OA 2 2 r OC r OA cos θ(t), (7.10)
3 7 Kinematics and kinetics of planar rigid bodies II 73 v C (t) = θ(t) (a 6 ) 2 + a2 2 a 37 a cos θ(t) = a θ(t) 6 36 Substituting all the known variables into (7.7) yields T (t) = 1 2 cos θ(t) 3. (7.11) ( ) [ ] πa2 ρh a θ(t) 37 cos θ(t) + 1 ( ) πa4 ρh θ(t) 2, (7.12) ( ) T (t) = πρha cos θ(t) θ(t). (7.13) 64 8
4 7 Kinematics and kinetics of planar rigid bodies II Inclass A rod of mass m, length 2a and centroidal moment of inertia I C = 1 3 ma2 is dropped onto the edge of a table as shown. The rod is horizontal, has zero angular velocity and has downward velocity v 0 at the moment just before touching the table. (a) Determine, in terms of v 0, the angular velocity of the rod just after impact, assuming that energy is conserved in the collision. (b) Under the same assumptions, determine the velocity of the end of the rod that touched the table just after the impact. Does your result seem reasonable? Explain. Solution 0. Notation We use the following notation for vectors: v = vk Note that A denotes the contact point on the table and A denotes the contact point on the rod. I. Choose the reference system Set the reference system as shown below. II. Draw the freebody diagram III. Draw the configurations
5 7 Kinematics and kinetics of planar rigid bodies II 75 IV. Conservation of energy Assume that the collision occurs at t = t 1. A vertical impulse ( P y ) acts on the end of the rod (point A ) at t = t 1. As a result, velocity of the center of mass would be v 1 and angular velocity ω 1 just after the impact. Energy is conserved in the collision 1 T (t 1 ) + V (t 1 ) = T (t + 1 ) + V (t + 1 ). (7.14) Since gravity does not have enough time to act V (t 1 ) = V (t + 1 ). (7.15) Substituting (7.15) into (7.14) yields T (t 1 ) = T (t + 1 ), (7.16) 1 2 m(v 0) 2 = 1 2 m(v 1) I C(ω 1 ) 2, (7.17) (v 0 ) 2 = (v 1 ) a2 (ω 1 ) 2. (7.18) V. Angular momentum principle In order to get a second relation, we apply angular momentum about point A on the table 2 Ḣ A + v A P = M ext A. (7.19) Since v A = 0 and gravity has no time to act, angular momentum is conserved about point A. H A (t 1 ) = H A (t + 1 ). (7.20) VI. Angular momentum transfer formula Applying angular momentum transfer formula to point A and C H A = H C + P r CA = H C + mv C r CA. (7.21) Using (7.20) and (7.21), we get H C (t 1 ) + mv C (t 1 ) r CA (t 1 ) = H C (t + 1 ) + mv C (t + 1 ) r CA (t + 1 ), (7.22) 0 mav 0 k = 1 3 ma2 ω 1 k mav 1 k. (7.23) From (7.23), we get v 0 = v aω 1. (7.24) 1 Note that this statement is not valid in general, only if the collision is totally elastic. Elastic collision is defined as a collision in which kinetic energy is conserved. In several problems, this is a fair approximation. Elastic collisions occur only if there is no net conversion of kinetic energy into other forms. 2 Please remember: we can choose any arbitrary point as reference to apply angular momentum principle. The point is not necessarily on the body (lecture notes page 52).
6 7 Kinematics and kinetics of planar rigid bodies II 76 Using (7.24) and (7.18), we get v 1 = v 0 2. The angular velocity of the rod just after the impact ω 1 = 3v 0 2a. (7.25) (7.26) (b) VII. Velocity transfer formula In order to determine the velocity of point A just after the impact, we use velocity transfer formula with respect to point A and C. v A (t + 1 ) = v 1 + ω 1 r CA. (7.27) v A (t + 1 ) = v 1 j + ( ω 1 k) ( ai). (7.28) v A (t + 1 ) = v ( 0 2 j + ( 3v 0 k) ( ai) = v 0 2a 2 + 3v ) 0 j = v 0 j. (7.29) 2 We know that just before the impact the velocity of point A was v 0 j. Therefore our result seems reasonable. Since the magnitude of the velocity of A on the rod is conserved and changes just the direction in the collision. This shows an elastic collision which is expected when energy is conserved.
7 7 Kinematics and kinetics of planar rigid bodies II Inclass A rigid, uniform flat disk of mass m and radius R is moving in the plane towards a wall with central velocity v 0 while rotating with angular velocity ω 1, as shown. Assuming that the collision in the normal direction is elastic and no slip occurs at the wall, find the velocity of the (center of the) disk after it collides with the wall. Solution 0. Notation We use the following notation for vectors: ω = ωk Note that B denotes the contact point on the wall and B denotes the contact point on the disk. I. Choose the reference system Set the reference system as shown below. II. Draw the freebody diagram III. Draw the configurations
8 7 Kinematics and kinetics of planar rigid bodies II 78 IV. Velocity transfer formula Assume the disk collides with the wall at point B, where an impulse ( P x, P y ) acts on it at t = t 1. Collision in the normal direction (y) is elastic so the magnitude of the velocity in the normal direction is conserved (v C ) y (t + 1 ) = (v C ) y (t 1 ), (7.30) (v C ) y = ( v 1 ) y = v 0 cos θ. (7.31) Since no slip occurs at the wall (v B ) x (t + 1 ) = 0. (7.32) Using the velocity transfer formula, we get (v B ) x (t + 1 ) = (v C ) x (t + 1 ) + (ω 1 r CB ) x = 0, (7.33) (v C ) x (t + 1 ) = (v 1 ) x = Rω 1. (7.34) V. Angular momentum principle Applying angular momentum principle about point B is Ḣ B + v B P = M ext B. (7.35) Since there is no force which produces external torque on B and v B momentum is conserved about B = 0,the angular Ḣ B = 0 H B (t 1 ) = H B (t + 1 ). (7.36) Using the angular momentum transfer formula (7.36) becomes Ḣ B = 0 H C (t 1 ) + P (t 1 ) r CB (t 1 ) = H C (t + 1 ) + P (t + 1 ) r CB (t 1 ). (7.37) lim r CB = lim r CB = R. t 1 t 1 t + 1 t mr2 ωk + mv 0 R sin θk = 1 2 mr2 ω 1 k + mr(v 1 ) x k. (7.38) Using (7.38) and (7.34) the xcomponent of the velocity of the disk after the impact is (v 1 ) x = 2 3 v 0 sin θ + 1 Rω. (7.39) 3 Using (7.31) and (7.39) the velocity of the disk after the collision is (2 v 1 = 3 v 0 sin θ + 1 ) 2 3 Rω + (v 0 cos θ) 2. (7.40)
9 7 Kinematics and kinetics of planar rigid bodies II Homework A cube with sides of length 2a and a mass M is moving with an initial speed v 0 along a frictionless table. When the cube reaches the end of the table it is caught abruptly by a short lip and begins to rotate. What is the minimum speed v 0 such that the cube falls off the table? (The collision is not elastic.) Solution 0. Notation Note that B denotes the contact point on the lip. I. Choose the reference system Set the reference system as shown below. II. Draw the freebody diagram at t = t 1 III. Angular momentum principle Applying angular momentum principle about point B Ḣ B + v B P = M ext B. (7.41) Three external forces (N, F, mg) act on the cube while only N and mg produce torque about point B. Since forces N and mg are not impulsive, we get M ext B = r BC (N + mg) t+ t M ext B dt = 0. (7.42) Since v B = 0 angular momentum with respect to B is conserved so H B (t 1 ) = H B (t + 1 ), Ma v 0 = I B ω. (7.43) (7.44)
10 7 Kinematics and kinetics of planar rigid bodies II 710 From which the angular velocity of the cube just after the collision ω = Ma v 0 I B. (7.45) For the block to tip over the lip, its center of mass must end up a distance a( 2 1) above its original position. The energy of the rotational motion 1 (just after the impact) has to be large enough to raise the center of mass with a( 2 1). 1 2 I B ω 2 > Mga( 2 1) (7.46) Substituting (7.45) into (7.46) 1 2 I M 2 a 2 v0 2 B v 0 > I 2 B > Mga( 2 1). (7.47) 2I B g( 2 1). (7.48) Ma The centroid moment of inertia of a cube which has mass m and edge k is I = 1 6 mk2. (7.49) Substituting mass M and edge 2a, we get I C = 2 3 Ma2. (7.50) Using parallel axis theorem I B = 2 3 Ma2 + M(a 2) 2 = 8Ma2 3 Substituting I B into (7.48) yields 2 8Ma2 g( 2 1) 3 v 0 > v 0 > Ma. (7.51) 16 3 ag( 2 1). (7.52) 1 Note that the energy of the rotational motion transforms to potential energy, therefore ω continuously decreases till the center of mass reaches its maximum height.
11 7 Kinematics and kinetics of planar rigid bodies II Homework A pendulum consists of a rod of length L with a frictionless pivot at one end. The pendulum is suspended from a flywheel of radius R which rotates with fixed angular velocity ω, as shown below. (a) Determine the angular velocity of the rod in terms of ω and the generalized coordinate θ indicated in the sketch. (b) Calculate the velocity of the mid point C of the rod Solution 0. Notation We use the following notation for vectors: v = ve 1 I. Choose the reference system Set the reference system as shown below. II. Draw the reference and displaced configuration III. Angular velocity of the rod To find the angular velocity of the rod, compare orientation of AB to A B ω rod = [ θ + ϕ]k = [ θ + ω]k. (7.53)
12 7 Kinematics and kinetics of planar rigid bodies II 712 IV. Draw the displaced configuration V. Velocity transfer formula The velocity transfer formula v C = v A + ω rod k r AC, (7.54) where v A is v A = ω rod r OA = ωre ψ. (7.55) Now the velocity of point C is v C = ωre ψ + (ω + θ) L 2 e θ. (7.56) Expressing e ψ and e θ in terms of i and j e ψ = sin ψi + cos ψj, (7.57) [ ( π )] [ ( π )] e θ = cos θ 2 ψ i sin θ 2 ψ j, (7.58) e θ = sin [θ + ψ]i + cos [θ + ψ]j. (7.59) Substituting (7.59) and (7.57) into (7.56) yields v C = ( ωr sin ψ (ω + θ) L 2 sin [θ + ψ])i+(ωr cos ψ +(ω + θ) L cos [θ + ψ])j. (7.60) 2
13 7 Kinematics and kinetics of planar rigid bodies II Homework A rigid cylinder of radius R is moving to the right such that its center C has velocity v. There is no slipping between the cylinder and the bar BD, but there is slipping between the cylinder and the ground. In the position shown (a) Determine the angular velocity of the bar BD. (b) Determine the velocity of the cylinder at the point where it contacts the ground. Solution 0. Notation We use the following notation for vectors: v = vi I. Choose the reference system Set the reference system as shown below. II. Set up the variables III. Angular velocity of the rod The velocity of point C v C = v C i = v C cos θi + v C sin θj. (7.61) Since there is no slip between the cylinder and the bar v A,cyl = v A,bar. (7.62)
14 7 Kinematics and kinetics of planar rigid bodies II 714 The velocity of point A on the bar is v A,bar = ω bar r BA = r BA θj. (7.63) The velocity of point A on the cylinder can be determined from v C transfer formula by using velocity v A,cyl = v C,cyl + ω cyl r CA = v C cos θi + v C sin θj Rω cyl I. (7.64) Substituting (7.63) and (7.64) into (7.62), we get r BA θj = v C cos θi + v C sin θj Rω cyl I, (7.65) 0 = (v C cos θ Rω cyl )I + (v C sin θ r BA θ)j. (7.66) Equating separately the coefficients of the Icomponents and the coefficients of the J components, yields ω cyl = v C cos θ R θ = v C sin θ r BA From the geometry, we know that., (7.67) (7.68) r CA r BA = tan θ 2 r BA = R cot θ 2. (7.69) Using all the already expressed variables, the angular velocity of the bar is ω bar = θk = v C sin θ k = v ( ) C θ sin θ tan k = 2v ( ) C θ r BA R 2 R sin2 k. (7.70) 2 (b) The velocity of the cylinder at the point where it contacts the ground can be determined from v C by using velocity transfer formula [ v E,cyl = v C,cyl + ω cyl r CE = v C + v ] C cos θ R R i = v C (1 + cos θ)i. (7.71)
15 7 Kinematics and kinetics of planar rigid bodies II Homework A uniform rod of mass M and length 2b is pivoted at a point O, a distance s above the center of mass (CM). The rod is struck with a rapid impulsive force perpendicular to the rod at a point A, a distance a below the center of mass.the magnitude of the impulse is P = F t. Find the value of a such that there is no horizontal (N) reaction at the pivot, during the impact. (The moment of inertia of a uniform rod with mass M and length L about an axis through its center perpendicular to its longer side is I CM = ML 2 /12.) Solution I. Choose the reference system Set the reference system as shown below. II. Draw the freebody diagram III. Linear momentum principle Applying linear momentum principle in the xdirection P x = F ext x Mẍ = F N. (7.72) IV. Angular momentum principle Applying angular momentum principle Ḣ O + v O P = M ext O. (7.73) Since v O = 0, we get Ḣ O = M ext O I O θ = (s + a)f, (7.74) where the moment of inertia with respect to O can be determined by parallel axis theorem, such as [ ] [ ] (2b) I O = I CM + Ms 2 2 b 2 I O = M 12 + s2 = M 3 + s2. (7.75)
16 7 Kinematics and kinetics of planar rigid bodies II 716 Now we have two equations and three unknowns ẍ, θ, N. To solve these for N, we need to add a third equation. Considering the geometry and using smallangle approximation 1 we can write sin θ θ = x s ẍ = s θ. (7.76) Using (7.72), (7.74), (7.75) and (7.76) yields N = F Mẍ = F b 2 3 sa b s2. (7.77) Therefore the horizontal normal force will be zero if we set a = b2 3s. (7.78) 1 The smallangle approximation is a useful simplification of the basic trigonometric functions which is approximately true in the limit where the angle approaches zero. They are truncations of the Taylor series for the basic trigonometric functions to a firstorder approximation.
17 7 Kinematics and kinetics of planar rigid bodies II Homework A rigid block of height H, length L, depth D and mass m rests on a rigid cylinder of mass M and radius R, as shown in the sketch. The cylinder rolls on the floor without slipping and the block rolls on the cylinder without slipping as well. Determine the kinetic and potential energy of the system. Solution 0. Notation We use the following notation for vectors: v = vi I. Choose the reference system Set the inertial reference system as shown below. II. Set up the variables Note that point O denotes the center of the cylinder and r OC = x OC i + y OC j. III. Angular velocity The angular velocity of the cylinder ω cyl = ϕk. (7.79) The angular velocity of the block ω block = θk. (7.80)
18 7 Kinematics and kinetics of planar rigid bodies II 718 IV. Velocity of the block and the cylinder Since there is no slip between the cylinder and the floor v O = R ϕi. (7.81) The velocity of the center of mass is v C = R ϕi + ẋ CO i + ẏ CO j = (R ϕ + ẋ CO )i + ẏ CO j. (7.82) Since there is no slip between the block and the cylinder v B,block = v B,cyl. (7.83) The velocity of point B on the cylinder can be determined using velocity transfer formula. v B,cyl = v O + ω cyl r OB = R ϕi + ( ϕk) (R sin θi + R cos θj) (7.84) v B,cyl = R ϕ(1 + cos θ)i R ϕ sin θj (7.85) The velocity of point B on the block can be determined using velocity transfer formula. v B,block = v C + ω block r CB (7.86) v B,block = (R ϕ + ẋ CO )i + ẏ CO j + ( θk) [(R sin θ x CO )i + (R cos θ y CO )j] (7.87) v B,block = (R ϕ + ẋ CO + R θ cos θ θy CO )i + (ẏ CO R θ sin θ + θx CO )j (7.88) V. Position of the center of mass Substituting (7.85) and (7.88) into (7.83) and equating separately the coefficients of the icomponents and the coefficients of the jcomponents, yields R ϕ + ẋ CO + R θ cos θ θy CO = R ϕ(1 + cos θ), (7.89) ẏ CO R θ sin θ + θx CO = R ϕ sin θ. (7.90) Multiplying (7.89) by sin θ and (7.90) by cos θ and adding them together yields ẋ CO sin θ + ẏ CO cos θ θy CO sin θ + θx CO cos θ = 0. (7.91) Now we can realize that (7.91) can be written as d dt (x CO sin θ + y CO cos θ) = 0. (7.92) Integrating (7.92) with respect to time yields x CO sin θ + y CO cos θ = constant. (7.93) Substituting θ = 0, x CO = 0 and y CO = R + H 2 initial conditions into (7.93) yields x CO sin θ + y CO cos θ = R + H 2. (7.94)
19 7 Kinematics and kinetics of planar rigid bodies II 719 Multiplying (7.89) by cos θ and (7.90) by sin θ and subtracting them yields R( ϕ θ) = ẋ CO cos θ ẏ CO sin θ θy CO cos θ θx CO sin θ. (7.95) Now we can realize that (7.95) can be written as d dt (R(ϕ θ)) = d dt (x CO cos θ y CO sin θ), (7.96) Integrating (7.96) with respect to time yields R(ϕ θ) + C 1 = x CO cos θ y CO sin θ + C 2. (7.97) Substituting θ = 0, ϕ = 0, x CO = 0 and y CO = R + H 2 C 1 = C 2, so initial conditions into (7.97) yields R(ϕ θ) = x CO cos θ y CO sin θ. (7.98) In order to get x CO we multiply (7.94) by sin θ and (7.98) by cos θ and add them together. [ x CO = R + H ] sin θ + R(ϕ θ) cos θ. (7.99) 2 In order to get y CO we multiply (7.94) by cos θ and (7.98) by sin θ and subtract them. [ y CO = R + H ] cos θ R(ϕ θ) sin θ. (7.100) 2 VI. Energy of the system The potential energy of the system is V = mgy CO + mgy O = mgy CO, (7.101) ([ V = mg R + H ] ) cos θ R(ϕ θ) sin θ. 2 (7.102) The kinetic energy of the system is T = 1 2 Mv2 O I cylω 2 cyl Mv2 C I blockω 2 block, (7.103) T = 1 2 M(R ϕ) ( ) 1 2 MR2 ϕ M[(R ϕ+ẋ CO) 2 +ẏ 2 CO]+ 1 2 ( ) 1 12 m(h2 + L 2 ) θ 2. (7.104)
9 Kinetics of 3D rigid bodies  rotating frames
9 Kinetics of 3D rigid bodies  rotating frames 9. Consider the two gears depicted in the figure. The gear B of radius R B is fixed to the ground, while the gear A of mass m A and radius R A turns freely
More informationPLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)
PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when
More informationClassical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e).
Classical Mechanics 1. Consider a cylindrically symmetric object with a total mass M and a finite radius R from the axis of symmetry as in the FIG. 1. FIG. 1. Figure for (a), (b) and (c). (a) Show that
More informationLectureXII. Angular momentum and Fixed axis rotation
LectureXII Angular momentum and Fixed axis rotation Angular Momentum of a System of Particles Consider a collection of N discrete particles. The total angular momentum of the system is The force acting
More informationLecture D162D Rigid Body Kinematics
J. Peraire 16.07 Dynamics Fall 2004 Version 1.2 Lecture D162D Rigid Body Kinematics In this lecture, we will start from the general relative motion concepts introduced in lectures D11 and D12, and then
More informationRotation review packet. Name:
Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the
More informationChapter 9 Notes. x cm =
Chapter 9 Notes Chapter 8 begins the discussion of rigid bodies, a system of particles with fixed relative positions. Previously we have dealt with translation of a particle: if a rigid body does not rotate
More informationRigid Body Dynamics, SG2150 Solutions to Exam,
KTH Mechanics 011 10 Calculational problems Rigid Body Dynamics, SG150 Solutions to Eam, 011 10 Problem 1: A slender homogeneous rod of mass m and length a can rotate in a vertical plane about a fied smooth
More informationPhys 7221 Homework # 8
Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 56: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with
More informationLecture D10  Angular Impulse and Momentum
J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0  Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel
More informationME 230: Kinematics and Dynamics Spring 2014 Section AD. Final Exam Review: Rigid Body Dynamics Practice Problem
ME 230: Kinematics and Dynamics Spring 2014 Section AD Final Exam Review: Rigid Body Dynamics Practice Problem 1. A rigid uniform flat disk of mass m, and radius R is moving in the plane towards a wall
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns Most students first exposure to solving N linear equations in N
More informationLecture D202D Rigid Body Dynamics: Impulse and Momentum
J Peraire 1607 Dynamics Fall 004 Version 11 Lecture D0  D Rigid Body Dynamics: Impulse and Momentum In lecture D9, we saw the principle of impulse and momentum applied to particle motion This principle
More informationKinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)
Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position
More informationAPM1612. Tutorial letter 203/1/2018. Mechanics 2. Semester 1. Department of Mathematical Sciences APM1612/203/1/2018
APM6/03//08 Tutorial letter 03//08 Mechanics APM6 Semester Department of Mathematical Sciences IMPORTANT INFORMATION: This tutorial letter contains solutions to assignment 3, Sem. BARCODE Define tomorrow.
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationPhysics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top
Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem
More informationTwoDimensional Rotational Kinematics
TwoDimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are nonrigid
More informationPhysics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017
Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at
More informationExam II Difficult Problems
Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released
More informationN mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to
.004 MDEING DNMIS ND NTR I I Spring 00 Solutions for Problem Set 5 Problem. Particle slides down movable inclined plane. The inclined plane of mass M is constrained to move parallel to the axis, and the
More informationGeneral Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationLecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws
Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION
More informationChapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:
linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)
More informationCEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.45
1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.45 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION
More informationz F 3 = = = m 1 F 1 m 2 F 2 m 3  Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt  Conservation of Linear Momentum Δ P = 0
F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv  Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0  Conservation
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF
More informationCEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5
1 / 42 CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, November 27, 2012 2 / 42 KINETIC
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationRotational motion problems
Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as
More informationHandout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum
Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a
More informationClass XI Chapter 7 System of Particles and Rotational Motion Physics
Page 178 Question 7.1: Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie
More informationTorque and Simple Harmonic Motion
Torque and Simple Harmonic Motion Recall: Fixed Axis Rotation Angle variable Angular velocity Angular acceleration Mass element Radius of orbit Kinematics!! " d# / dt! " d 2 # / dt 2!m i Moment of inertia
More informationReview for 3 rd Midterm
Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The momentofinertia about the centerofmass
More informationClassical Mechanics III (8.09) Fall 2014 Assignment 3
Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion
More informationRotational Kinematics and Dynamics. UCVTS AIT Physics
Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank
More informationKing Fahd University of Petroleum and Minerals Physics Department Physics 101 Recitation Term 131 Fall 013 Quiz # 4 Section 10 A 1.50kg block slides down a frictionless 30.0 incline, starting from rest.
More informationAP Physics QUIZ Chapters 10
Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5kilogram sphere is connected to a 10kilogram sphere by a rigid rod of negligible
More informationKINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I  PARTA
KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I  PARTA Sem / Year II / I 1.Distinguish the following system of forces with a suitable
More informationWrite your name legibly on the top right hand corner of this paper
NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator
More informationPHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1
PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque
More informationPHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011
PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this
More informationPLANAR RIGID BODY MOTION: TRANSLATION &
PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. InClass
More informationClassical Mechanics Comprehensive Exam Solution
Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,
More information16.07 Dynamics. Problem Set 10
NAME :..................... Massachusetts Institute of Technology 16.07 Dynamics Problem Set 10 Out date: Nov. 7, 2007 Due date: Nov. 14, 2007 Problem 1 Problem 2 Problem 3 Problem 4 Study Time Time Spent
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationQuestion 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a
Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the
More informationRigid bodies  general theory
Rigid bodies  general theory Kinetic Energy: based on FW26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion
More informationPhysics 201 Midterm Exam 3
Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on
More informationGeneral Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10
Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking
More informationPHYSICS 218 Exam 3 Fall, 2013
PHYSICS 218 Exam 3 Fall, 2013 Wednesday, November 20, 2013 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: Email: Section
More informationRIGID BODY MOTION (Section 16.1)
RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center
More informationSTEP Support Programme. Mechanics STEP Questions
STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the
More informationWhat is the initial velocity (magnitude and direction) of the CM? Ans: v CM (0) = ( 7 /2) v 0 ; tan 1 ( 3 /2) 41 above horizontal.
Reading: Systems of Particles, Rotations 1, 2. Key concepts: Center of mass, momentum, motion relative to CM, collisions; vector product, kinetic energy of rotation, moment of inertia; torque, rotational
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More informationPhysics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 201
Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 201 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated
More informationChapter 10. Rotation of a Rigid Object about a Fixed Axis
Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small
More informationProblem 1. Mathematics of rotations
Problem 1. Mathematics of rotations (a) Show by algebraic means (i.e. no pictures) that the relationship between ω and is: φ, ψ, θ Feel free to use computer algebra. ω X = φ sin θ sin ψ + θ cos ψ (1) ω
More informationSimple and Physical Pendulums Challenge Problem Solutions
Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional
More informationPhysicsAndMathsTutor.com
1. A uniform circular disc has mass 4m, centre O and radius 4a. The line POQ is a diameter of the disc. A circular hole of radius a is made in the disc with the centre of the hole at the point R on PQ
More informationPhysics 218 Exam III
Physics 218 Exam III Spring 2017 (all sections) April 17 th, 2017 Rules of the exam: Please fill out the information and read the instructions below, but do not open the exam until told to do so. 1. You
More informationPhys101 Second Major173 Zero Version Coordinator: Dr. M. AlKuhaili Thursday, August 02, 2018 Page: 1. = 159 kw
Coordinator: Dr. M. AlKuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the
More informationPhys 7221, Fall 2006: Midterm exam
Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.
More informationGeneral Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,
More informationQueen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination.
Page 1 of 5 Queen s University at Kingston Faculty of Arts and Science Department of Physics PHYSICS 106 Final Examination April 16th, 2009 Professor: A. B. McLean Time allowed: 3 HOURS Instructions This
More informationPhysics 101 Lecture 12 Equilibrium and Angular Momentum
Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external
More informationQ1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as:
Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the
More informationQuestion 7.1: Answer. Geometric centre; No
Question 7.1: Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring,, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie inside
More informationDYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER
CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Plane Motion of Rigid Bodies: Energy and Momentum Methods
More informationRotational & RigidBody Mechanics. Lectures 3+4
Rotational & RigidBody Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion  Definitions
More informationPLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION
PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational
More information16. Rotational Dynamics
6. Rotational Dynamics A Overview In this unit we will address examples that combine both translational and rotational motion. We will find that we will need both Newton s second law and the rotational
More informationSYSTEM OF PARTICLES AND ROTATIONAL MOTION
Chapter Seven SYSTEM OF PARTICLES AND ROTATIONAL MOTION MCQ I 7.1 For which of the following does the centre of mass lie outside the body? (a) A pencil (b) A shotput (c) A dice (d) A bangle 7. Which of
More informationPart 8: Rigid Body Dynamics
Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod
More informationHandout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration
1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps
More informationRotation Angular Momentum
Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid
More informationChapter 8 Lecture Notes
Chapter 8 Lecture Notes Physics 2414  Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ
More informationPLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.
PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. InClass Activities: 2. Apply the principle of work
More informationCircular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics
Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av
More informationPhysics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1
Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Course Information. Topics to be discussed today: A
More informationTOPIC D: ROTATION EXAMPLES SPRING 2018
TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University
More informationCenter of Gravity. The location of the center of gravity is defined by: n mgx. APSC 111 Review Page 7
Center of Gravity We have said that for rigid bodies, all of the forces act at the centre of mass. This is a normally a very good approximation, but strictly speaking, the forces act at the centre of gravity,
More informationOscillatory Motion. Solutions of Selected Problems
Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A blockspring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More information31 ROTATIONAL KINEMATICS
31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have
More informationUniform Circular Motion:Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant.
Circular Motion: Uniform Circular Motion:Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Angular Displacement: Scalar form:?s = r?θ Vector
More informationAP PHYSICS 1 Learning Objectives Arranged Topically
AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationDepartment of Physics
Department of Physics PHYS101051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts
More informationt = g = 10 m/s 2 = 2 s T = 2π g
Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the
More informationFinal Exam. June 10, 2008, 1:00pm
PHYSICS 101: Fundamentals of Physics Final Exam Final Exam Name TA/ Section # June 10, 2008, 1:00pm Recitation Time You have 2 hour to complete the exam. Please answer all questions clearly and completely,
More informationRevolve, Rotate & Roll:
I. WarmUP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of freefall acceleration near Earth s surface, and r, the radius of a VERTICAL
More informationDynamics of Rotational Motion
Chapter 10 Dynamics of Rotational Motion To understand the concept of torque. To relate angular acceleration and torque. To work and power in rotational motion. To understand angular momentum. To understand
More information