Multi-Prefix Trie: a New Data Structure for Designing Dynamic Router-Tables

Size: px
Start display at page:

Download "Multi-Prefix Trie: a New Data Structure for Designing Dynamic Router-Tables"

Transcription

1 1 Multi-Prix Tri: Nw Dt Strutur or Dsigning Dynmi Routr-Tls Sun-Yun Hsih Mmr, IEEE, Yi-Ling Hung, n Ying-Chi Yng Astrt IP looup ts th sp o n inoming pt n th tim rquir to trmin whih output port th pt shoul snt to; hn, it plys n importnt rol in th sign o routr-tls. In this ppr, w propos nw t strutur, ll multi-prix tri, or us in signing ynmi routrtls. On y tur o our t strutur is tht h no n stor mor thn on prix, whih rus th numr o mmory sss. Whn prorming looup, th strutur n srh mor prixs in on no n my in th longst mthing prix in n intrnl no rthr thn on l. Morovr, whn upting th routr-tl, it os not n to ronstrut th tl. As y-prout, th propos t strutur minimizs th tim rquir or ynmi routr-tl oprtions, inluing looup, insrtion, n ltion, n lso rus th numr o mmory sss. W rport th rsults o xprimnts onut to ompr th propos t strutur with othr struturs using th nhmr IPv4 prix ts AS4637 with 219,581 prixs. Inx Trms Clsslss intr omin routing, ynmi routr tls, IP rss looup, longst mthing prix, multi-prix tri. I. INTRODUCTION Th IP rsss o th lssul routing protool r otn ully utiliz, ut Clsslss Intr Domin Routing (CIDR) [] provis wy to llvit th prolm. Th routing ntris o CIDR r pirs o (p/l, o), whr p = p 0 p 1...p l 1 *is prix orm o inry its; l is th lngth o p, whih is t most 32 its or IPv4 [19] n 128 its or IPv6 [8]; n o is n output port intiir. Th prix lngth o CIDR is vril; hn it n provi mor IP rsss thn lssul routing. An intrnt routr lssiis inoming pts into lows s on inormtion ontin in th pt hrs n tl o (lssiition) ruls ll th routr-tl (quivlntly, rul-tl), whih ontins pirs o (p/l, o). Th ruls r us to in th st mthing prix n trmin th output port th pt shoul snt to. Currntly, th st nown prix mthing shm in th Intrnt protool is th so-ll longst prix mthing shm, whih omprs ll th prixs in th routing tl to th stintion rss it-y-it, n thn ins th longst on mong th st o mthing prixs. Whn pt with stintion rss Th uthors r with th Dprtmnt o Computr Sin n Inormtion Enginring, Ntionl Chng Kung Univrsity, No. 1, Univrsity Ro, Tinn 7, TAIWAN. E-mil rsss: hsihsy@mil.nu.u.tw (Corrsponing uthor: S. Y. Hsih); p @mil.nu.u.tw (Y. L. Hung); p @mil.nu.u.tw (Y. C. Yng). Th lssul routing protool hs our rss lsss: A, B, n C hv 8-it, 16-it, 24-it ntwor-rsss, rsptivly, n D is or multist. rrivs, w n in th pir o (p/l, o) in th routr tl i p with lngth l mths, n thn sn th pt to th output o. Howvr, this mthing shm uss mjor ottln in th routr. Clrly, th prormn o th longst prix mthing lgorithm plys n importnt rol in routing vis. Sin stti routr-tls rquir prohiitiv upt tim to ronstrut tl, thy r only suitl or routing nvironmnts without insrtion n ltion; thror, w onntrt on ynmi routr-tls to support rl-tim instnt upts. Intrst rrs my rr to [21] or mor inormtion out stti routr-tls, n to [25] or urthr tils out stti n ynmi routr-tls. In gnrl, our min tors t th prormn o routr-tl. 1) Looup sp: Th mount o Intrnt tri is so lrg tht th sp o trmining whih output port n inoming pt shoul orwr to is ritil. 2) Sp rquirmnt: Th sp rquirmnt must smll so tht th strutur o th routr-tl n stor in th mmory. 3) Slility: Th strutur o th orthoming IPv6 routing protool n ppli to th IPv6 routr. Th routr-tl must hv th slility to l with routing ntris or oth IPv4 n IPv6. 4) Upt sp: Sin vriility is y tur o th Intrnt, routr-tl ntris usully vry suh tht upts (insrtion n ltion) our rquntly. Eh oprtion must prorm iintly without ronstruting th routr tl. Dsigning routr-tls s on irnt t struturs hs riv grt l o ttntion in rnt yrs [2] [5], [7], [], [15] [18], [20], [22] [24], [26] [29], [31], [33], [34]. On lin o rsrh ouss on signing ynmi routrtls tht mnipult prixs using ontiguous intrvls [4], [5], [15], [26], [28], [29], [34]. For instn, whn th lngth o th IP rss quls 5, th intrvl rprsnting th prix p= is [0, 1] = [0, 15]. An intrvl iltr [u, v] mths th stintion rss D i u D v. Consquntly, th longst mthing prix prolm rus to ining th shortst intrvl ontining th stintion rss. Anothr lin o rsrh tris to in hrwr solutions. To this n, Srng Dhrmpurir t l. [9] mploy Bloom iltrs or mthing th longst prix. Jing t l. [13] propos n SRAM-s prlll multi-piplin rhittur or trit IP looup. Sitng Soh t l. [32] utiliz lxiogrphi orr prixs to ru th o-lin onstrution tim o th Full Expnsion Comprssion (FEC) lgorithm [6] n th Comprss Nxt-Hop Arry/Co Wor Arry (CNHA/CWA) [12]. Digitl Ojt Inntiir Authoriz.09/TC lins us limit to: Ntionl Chng Kung Univrsity //$26. Downlo on 20 Jun IEEE 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

2 2 Numrous tri-s routr-tl shms hv lso n propos [3], [18], [20], [22] [24], [29] [31], ut thy sur rom th ollowing shortomings. I. Aitionl mmory sp is rquir us som nos in ths struturs o not ontin ny routing inormtion [18], [20], [22] [24], [31]. II. Eh no stors xtly on prix, so ssing no n only mth on prix. Thus, routr-tl oprtions, suh s looup, insrtion, n ltion t grt l o tim [3], [18], [20], [31]. III. Looup oprtions in ths struturs must ompr th prixs stor in th nos rom th root to l, vn i th longst mthing prix is in som intrnl no. This will inrs th tim rquir or looup oprtions [3], [18], [20], [22] [24], [29] [31]. IV. Th routr-tls in [18], [20] r stti, so thy nnot upt in timly mnnr. Motivt y th ov osrvtions, w propos nw t strutur ll multi-prix tri or signing ynmi routr-tls. In th propos t strutur, ll th nos p th orrsponing routing inormtion; hn h no n stor mor thn on prix, whih rus th numr o mmory sss rquir or routr-tl oprtions. Morovr, multi-prix tri n rturn th longst mthing prix immitly whn it is oun in som intrnl no. This is quit irnt rom th othr t struturs, whih must go to l in orr to rturn th isovr longst mthing prix. Th ov vntgs ru th tim rquir or routr-tl oprtions. In ition, s on th multi-prix tri, w propos nothr t strutur, ll th inx multiprix tri, whih omins th inx tl with th multiprix tri to ru th hight o th tri n xpit routrtl oprtions. Not tht th two propos t struturs n ppli to oth IPv4 n IPv6. Th rminr o this ppr is orgniz s ollows: Stion II introus th propos multi-prix tri. Th ynmi routr-tl oprtions or th propos t struturs r sri in Stion III. W isuss th inx multi-prix tri n its oprtions in Stion IV. Th rsults o xprimnts onut to ompr th propos t struturs with othr t struturs r rport in Stion V. W thn summriz our inings in Stion VI. II. DESIGNING DYNAMIC ROUTER-TABLES USING A MULTI-PREFIX TRIE In this stion, w propos our t strutur, ll multiprix tri, or signing ynmi routr-tls. Th propos strutur utilizs th Prix-Tr () in in [3] s n uxiliry su-strutur. Bor sriing th t strutur, w in som trms us throughout th ppr. For prix p = p 0 p 1...p l 1 *, lt p = p 0 p 1...p i * or 0 i l 2 su-prix o p. Th lngth o prix p, not y ln(p), is th numr o non- symols; or xmpl, ln(p 0 p 1...p l 1 *)=l. Th lvl o no v in root tr, not y lvl(v), is th numr o gs on th pth rom th root to v. I th lst g on th pth rom th root o th tr is (y, x), thn y is th prnt o x, n x is hil o y. A. Prix-trs Eh no in prix-tr ontins xtly on prix, so th siz o th prix-tr is qul to th siz o th routing tl. As shown in Figur 1, h no ontins prix n two pointrs pointing to sussiv tr nos. Th lngth o th prix must grtr thn or qul to th lvl whr th prix is lot. Thus, in th igur, th lvl o th no ontining 1* is 1 n ln(1*)=1. For onvnin, w us LOOKUP, INSERT n DELETE, to rprsnt th rsptiv lgorithms or looup, insrtion, n ltion oprtions in prix-trs in O(W ) tim, whr W is th lngth o th IP rss. Th LOOKUP lgorithm n in th longst mthing prix [3]. Fig. 1. Prix * 1 1* * 1* A prix-tr * * 0 1 * 0 1 1* 0 1 B. Multi-prix tris A tri is root tr t strutur. A -stri Multi- Prix Tri (-M), whr is th stri whih is positiv intgr, ontins two typs o nos, primry no (p-no) n sonry no (s-no), whih possss th ollowing proprtis: P1. Eh p-no v ontins th ollowing ils: ) 0 t m is th numr o prixs stor in v, whr m = O(). ) Th t prixs, not y p 1 (v),p 2 (v),...,p t (v), r stor in non-inrsing orr with ln(p 1 (v)) ln(p 2 (v)) ln(p t (v)). ) port(p i (v)), th output port o p i (v). ) s pointr(v), pointr points to prix-tr ompos o s-nos, whih stor prixs o lngth t lst lvl(v), ut lss thn (lvl(v)+1). For onvnin, th tr init y s pointr(v) is ll th o v. ) Th ontnt o p-no v n rprsnt simply s (t, p 1 (v),p 2 (v),...,p t (v),s pointr(v)). P2. Th stri is th numr o its us y p-no to trmin whih rnh to t. A p-no whos stri is hs 2 hilrn orrsponing to th 2 possil Th s-nos in o p-no v stor prixs o lngth t lst lvl(v), ut lss thn (lvl(v)+1). This n viw s lssiition o prixs oring to thir lngths. Thr ws nothr prix prtitioning thniqu propos in [15] in whih th prixs in h prtition my rprsnt using ynmi routr-tl t strutur. Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

3 3 vlus or th us its. For s o prsnttion, w us hil 0 (v), hil 1 (v),..., hil 2 1(v) to rprsnt 2 hilrn orrsponing to 2 possil vlus rom } {{...0 } to }{{...1 }. Thus, i = 2, thr will our hilrn, hil 0 (v), hil 1 (v), hil 2 (v), n hil 3 (v), orrsponing to,,, n, rsptivly. P3. A p-no with m prixs is si to ull; othrwis, it is non-ull. Anintrnl p-no is ull p-no tht hs hilrn, n n xtrnl p-no is p-no without ny hilrn. Not tht n xtrnl p-no my non-ull. P4. Lt u n v two onsutiv p-nos on pth in T. I thr r two prixs p i (u) n p j (v) suh tht p j (v) is su-prix o p i (u), thn lvl(u) lvl(v). P5. Eh s-no w hs th ollowing ils: ) p(w), th prix stor in w. ) port(p(w)), th output port o th prix stor in w. ) lt(w), pointr initing th lt s-no o w i it xists; othrwis, th pointr is st s null. ) right(w), pointr initing th right s-no o w i it xists; othrwis, th pointr is st s null. A p-no is sri s mpty i it os not ontin ny prix. Figur 2 illustrts 2-M in whih,,,,, n r p-nos. Assum tht m =5; hn, vry p-no ontins t most iv prixs. Th intrnl p-nos n r ull, whil th xtrnl p-nos,,, n r non-ull. Th thr ott pointrs rprsnt s pointrs, whih point to thr s ontining prixs 0, *, n, rsptivly. Not tht, sin prix 0 in is su-prix in, w hv lvl() =0< 1=lvl(). Fig. 2. Prix 1* * 1 0 * 1 0 * 1*,,,,0 0 A 2-M * * 0,1,1,0,* 1 For -M T, th hight o T, not y h(t ), is mx{lvl(v) v is no (p-no or s-no) in T }. To trvrs pth in T rom th root ( p-no) to l, th urrnt p-no rquirs its to rnh out to th nxt p- no until it rrivs t th l. Hn, th longst pth rom th root to n xtrnl p-no is oun y W. Morovr, th s pointr o n xtrnl p-no my point to prixtr whos hight is oun y. Thror, th ollowing lmm hols. Lmm 1: Lt W th lngth o th IP rss n lt T -M. Thn, h(t ) W +. I w hv string x o lngth l n string y o lngth n, th ontntion o x n y, writtn xy, is th string otin y ppning y to th n o x, sinx 1 x l y 1 y n. Th ollowing proprtis r riv rom th struturl hrtriztion o -M. Lmm 2: Lt u p-no in -M T. Thn, th prixs in u hv th ommon su-prix o lngth t, whr t is th lngth o th pth rom th root o T to u. Proo: Lt P = v 0,v 1,...,v t, whr v t = u, th pth rom th root, sy v 0,tou. Thn, th ontntion o th inis (inry strings o lngth ) o th rnhs (v i,v i+1 ) or ll 0 i t 1 orms th ommon su-prix o th prixs in u. Sin th inx o h rnh is inry string o lngth n th pth P hs lngth t, th lngth o th ommon su-prix quls t. Lmm 3: Lt u p-no in -M T. I th prixtr o u xists, thn th prixs in hv th ommon su-prix o lngth t, whr t is th lngth o th pth rom th root o T to u. Proo: Aoring to proprtis P1, P2, n P5 o th - M, th rsult n shown y using mtho similr to tht utiliz to show Lmm 2. III. DYNAMIC ROUTER-TABLE OPERATIONS A. Crting n mpty -M To uil -M T, w irst us th ollowing lgorithm to rt n mpty root no n thn ll n insrtion lgorithm (sri in Stion III-B) to insrt nw prix. Both lgorithms us n uxiliry prour ll ALLOCATE P- NODE, whih llots th mmory sp to us y nw p-no in O(1) tim. Algorithm M CREATE(T ) 1: v := ALLOCATE P-NODE() 2: root(t ) := v B. Insrtion oprtion In this sustion, w prsnt th insrtion lgorithm or -M. Th ollowing inition is usul in our lgorithms. Dinition 1: Lt S = {(p 0 p 1...p l 1 *,i,j) p t {0, 1} or 0 t l 1 n 0 i j l 1}. Din th untion GET : S Z + s GET(p 0 p 1...p l 1,i,j)= j r=i p r2 j r. For xmpl, GET(, 0, 3) = () 2 =4. To insrt prix p = p 0 p 1...p l 1 * into -M, w strt rom th root n mov ownwrs until w in p-no to insrt p. Suppos tht v is th urrnt p-no visit uring this pross. I ln(p) < (lvl(v)+1), thn p will insrt into th o v. Othrwis, i ln(p) (lvl(v) +1), w trmin whthr or not no v is ull n xut th ollowing oprtion. Assum tht th urrnt ontnt o v is (t, p 1 (v),p 2 (v),...,p t (v),s pointr). I v is ull (i.., t = m) n ln(p m (v)) < ln(p), w rpl p m (v) with p, n thn insrt p m (v) into hil j (v), whr j=get(p m (v), Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

4 4 lvl(v), (lvl(v) +1) 1). Th ontnt o v is urthr upt s (t, p 1 (v),p 2 (v),...,p m 1 (v),p,s pointr). Howvr, i v is ull n ln(p m (v)) ln(p), w insrt p into hil j (v), whr j=get(p, lvl(v), (lvl(v) + 1) 1). Othrwis, v is non-ull, i.., t < m, so w just insrt p into v. Now, th ontnt o v is upt s (t +1,p 1 (v),p 2 (v),...,p t (v),p,s pointr). Th lgorithm is til low. Algorithm M INSERT(p, v, lvl) 1: i v is null thn 2: v :=ALLOCATE P-NODE() 3: i IN (ln(p), lvl) thn / p shoul insrt into th o v / 4: u := ALLOCATE S-NODE() / llot th storg or nw s-no / 5: INSERT(p, u, s pointr(v)) / rll tht INSERT is th insrtion lgorithm or prix-trs / 6: ls i Is Full(v) thn 7: i ln(p m (v)) < ln(p) thn / lngth o th lst prix in v<lngth o p / 8: rpl p m (v) with p in v 9: rrng th prixs in v in non-inrsing orr o thir lngth : r := GET(p m (v), lvl, (lvl +1) 1) : v := hil r (v) 12: M INSERT(p m (v), v, lvl +1) 13: ls 14: r := GET(p, lvl, (lvl +1) 1) 15: v := hil r (v) 16: M INSERT(p, v, lvl +1) 17: ls 18: insrt p into v 19: t(v) := t(v)+1 / inrs th numr o th prixs in v / 20: rturn Th initil ll to insrt prix p is M INSERT(p, root, 0). Nxt, w sri how th ov lgorithms wor (s lso Figur 3). Exmpl 1: To insrt th prix into 2-M with m = 5, s shown in Figur 3(), n not rpl with ny prix in p-no (us ln(0)=6> 3 = ln()) or insrt into th o (us ln()=3 > (lvl() + 1) = 2(0 + 1)). W otin th irst two its () 2 vi GET(,0,1) n thn go to hil 1 (), i.., p-no. Sin IN (ln(),1) is TRUE, Algorithm IN (l, lvl) 1: i l< (lvl +1) thn 2: rturn TRUE 3: ls 4: rturn FALSE Algorithm IS FULL(v) 1: i v is ull thn 2: rturn TRUE 3: ls 4: rturn FALSE is insrt into th o (s Figur 3()). Lt us onsir insrting nothr prix. Sin th lngth o th lst prix 0 in is smllr thn ln()=7, 0 is rpl with s shown in Figur 3(). Nxt, w insrt 0 into p-no. Sin p-no is not ull, w insrt th prix into (s Figur 3()). Th ollowing lmms r usul or monstrting th orrtnss o th M INSERT lgorithm. Lmm 4: Atr xuting Algorithm M INSERT to insrt th prixs, th lngth o h prix in p-no v will lrgr thn tht o h prix in th o v. Proo: Lt p n ritrry prix in v n lt p n ritrry prix in th o v. Suppos, y ontrition, tht ln(p) ln(p ). Thn, oring to Lins 3 5 o th lgorithm n Algorithm IN, w hv ln(p ) < (lvl(v)+1). Hn, ln(p) ln(p ) < (lvl(v)+1), whih mns p is in th o v. This ontrits th ssumption tht p is in v. Consir p-no v in -M T. Lt root(t ) th root o T. Any p-no u on th uniqu pth rom th root o T to v is ll n nstor o v. Iu is n nstor o v, thn v is snnt o u. (Evry no is oth n nstor n snnt o itsl.) I u is n nstor o v n u v, thn u is propr nstor o v, n v is propr snnt o u. Th snnt sutr root t v, not y T (v), is th tr inu y snnts o v, root t v. Lmm 5: Lt x n y two prixs tht r insrt using Algorithm M INSERT, whr y is su-prix o x. Ix n y r oth in p-nos, thn x n y r in th sm p-no; othrwis, th lvl o th p-no ontining x is smllr thn th lvl o th p-no ontining y. Proo: W hv th ollowing snrios. Cs 1: x is insrt or y. Lt u th urrnt p- no ontining x. Aoring to th lgorithm, ll th propr nstors o u must ull. Morovr, whn y is insrt into p-no using M INSERT(y, root, 0), y must ollow th ownwr pth rom th root n nountr p-no u us ln(y) <ln(x). Thr r thr ss. Cs 1.1: u is ull n ln(p m (u)) < ln(y). Aoring to Lins 6 12 o th lgorithm, y will lso insrt into u y rpling p m (u). Hn, x n y r now in th sm p-no n th rsult hols. Cs 1.2: u is ull n ln(p m (u)) ln(y). Aoring to Lins o th lgorithm n y th ssumption tht y is in p-no, y will insrt into p-no whos lvl is lrgr thn tht o u. Hn, th rsult hols. Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

5 5 1*,,,,0 1*,,,,0 * 0,1,1,0,* * 0,1,1,0,* 0 * 1 0 * 1 () () 1*,,,, 1*,,,, * 0,1,1,0,* 0 * 0,1,1,0,* 0 * 1 0 * 1 () () Fig. 3. Illustrtion o how Algorithm M INSERT wors. () Th originl 2-M. () 2-M tr insrting prix. () To insrt prix, th lst prix in no is rpl with prix. () Th 2-M tr insrting prix. Cs 1.3:u is non-ull. Aoring to Lins 17 19, y will lso insrt into u. Hn, x n y r now in th sm p-no n th rsult hols. Cs 2: x is insrt tr y. Lt v th urrnt no ontining y. Aoring to th lgorithm, ll th propr nstors o v must ull n th lngth o h prix stor in ny propr nstor o v must t lst ln(y). Whn x is insrt using M INSERT(x, root, 0), ithr x is rpl y som prix in propr nstor o v, or it ollows th ownwr pth rom th root until it nountrs p-no v. In th ormr s, x will in p-no whos lvl is smllr thn lvl(v); n in th lttr s, w hv th ollowing thr snrios. Cs 2.1: v is ull n ln(p m (v)) < ln(x). Aoring to Lins 6 12 o th lgorithm, x will insrt into v y rpling p m (v). I y = p m (v), thn y will insrt into propr snnt o v. Thus, th rsult hols. Othrwis, i y p m (v), thn x n y will insrt into th sm p-no. Cs 2.2:v is ull n ln(p m (v)) ln(x). This ls to ln(y) ln(p m (v)) ln(x), whih ontrits th t tht ln(y) < ln(x) us y is su-prix o x. Cs 2.3:v is non-ull. Aoring to Lins 17 19, x will lso insrt into v. Hn, x n y r now in th sm p-no n th rsult hols. Thorm 1: Algorithm M INSERT(p, root, 0) n orrtly insrt prix p into -M T. Proo: Th orrtnss ollows rom Lmms 4 5 n th orrtnss o Algorithm INSERT. Thorm 2: Algorithm M INSERT(p, root, 0) n implmnt to run in O(W ) tim. Proo: During th xution o th lgorithm, w irst h whthr th givn prix p shoul insrt into th o som p-no v, oring to Lins 3 4. This stp n on in O(1) tim. I th onition hols, it ts O(W ) tim to insrt prix into th oring to Lin 5. Othrwis, w n h whthr or not th urrnt p-no v is ull in O(1) tim. I v is ull n ln(p m (v)) <ln(p), w rpl p m (v) with p n insrt p into th propr position in v n p m (v) into hil j (v) with j=get(p m (v), lvl(v), (lvl(v)+1) 1), oring to Lins Sin m = O(), th ov oprtion ts O() tim without onsiring th rursiv ll. I v is ull n ln(p m (v)) ln(p), w insrt p into hil j (v) with j=get(p, lvl(v), (lvl(v)+1) 1), oring to Lins o th lgorithm. Without onsiring th rursiv ll, this ts O() tim. Othrwis, i v is non-ull, th lgorithm only ns O() tim to insrt p into v. Sin th numr o th p-nos rom th root to n xtrnl p-no in - M is O( W ) n insrting prix into o p-no Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

6 6 ts O(W ) tim, th totl tim omplxity o th lgorithm is O( ( W )+W)=O(W). C. Looup oprtion Th stps o our srh lgorithm, ll LOOKUP, r s ollows. Givn th stintion rss DA, w srh - M strting rom th root in top-own mnnr. Whn p-no v is visit, w irst srh th prixs o v strting rom p 1 (v) to trmin whthr th DA mths som prix in v. I suh prix xists, thn it is th longst mthing prix oring to Proprtis P1() n P4. Othrwis, w srh th orrsponing prix-tr n trmin whthr it ontins mthing prix. I mthing prix is oun, w stor it n pro with urthr itrtions until n xtrnl p-no is visit. Th lgorithm is til low. Algorithm M LOOKUP(DA,v,lvl) / nxt hop is us to ror th output port o th urrnt ttr mthing prix, n ult rout is us to ror th ult output port. / 1: lvl := 0 2: nxt hop := ult rout 3: whil v null o 4: i thr is prix in v tht mths DA thn 5: in th longst prix p i (v) tht mths DA 6: rturn port(p i (v)) 7: ls 8: nxt hop := LOOKUP(DA, s pointr(v)) 9: r := GET(DA, lvl, (lvl +1) 1) : v := hil r (v) : lvl := lvl +1 12: rturn nxt hop Th initil ll is M LOOKUP(DA, root, 0), whr root is th root o th givn -M. W us n xmpl to xplin how th lgorithm wors (s lso Figur 2). Exmpl 2: I DA=, w gin srhing th root n in tht mths this rss. Hn, th longst mthing prix is. I DA =, w gin srhing th root, ut in tht no prix mths. Bs on s pointr(), w go to th orrsponing n in mthing prix. W thn stor th output port numr o, n t th irst two its o DA to go to hil 0 () (i.., p-no ). No prix in mths, ut th orrsponing hs prix 0 tht mths. Sin p-no hs no hil, 0 is thus th longst mthing prix. Thorm 3: Algorithm M LOOKUP(DA, root, 0) n orrtly in th longst mthing prix or DA i suh prix xists. Proo: To vriy tht th lgorithm wors orrtly, w us th ollowing loop invrint : At th strt o h itrtion o th whil loop in Lins 3, th output port o ithr th longst mthing prix or th urrnt st nown mthing prix is oun. W n to show tht 1) this invrint is tru prior to th irst loop itrtion; 2) h itrtion o th loop mintins th invrint; n 3) th invrint provis usul proprty to monstrt th orrtnss whn th loop trmints. Initiliztion: Th ntir -M is not srh prior to th irst itrtion o th loop; nxt hop is st s ult rout n th loop invrint hols trivilly. Mintnn:To h whthr h itrtion mintins th loop invrint, w mth DA with th prixs p 1 (v),p 2 (v),...,p t (v) stor in th urrnt p-no v. First, w onsir th sitution whr DA mths p i (v) or som 1 i t s on th ollowing two ss. Cs 1. nxt hop ult rout. Hr, th DA must mth som prix p in o p-no u, whr lvl(u) < lvl(v). Aoring to Proprty P1() o th -M, lvl(u) ln(p ) < (lvl(u)+1). Not tht ln(p i (v)) lvl(v). Hn, ln(p ) < ln(p i (v)) y ln(p ) < (lvl(u)+1) lvl(v) ln(p i (v)). Morovr, i thr xists nothr mthing prix p in p-no w or in th o w with lvl(w) > lvl(v), thn, oring to Lmm 4 n Proprtis P1() n P4 o th -M, ln(p ) < ln(p i (v)). Bs on th ov osrvtions n th t tht ln(p i (v)) ln(p i+1 (v)) ln(p t (v)), p i (v) is slt s th longst mthing prix n Lin 6 o th lgorithm will rturn th orrt output port. Cs 2. nxt hop = ult rout. Hr, p i (v) is th irst mthing prix. I thr is nothr mthing prix p in p-no w or in th o w with lvl(w) > lvl(v), thn, oring to Lmm 4 n Proprtis P1() n P4 o th -M, ln(p ) < ln(p i (v)). Morovr, us ln(p i (v)) ln(p i+1 (v)) ln(p t (v)), p i (v) is slt s th longst mthing prix n Lin 6 o th lgorithm will rturn th orrt output port. Nxt, w onsir th sitution whr th DA os not mth ny prix in p-no. I th DA mths prix in th o v, thn Lin 8 o th lgorithm will rturn th output port o th longst mthing prix mong th prixs in th. Clrly, th isovr mthing prix is urrntly th st on. Howvr, i th DA os not mth ny prix in th o v, thn in Lins 9, w gt th nxt its to trmin whih hil o v shoul visit nxt. Rnwing v n inrmnting lvl r-stlishs th loop invrint or th nxt itrtion. Trmintion: At th trmintion, v is null. By th loop invrint, h tion o rnwing nxt hop will p th output port o th urrnt st mthing prix. Sin thr r no othr nos to visit, Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

7 7 Lin 12 o th lgorithm will rturn th output port o th longst mthing prix i suh prix xists. Thorm 4: Algorithm M LOOKUP(DA, root, 0) n implmnt to run in O( W 2 ) tim. Proo: For h prix p = p 0 p 1...p l 1 *, w us n intrvl I p =[, ] to rprsnt p, whr = l 1 r=0 p r2 W r 1 n = l 1 r=0 p r2 W r 1 + W 1 r=l 2 W r 1. For xmpl, whn W =8, I 0 = [32, 63]. Not tht th DA mths prix [, ] i th DA s iml vlu is twn n. Hn, hing whthr DA mths prix will t O(1) tim. In h itrtion o th whil loop, w n h whthr DA mths som prix in th urrnt p-no in O() tim. Sin th numr o th p-nos rom th root to n xtrnl p-no in -M is O( W ) n loouping prix in ts O(W ) tim, th ovrll tim omplxity o th lgorithm is O(( + W ) W ) = O( W 2 ). D. Dltion oprtion To lt prix p = p 0 p 1...p l 1 *, w strt rom th root, ollow th ownwr pth, n xut th ollowing oprtion. Suppos tht v is th p-no ing visit urrntly. First, w utiliz Algorithm IN to h whthr p is in th o v. Ip is in th, w simply lt p n rls th storg llotion o th orrsponing s-no ontining p. Howvr, i p is not in th o v, thr r two possil snrios pning on whthr p is in v or not. W irst onsir th s whr p is in v. Lt (t, p 1 (v),p 2 (v),...,p t (v),s pointr(v)) th urrnt ontnt o v suh tht p i (v) = p or som 1 i t. I v is n xtrnl p-no, w rmov p rom v n upt th ontnt o v s (t 1,p 1 (v),p 2 (v),...,p i 1 (v),p i+1 (v),...,p t (v),s pointr(v)). Not tht whn t 1 = 0 n v hs no, i.., s pointr(v)=null, w only n to rls th storg llotion o v. Howvr, i v is n intrnl p-no, w lt p irst. Lt hil r (v) or som 0 r 2 1 th hil ontining th longst prix, sy y, mong th prixs stor in th hilrn o v. W insrt y into v n upt th ontnt o v s (t, p 1 (v),p 2 (v),...,p i 1 (v),p i+1 (v),...,p t (v),y, s pointr(v)). By xuting th ov oprtions, w rursivly ll th ltion lgorithm to lt y rom hil r (v). For th sitution whr p is not in v, w gt th sir its rom p to rnh out rom som hil o v, n rursivly ll th ltion lgorithm. Th omplt lgorithm is prsnt in Algorithm M DELETE(p, v, lvl). Th initil ll or lting prix p is M DELETE(p, root, 0). Exmpl 3: Th stps o th M DELETE lgorithm r s ollows. First, w lt th prix * rom th 2-M shown in Figur 4(). Sin * is not in p-no or in th o, w gt th irst two its () 2 n go to hil 1 () =. Howvr, * is in th o, so w lt it rom th (s Figur 4()). Nxt, w lt prix 0 rom th 2-M shown in Figur 4(). Sin 0 is not in p-no or in th o, w gt th irst two its () 2 n go to Algorithm M DELETE(p, v, lvl) / This lgorithm uss two uxiliry prours, FREE S- NODE n FREE P-NODE, whih r th storg llotion o n s-no n p-no, rsptivly, in O(1) tim. / 1: i v is null thn 2: output p is not oun 3: i IN (ln(p), lvl) thn 4: DELETE(p, s pointr(v)) 5: FREE S-NODE 6: ls i p is in v thn 7: lt p rom v 8: i v is n xtrnl p-no thn 9: t(v) := t(v) 1 / rs th numr o th prixs in v / : i t(v) =0n s pointr(v)=null thn : FREE P-NODE(v) 12: ls 13: in prix y in hil r (v) s.t. ln(y) = mx{ln(p) p hil i (v) or 0 i 2 1} 14: insrt y s th lst prix in v 15: v := hil r (v) 16: M DELETE(y, v, lvl +1) 17: ls 18: r := GET(p, lvl, (lvl +1) 1) 19: v := hil r (v) 20: M DELETE(p, v, lvl +1) 21: rturn hil 3 () =. W in tht 0 is in p-no, sow lt it (s Figur 4()). As shown in Figur 4(), 0 is rpl with prix 1 in p-no, n 1 is lt rom. As p-no is now mpty, w rls its storg llotion. Finlly, w onsir to lt rom p-no, s shown in Figur 4(). Th intrmit 2- M is shown in Figur 4(). W slt th longst prix mong th prixs stor in th hilrn o. Th lngth o th longst prix quls 6, ut thr r mny prixs o lngth 6 stor in th hilrn o. Without loss o gnrlity, w ssum tht 0 in p-no is slt. W thn insrt it s th lst prix in n lt it rom (s Figur 4()). Not tht sin th o v still xists tr lting 0, w o n not to rls th storg llotion o. Th ollowing lmms r usul or monstrting th orrtnss o th ltion lgorithm. Lmm 6: Atr using Algorithm M DELETE (z, root, 0) to lt prix z rom p-no v, h prix in v will still longr thn ny prix in th o v. Proo: Aoring to Lins o th lgorithm, th longst prix in som hil o v my mov to v. Lt x n ritrry prix in th o v n lt y th prix mov up to v. Sin ln(x) < (lvl(v)+1) n (lvl(v)+ 1) ln(y), ln(x) <ln(y). Lmm 7: Lt x n y two prixs in p-no n lt y su-prix o x. Thn, tr using Algorithm M DELETE(z, root, 0) to lt prix z / {x, y}, on Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

8 8 1*,,,, 1*,,,, 0 * 0,1,1,0,* 0 * 0,1,1,0,* 0 * () () 1*,,,, 1*,,,, 0 * 1,1,0, 0 * 1,1,1,0,* () () 1*,,, 1*,,,,0 0 * 1,1,1,0,* * 1,1,1,0,* 0 0 () () Fig. 4. Th oprtions o th M DELETE lgorithm. () Th originl 2-M. () 2-M tr lting prix *. () Prix 0 is lt rom p-no. () Prix 1 is mov to no n th storg llotion o is rls. () Prix is lt rom p-no. () Th longst prix, 0, in th hilrn o is mov to no suh tht p-no is now mpty. o th ollowing two onitions will hol: (1) x n y will stor in th sm p-no suh tht x will ppr or y; or (2) th lvl o th p-no ontining x will smllr thn th lvl o th p-no ontining y. Proo: Lt u n v two p-nos ontining x n y, rsptivly, or xuting Algorithm M DELETE(z, root, 0). W hv th ollowing snrio. Cs 1: u = v. Sin ln(y) <ln(x), x pprs or y in u. Aoring to th lgorithm, thr r two su-ss. Cs 1.1:Th irst prix p 1 (u) is mov up to th prnt o u.ix = p 1 (u), thn x is mov to th prnt o u tr th lgorithm hs n xut; thus, Conition (2) hols. Howvr, i x p 1 (u), thn x n y will still in th sm p-no tr th lgorithm hs n xut. Hn, Conition (1) hols. Cs 1.2:Th irst prix p 1 (u) is not mov up to th prnt o u. In this su-s, x n y r still in u n rtin thir rltiv orr. Hn, Conition (1) hols. Cs 2: u v. By Lmm 5, lvl(u) < lvl(v). Atr xuting th lgorithm, ithr lvl(u) < lvl(v) still hols or lvl(u)+1 = lvl(v) n y is mov up to u. In th lttr s, sin ln(x) >ln(y), Conition (1) hols oring to Lin 14 o th lgorithm. Thorm 5: Algorithm M DELETE(p, root, 0) n or- Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

9 9 rtly lt prix p rom -M. Proo: Th orrtnss ollows irtly rom th lgorithm n Lmms 6 n 7. Thorm 6: Algorithm M DELETE(p, root, 0) n implmnt to run in O( 2 W ) tim. Proo: During th xution o th lgorithm, w irst h whthr p is in th o th urrnt p-no v (Lins 3 5) in O(1) tim. I p is in th, it ts O(W ) tim to lt it. Othrwis, w h whthr p is in v n lt it in O() tim. I p is in v, thn th orrsponing oprtions (without rgr to rursiv ll) sri in Lins 6 16 o th lgorithm n implmnt in O(2 ) tim us w in th longst prix mong th prixs in O(2 ) hilrn o v. Othrwis, p is not in v. Th orrsponing oprtions (without rgr to rursiv ll) sri in Lins o th lgorithm n implmnt in O() tim. Thror, th totl omplxity is O(2 ( W ) + W )=O( 2 W ). IV. INDEX MULTI-PREFIX TRIE W now prsnt nw t strutur ll th -stri Inx Multipl Prix Tr (-IM or short), whih is s on th -M. Th -IM prtitions -M into svrl smllr -Ms to ru its hight. This i hs n us in mny routrs [14]. Th prtition -Ms r mrg through th inx tl t[ }{{...0 }, }{{...1 },, } {{...1 } ]. α α α Givn ix lngth α, th inx tl hs 2 α ntris suh tht th ntry t[ α 1 ] ontins pointr, whih inits th -M tht stors th prixs with th ommon suprix α 1 (s Figur 5). To xut th routr-tl storg rquirmnt. Th lgorithms or looup n ltion wor similrly. Dinition 2: Lt S = {(p 0 p 1...p l 1 *,α) p i {0, 1} or 0 i l 1 n 0 l < α}. Din th untion TAKE PREFIX ENDPOINT : S Z + s TAKE PREFIX ENDPOINT(p 0 p 1...p l 1,α) = l 1 r=0 p r2 α r 1 + α 1 r=l 2α r 1. For xmpl, TAKE PREFIX ENDPOINT(1, 8) = (11) 2 = 163. Th lgorithms or th looup, insrtion, n ltion oprtions or prix p = p 0 p 1...p l 1 * on th -IM r til low. Algorithm IM LOOKUP(α, p, DA) 1: s := GET(p, 0,α 1) 2: M LOOKUP(DA, t[s] root, 0) Algorithm IM INSERT(α, p) 1: s := GET(p, 0,α 1) 2: i ln(p) α thn 3: i (t[s] root) is null thn 4: M CREATE(t[s]) 5: M INSERT(p, t[s] root, 0) 6: ls 7: := TAKE PREFIX ENDPOINT(p, α) 8: or i := s to o 9: M INSERT(p, t[i] root, 0) Fig. 5. A -IM Inx Tl -M -M -M Algorithm IM DELETE(α, p) 1: s := GET(p, 0,α 1) 2: i ln(p) α thn 3: M DELETE(p, t[s] root, 0) 4: ls 5: := TAKE PREFIX ENDPOINT(p, α) 6: or i := s to o 7: M DELETE(p, t[i] root, 0) oprtions (looup, insrtion, n ltion) in -IM, w irst mth th inx tl n thn xut th oprtions in th orrsponing -M. For xmpl, i w insrt prix p into -IM, w irst gt th α its o p to trmin th inx vlu. I ln(p) α, w n insrt p into th orrsponing rry. Howvr, i ln(p) <α, thn p orrspons to mor thn on inx vlu. For instn, ssum tht p =1 n α = 8 (i.., th irst ight its o prix rprsnt th inx vlu). Bus 1 ontins,,, n 11, th prix p =1 must insrt into th -Ms init y t[], t[], t[], n t[11], rsptivly. Sin storing uplit prixs is iniint, w must hoos n α vlu tht n ru th V. EXPERIMENTAL RESULTS W onut xprimnts on th nhmr IPv4 prix ts AS4637, t Novmr 21, 27 [1]. It ontins 219,581 prixs. W implmnt th -M n -IM or vrious, s wll s or othr t struturs (or omprison with -M n -IM) using C++. All th xprimnts wr prorm on 3.40GHz PC with 512MB mmory. Figur 6 shows th totl prix-popultion y th prix lngth. In Stion V-A, w slt propr n m or -M n - IM, n nlyz thir prormn. Thn, in Stion V-B, w ompr th propos t struturs with othr t struturs. Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

10 @ 9 TABLE I AVERAGE LOOKUP TIME (# CLOCK CYCLES) OF -MS WITH DIFFERENT AND m m \ -M 1-M 2-M 3-M 4-M 5-M TABLE II AVERAGE UPDATE TIME (# CLOCK CYCLES) OF -MS WITH DIFFERENT AND m m \ -M 1-M 2-M 3-M 4-M 5-M ? 6 ; : >= ;< 6 9 : & ' ) * +, - ) / IM. As w n s in Tl I, it n hiv th st vrg looup tim whn = 2 n m = For vrg upt tim shown in Tl II, 4-M hs ttr prormn. Morovr, it n hiv th st vrg upt tim whn =4n m =3. Sin (vrg upt tim on =4n m =2 +1) (vrg upt tim on =4 n m = 3) = = 53 is smll; hn, w slt m = 2 +1 or ompring -M with othr t struturs in Stion V-B. On th othr hn, th -IM hs similr rsults. Th tls o vrg looup tim n vrg upt tim or -IM with irnt n m r shown t Fig. 6. Prix-popultion in AS4637 A. Slting n m or M n IM Sin th numr m = O() or prixs in th p-no o M my ts prormn, w n to slt propr vlus pproprit or n m. Th xprimntl rsults or th vrg looup tim n vrg upt tim or - M with irnt n m s on AS4637 r shown in Tl I n Tl II, rsptivly. W insrt n lt 5,0 prixs in AS4637 to omput th vrg upt tim. Sin th lngth o h prix in AS4637 is t lst 8, w st α =8to voi uplit storg o th sm prix in W slt m =2+1 or 1 5 to ompr th storg rquirmnt y th xprimnt. Th xprimntl rsults or th numr o nos, th hight, n th storg rquirmnts or uiling -M n -IM s on AS4637 r shown in Tl III. Not tht or only on -M, th mximum hight n vrg hight r th sm. On th othr hn, sin on -IM T my ontin svrl -Ms, th mximum hight o T is in s mx{h(t ) T is -M ontin in T }; n th vrg hight o T is th vrg hight o ll th -Ms in T. As shown in Tl III, whn inrss, th hight rss, ut mor storg is rquir. Th rson is tht lrgr n stor mor prixs in p- no, whih implis tht mor storg is rquir. To hiv ttr prormn, w n to onsir th hight, oprting tim, n storg rquirmnt whn slting. As shown in Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

11 1-M 2-M 3-M 4-M 5-M 1-IM 2-IM 3-IM 4-IM 5-IM TABLE III REQUIREMENTS FOR BUILDING -MS AND -IMS BASED ON AS4637 # Nos Mx Hight Avg. Hight Storg (KB) # p-nos # s-nos Tl III, 2-M rquirs lss storg thn 4-M. From th ov osrvtions, w onlu tht th looup prormn o 2-M is ttr, n its vrg upt tim is just littl highr thn tht o 4-M. Thror, w ompr 2-M with th othr t struturs in Stion V-B. W hv similr osrvtions on -IM n slt 2-IM with m =2 +1 to ompr it with th othr t struturs in th nxt stion. B. Comprison with othr t struturs Tl IV omprs th numr o nos, th numr o ummy nos, th hight, n th storg rquirmnt whn implmnting th AS4637 routr-tl with th ollowing struturs: inry tri, n LC-tri [18], moii LC-tri [20], prix-tr [3], Dynmi Tr BitMp () [30], Fix-Stri Tri (FST) [22], 2-M, n 2- IM. For th multi-it tri s strutur, w opt th -FST, ix-stri tri with th lvl. W ppli th lgorithm propos y Shni n Kim [22] to omput th ost n th st stri o -FST or 3 7. In our xprimnt, 7-FST is suprior thn th othr -FSTs (3 6) with rspt to th worst-s looup tim, numr o nos, numr o ummy nos, storg n upt tim. Morovr, th vrg looup tim is omptitiv to othr hois o. Thror, w slt 7-FST to ompr with th propos t struturs. Not tht th inry tri, th LC-tri, th moii LC-tri,, n 7-FST ontin ummy nos, whih inrss th storg ost sustntilly. Morovr, th inry tri, th LC-tri, th moii LC-tri, th prix-tr,, n 7-FST hv mor nos thn our t struturs. Th storg rquirmnt o th LC-tri n th moii LC-tri n to stor inormtion out th nxt hop, th prix, s wll s sip n rnh oprtions in h no; hn, thir storg rquirmnts r grtr thn thos o th othr struturs. Spiilly, th hight (oth th mximum hight n th vrg hight) o 2-M (2-IM) is lss thn tht o th othr struturs xpt or n 7- FST, whih rus th numr o mmory sss rquir or routr-tl oprtions. Although th hight o (7- FST) is smllr thn our t struturs, th looup tim o our t struturs is omptitiv to n 7-FST in th xprimnt. Sin h mmory ss rquirs grt l o tim, th numr o mmory sss ts th oprting tim. Tl V, Figur 7, n Figur 8 ompr th prormn o th looup oprtions o th irnt t struturs. Both 2-M n 2-IM rquir wr mmory sss thn th othr struturs xpt or n 7-FST, whih implis tht th vrg looup tim lso shortr thn th ompr struturs. On y rson is tht our t struturs n rturn th longst mthing prix whn it is oun in n intrnl no, without going to l to rturn. Although th (rsptivly, 7-FST) rquirs wr mmory sss thn 2- M (rsptivly, 2-M n 2-IM), 2-M n 2-IM r str in trms o looup tim. Th rsons r s ollows. (1) Whn no v is visit in th, n uxiliry untion is ll to trmin whthr thr is mthing prix mths th stintion rss. I suh prix xists, thn it will stor s th urrntly st mthing prix. Morovr, th orrsponing nxt hop is lso pt. (2) Whn no is visit in th 7-FST, th orrsponing stri n to Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

12 12 TABLE IV STRUCTURE COMPARISON OF DIFFERENT DATA STRUCTURES # Nos # p-nos # s-nos # Dummy Nos Mx. Hight Avg. Hight Storg (KB) Binry Tri LC-Tri Moii LC-Tri Prix Tr FST M IM TABLE V LOOKUP TIME AND THE NUMBERS OF MEMORY ACCESSES FOR DIFFERENT DATA STRUCTURES Tim (# Clo Cyls ) # Mmory Asss Avg. Worst Avg. Worst Binry tri LC-tri Moii LC-tri Prix-tr FST M IM Avg. Looup Tim Worst-s Looup Tim Tim (# Clo Cyls) Binry Tri LC-Tri Moii LC-Tri Prix-Tr 7-FST 2-M 2-IM Tim (# Clo Cyls) Binry Tri LC-Tri Moii LC-Tri Prix-Tr 7-FST 2-M 2-IM () () Fig. 7. Th vrg looup tim n worst-s looup tim or irnt t struturs omput in orr to go to th nxt no. Ths oprtions t longr tim. Tl VI, Figur 9, n Figur show th prormn omprison o upting 5,0 prixs in AS4637 with irnt ynmi t struturs. Sin th LCtri, moii LC-tri, n FST r stti, th whol tl must ronstrut whn insrting or lting prix; hn, th ov thr t struturs r xlu rom th omprison. As shown in th tl n igurs, oth 2-M n 2-IM rquir shortr upt tim. Sin th inry tri my insrt or lt longst prix, th mmory ss is 32 or IPv4 (128 or IPv6). Thror, th upt tim o th inry tri is lrgr thn our t struturs. Morovr, th upt tim n th numr o mmory sss or th inry tri n th prix-tr r lmost th sm us, in oth struturs, th insrtion n ltion o mny routing ntris in AS4637 otn ollow ownwr pths to lvs in orr to xut th oprtions. Not tht th upt tim n th numr o mmory sss or th inry tri n th prix-tr r lrgr thn 2-M n 2-IM. Although th numr o mmory sss o is lss thn 2-M n 2-IM, th upt tim o is lrgr thn 2-M n 2-IM. Th rson is tht ns mor omplx oprtions to prorm llotion whn lting prix. VI. CONCLUDING REMARKS W hv propos two nw t struturs, M n IM, or ynmi routr-tl sign. Sin th struturs o not ontin ummy nos, thy rquir lss storg n thy r not s high s othr trs. In ition, us o th lowr hight, thy rquir wr mmory sss or routr- Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

13 13 Avg. # Mmory Asss or Looup Worst-s # Mmory Asss or Looup # Mmory Asss Binry Tri LC-Tri Moii LC-Tri Prix-Tr 7-FST 2-M 2-IM # Mmory Asss Binry Tri LC-Tri Moii LC-Tri Prix-Tr 7-FST 2-M 2-IM () () Fig. 8. Th vrg numr mmory sss n th worst-s numr o mmory sss or irnt t struturs TABLE VI THE UPDATE TIME AND THE NUMBER OF MEMORY ACCESSES FOR DIFFERENT DATA STRUCTURES Tim (# Clo Cyls) # Mmory Asss Avg. Worst Avg. Worst Binry tri Prix-tr M IM Avg. Upt Tim Worst-s Upt Tim Tim (# Clo Cyls) Binry Tri Prix-Tr 2-M 2-IM Tim (# Clo Cyls) Binry Tri Prix-Tr 2-M 2-IM () () Fig. 9. Th vrg upt tim n th worst-s upt tim or irnt t struturs tl oprtions. Th simultion rsults rvl tht our t struturs r suprior to thos tri-s t struturs in rspt o storg, IP looup tim, n upt tim. Tl VII summrizs th struturl proprtis o irnt tri-s t struturs. Th inry tri, th (moii) LCtri n ontin ummy nos, so it is nssry to go to l to in th longst mthing prix. Our propos t struturs o not sur rom this limittion. Our utur wor ttmpts to ru th numr o mmory sss n th mmory rquirmnt o th propos t struturs whil prsrving st upting. ACKNOWLEDGMENT Th uthors r ply ppritiv or th ommnts n suggstions givn y th itor n th nonymous rrs. REFERENCES [1] BGP Tl otin rom [2] A. Bsu n G. Nrlir, Fst inrmntl upts or piplin orwring ngins, IEEE/ACM Trnstion on Ntworing, vol. 13, no. 3, pp , Jun 25. [3] M. Brgr, IP looup with low mmory rquirmnt n st upt, in Proings o IEEE High Prormn Swithing n Routing, pp , Jun 23. [4] Y. K. Chng, Simpl n st IP looups using inomil spnning trs, Computr Communitions, vol. 28, no. 5, pp , Mr. 25 [5] Y. K. Chng n Y. C. Lin, Dynmi sgmnt trs or rngs n prixs, IEEE Trnstions on Computrs, vol. 56, no. 6, pp , Jun 27 [6] P. Crsnzi, L. Drini, n R. Grossi, IP rss looup m st n simpl, in Proings o Svnth Ann. Europn Symp. Algorithms, Thnil Rport TR-99-, Univ. o Pis, [7] M. Dgrmr, A. Broni, S. Crlsson, n S. Pin, Smll orwring tls or st routing looups, in Proings o ACM SIGCOMM, pp. 3 14, [8] S. Dring n R. Hinn, Intrnt protool vrsion 6 (IPv6) spiition, RFC 1883, D [9] S. Dhrmpurir, P. Krishnmurthy n D. E. Tylor, Longst prix mthing using loom iltrs, IEEE/ACM Trnstions on Ntworing, vol. 14, no. 2, pp , Apr. 26 [] W. Doringr, G. Krjoth, n M. Nsshi, Routing on longst- Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

14 14 Avg. # Mmory Asss or Upt Worst-s # Mmory Asss or Upt #MmoryAsss Binry Tri Prix-Tr 2-M 2-IM #MmoryAsss Binry Tri Prix-Tr 2-M 2-IM () () Fig.. Th vrg numr o mmory sss n th worst-s numr o mmory sss or irnt t struturs TABLE VII SUMMARY OF PROPERTIES FOR DIFFERENT DATA STRUCTURES Dummy no Tl Hight Compr-to-L Btring Binry Tri Y ynmi W Y N LC-tri Y stti W Y Y Moii LC-Tri Y stti W Y N Prix-Tr N ynmi W Y N Y ynmi W Y N 7-FST Y stti Y N M N ynmi W + N N IM N ynmi W + N N Th strutur must ompr th prixs stor in th nos rom th root to l, vn i th longst mthing prix is in som intrnl no. Th prix o th l in this strutur os not mth th stintion rss, so it must tr rom th l to th uppr nos to in th longst mthing prix. mthing prixs, IEEE/ACM Trnstions on Ntworing, vol. 4, no. 1, pp , [] V. Fullr, T. Li, J. Yu n K. Vrhn, Clsslss intr-omin routing (CIDR): n rss ssignmnt n ggrgtion strtgy, RFC 1519, Sp [12] N. F. Hung n S. M. Zho, A novl IP-routing looup shm n hrwr rhittur or multigigit swithing routrs, IEEE Journl on Slt Ars in Communitions, vol. 17, no. 6, pp , Jun [13] W. Jing, Q. Wng, n V. Prsnn, Byon TCAMs: n SRAM-s prlll multi-piplin rhittur or trit IP looup, in Proings o IEEE INFOCOM, pp , Apr. 28. [14] B. Lmpson, V. Srinivsn, n G. Vrghs, IP looups using multiwy n multiolumn srh, in Proings o IEEE INFOCOM, pp , Apr [15] H. Lu, K. S. Kim n S. Shni, Prix n intrvl-prtition ynmi IP routr-tls, IEEE Trnstions on Computrs, vol. 54, no. 5, pp , My 25 [16] J. H. Mun, H. Lim n C. Yim, Binry srh on prix lngths or IP rss looup, IEEE Communitions Lttrs, vol., no. 6, pp , Jun 26 [17] S. Nilsson n G. Krlsson, Fst rss loo-up or Intrnt routrs, IEEE Bron Comm., pp. 22, [18] S. Nilsson n G. Krlsson, IP-rss looup using LC-tri, IEEE Journl on slt Ars in Communitions, vol. 17, no. 6, pp , Jun [19] J. Postl, Intrnt protool rp intrnt progrm protool spiition, RFC791, Sp [20] V. C. Rviumr, R. Mhptr, J. C. Liu, Moii LC-tri s iint routing looup, in Proings o th th IEEE Intrntionl Symp. on Moling, Anlysis n Simultion o Computr n Tlommunition Systms (MASCOTS), pp , Ot. 22. [21] M. A. Ruiz-Snhz, E. W. Birs, n W. Dous, Survy n txonomy o IP rss looup lgorithms, IEEE Ntwor, vol. 15, pp. 8 23, 20. [22] S. Shni n K. S. Kim, Eiint onstrution o ix-stri multiit tris or IP looup, in Proings o th 8th IEEE Worshop on Futur Trns o Distriut Computing Systms, pp , 20. [23] S. Shni n K. S. Kim, Eiint onstrution o vril-stri multiit tris or IP looup, in Proings o IEEE Symp. Applitions n th Intrnt (SAINT), pp , 22. [24] S. Shni n K. S. Kim, Eiint onstrution o multiit tris or IP looup, IEEE/ACM Trnstion on Ntworing, vol., no. 3, pp , 23. [25] S. Shni, K. S. Kim, n H. Lu, Dt struturs or on- imnsionl pt lssiition using most-spii-rul mthing, Intrntionl Journl o Fountions o Computr Sin, vol. 14, no. 3, pp , 23. [26] S. Shni n K. S. Kim, An O(log n) ynmi routr-tl sign, IEEE Trnstions on Computrs, vol. 53, no. 3, pp , Mr. 24. [27] S. Shni n K. S. Kim, Eiint onstrution o piplin multiittri routr-tls, IEEE Trnstions on Computrs, vol. 56, no. 1, pp , Jn. 27. [28] S. Shni n H. Lu, Enhn intrvl trs or ynmi IP routrtls, IEEE Trnstions on Computrs, vol. 53, no. 12, pp , D. 24 [29] S. Shni n H. Lu, A B-tr ynmi routr-tl sign, IEEE Trnstions on Computrs, vol. 54, no. 7, pp , July 25. [30] S. Shni n H. Lu, Dynmi tr itmp or IP looup n upt, in Proings o th Sixth Intrntionl Conrn on Ntworing (ICN 07), pp.79, 27. [31] K. Slowr, A tr-s pt routing tl or Brly unix, in Proings o Wintr Usnix Con, pp , [32] S. Soh, L. Hirynto n S. Ri, Eiint prix upts or IP routr using lxiogrphi orring n uptl rss st, IEEE Trnstions on Computrs, vol. 57, no. 1, pp , Jn. 28 [33] V. Srinivsn n G.Vrghs, Fstr IP looups using ontroll prix xpnsion, ACM Trnstions on Computr Systms, pp. 1 40, F [34] P. R. Wrh, S. Suri, n G. Vrghs, Multiwy rng tr: sll Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

15 15 IP looup with st upts, Computr Ntwor, vol. 44, no. 3, pp , F. 24. PLACE PHOTO HERE Sun-Yun Hsih riv th PhD gr in omputr sin rom Ntionl Tiwn Univrsity, Tipi, Tiwn, in Jun H thn srv th ompulsory two-yr militry srvi. From August 20 to Jnury 22, h ws n ssistnt prossor t th Dprtmnt o Computr Sin n Inormtion Enginring, Ntionl Chi Nn Univrsity. In Frury 22, h join th Dprtmnt o Computr Sin n Inormtion Enginring, Ntionl Chng Kung Univrsity, n now h is ull prossor. H riv th 27 K. T. L Rsrh Awr, Prsint s Cittion Awr (Amrin Biogrphil Institut) in 27, th Enginring Prossor Awr o Chins Institut o Enginrs (Kohsiung Brnh) in 28, th Ntionl Sin Counil s Outstning Rsrh Awr in 29, n Distinguish Prossor Awr t Ntionl Chng Kung Univrsity in 20. His urrnt rsrh intrsts inlu sign n nlysis o lgorithms, ult-tolrnt omputing, ioinormtis, prlll n istriut omputing, n lgorithmi grph thory. PLACE PHOTO HERE Yi-Ling Hung riv th B.S. gr in Computr Sin n Inormtion Enginring rom Ntionl Chnghu Univrsity o Eution, Tiwn, in 26, n th M.S. gr in Computr Sin n Inormtion Enginring rom Ntionl Chng Kung Univrsity, Tiwn, in 28. In July 28, sh join th ntwor oprtions lortory o Chunghw Tlom Lortoris, n now sh is n ssoit rsrhr. Hr rsrh intrsts inlu IP looup n pt lssiition lgorithms, progrmml routrs, th sign n nlysis o sll srhing lgorithms n rhitturs, n gogrphi inormtion systm lgorithms. PLACE PHOTO HERE Ying-Chi Yng riv th B.S. gr in th Dprtmnt o Computr Sin n Enginring rom Ntionl Chung-Hsing Univrsity, Tiwn, in 28. Sh is urrntly woring towr th M.S. gr in omputr sin n inormtion nginring t Ntionl Chng Kung Univrsity, Tiwn. Hr rsrh intrsts inlu IP routing n srhing lgorithms. Authoriz lins us limit to: Ntionl Chng Kung Univrsity. Downlo on Jun 21,20 t 13:28:08 UTC rom IEEE Xplor. Rstritions pply.

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Survey and Taxonomy of IP Address Lookup Algorithms

Survey and Taxonomy of IP Address Lookup Algorithms Survy n Txonomy of IP Arss Lookup Algorithms Migul Á. Ruiz-Sánhz, Ernst W. Birsk, Wli Dbbous mruiz@sophi.inri.fr rbi@urom.fr bbous@sophi.inri.fr Jnury 2, 2 INRIA Sophi Antipolis 24, rout s Luiols, BP 93

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Survey and Taxonomy of IP Address Lookup Algorithms

Survey and Taxonomy of IP Address Lookup Algorithms Survy n Txonomy of IP Arss Lookup Algorithms Migul Á. Ruiz-Sánhz, INRIA Sophi Antipolis, Univrsi Autónom Mtropolitn Ernst W. Birsk, Institut Euréom Sophi Antipolis Wli Dbbous, INRIA Sophi Antipolis Abstrt

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s Ciruit Prtitioning for Dynmilly Rongurl FPGAs Huiqun Liu n D. F. Wong Dprtmnt of Computr Sins Unirsity of Txs t Austin Austin, T 787 Emil: fhqliu, wongg@s.utxs.u Astrt Dynmilly rongurl FPGAs h th potntil

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas Effiint Brost in MANETs Using Ntwork Coing n Dirtionl Antnns Shuhui Yng Dprtmnt of Computr Sin Rnsslr Polythni Institut Troy, NY 28 Ji Wu n Mihl Cri Dprtmnt of Computr Sin n Enginring Flori Atlnti Univrsity

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information