A Nomenclature and Acronyms A.1 List of Acronyms

Size: px
Start display at page:

Download "A Nomenclature and Acronyms A.1 List of Acronyms"

Transcription

1 A Nomenclature and Acronyms A.1 List of Acronyms Acronym Definition AA Absolute Amplitude ADMIRE Aero-Data Model In Research Environment AG Action Group Airbus Airbus Deutschland GmbH AoA Angle of Attack APC Aircraft-Pilot Coupling APR Average Phase Rate BAE-S BAE SYSTEMS BU The University of Bristol CAP Control Anticipation Parameter CIRA Centro Italiano Ricerche Aerospaziali (Italian Aerospace Research Centre) c.g. Centre of Gravity CP Continuation Parameter DAv Dassault Aviation DERA Defence Evaluation and Research Agency DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Centre) DSTL Defence Science & Technology Laboratories DUT Delft University of Technology EADS European Aeronautic Defence and Space Company EADS-M EADS Deutschland GmbH, Military Aircraft FBW Fly-By-Wire FC Flight Condition FCL Flight Control Laws FCS Flight Control System FE Flight Envelope FM Flight Mechanics FM(AG08) Flight Mechanics (Action Group 8) FM(AG11) Flight Mechanics (Action Group 11) FOI Totalförsvarets Forskningsinstitut (Swedish Defence Research Agency) GA Genetic Algorithms GARTEUR Group for Aeronautical Research and Technology in Europe

2 462 Nomenclature and Acronyms Acronym HIRM HIRM+ HIRM+RIDE HWEM INTA LF-PUM LFT LGM LMI LTI MCS NFE NLP NLR ODE ODE-PUM ONERA PCS PIO PS PUM QG RIDE SA SAAB SQP TMW UBOR UCAM UGM ULES UST Definition High Incidence Research Model High Incidence Research Model with parameter uncertainty HIRM+ with RIDE controller Harrier Wide Envelope Model Instituto Nacional de Técnica Aeroespacial (National Institute of Aerospace Technology) Linear Fractional - Parameter Uncertainty Model Linear Fractional Transformation Lower Gain Margin Linear Matrix Inequality Linear Time Invariant Multilevel Co-ordinate Search Number of Functional Evaluations Nonlinear Programming (problem) Nationaal Lucht- en Ruimtevaartlaboratorium (National Aerospace Laboratory) Ordinary Differential Equation Ordinary Differential Equation - Parameter Uncertainty Model Office National d Études et de Recherches Aérospatiales (National Office of Aerospace Studies and Research) Parametric Continuation Solver Pilot-in-the-loop Oscillation Pattern Search Parameter Uncertainty Model QinetiQ Group Robust Inverse Dynamics Estimation Simulated Annealing Saab AB Sequential Quadratic Programming The MathWorks Université Bordeaux University of Cambridge Upper Gain Margin University of Leicester Universität Stuttgart

3 A.2 List of Standard Symbols 463 A.2 List of Standard Symbols Symbol Definition a ij Element of the state matrix A A State matrix b ij Element of the input matrix B B Input matrix c ij Element of the output matrix C b Wingspan (m) c bar Mean aerodynamic chord (m) C Output matrix C D Coefficient of drag C L Coefficient of lift C X Coefficient of axial force C Y Coefficient of side force C Z Coefficient of normal force C l Coefficient of rolling moment C m Coefficient of pitching moment C n Coefficient of yawing moment C lβ Rolling moment coefficient derivative with respect to β C nr Yawing moment coefficient derivative with respect to r C nβ Yawing moment coefficient derivative with respect to β C mq Pitching moment coefficient derivative with respect to q C mα Pitching moment coefficient derivative with respect to α C mδt S Pitching moment coefficient derivative with respect to δ TS d ij Element of the direct transmission matrix D D Direct transmission matrix D Domain of eigenvalues in the complex plane f Frequency (Hz) F l (M, ) Lower linear fractional transformation matrix F u (M, ) Upper linear fractional transformation matrix g Acceleration due to gravity (m/s 2 ) h Altitude (feet) G long FCS gain for longitudinal stick (deg/s/mm) I x x body axis moment of inertia (kg m 2 ) I xy x-y body axis product of inertia (kg m 2 ) I xz x-z body axis product of inertia (kg m 2 ) I y y body axis moment of inertia (kg m 2 ) I yz y-z body axis product of inertia (kg m 2 ) I z z body moment of inertia (kg m 2 ) m Aircraft total mass (kg)

4 464 Nomenclature and Acronyms Symbol Definition M Mach number M LFT system matrix n x Load factor along x-axis (g) n y Load factor along y-axis (g) n z Load factor along z-axis (g) p Body-axis roll rate (deg/s) p dem Demanded roll rate (deg/s) q Body-axis pitch rate (deg/s) q bar Dynamic pressure (kn/m 2 ) q dem Demanded pitch rate (deg/s) R Real numbers space r Body-axis yaw rate (deg/s) s Complex variable in Laplace operator S Wing planform area (m 2 ) t Time (s) u Input vector V T Total velocity (m/s) x, y, z Earth axes positions (m) x State vector X cg Centre of gravity location along x-axis y Output Vector Y cg Centre of gravity location along y-axis Centre of gravity location along z-axis Z cg A.3 List of Greek Symbols Symbol α β β dem γ δ δ A δ ν δ CD δ CS δ SA δ SE δ T δ TS Definition Angle of attack (deg) Angle of sideslip (deg) Demanded sideslip (deg) Flight path angle (deg) LFT uncertainty matrix Vector of system parameters Aileron deflection (deg) ν-gap metric Differential canard deflection (deg) Symmetric canard deflection (deg) Lateral stick deflection (mm) Longitudinal stick deflection (mm) Tailplane deflection (deg) Symmetric tailplane deflection (deg)

5 A.4 List of Subscripts 465 Symbol Definition δ TD Differential tailplane deflection (deg) δ R Rudder deflection (deg) µ Structured singular value φ Bank angle (deg) Φ Phase angle (deg) ϕ i Phase offset for multi-loop stability margin (deg) λ Free parameter (continuation parameter) λ i Generic i-th eigenvalue λ i (A) Spectrum of matrix A π Point of uncertainty space Π Uncertainty set θ Pitch angle (deg) ρ Density of air (kg/m 3 ) ρ Stability degree σ Real part of complex eigenvalue σ Maximum singular value ω Reduction factor on aerodynamic uncertainty range ω Frequency (rad/sec) Ω Frequency range ψ Heading angle (deg) A.4 List of Subscripts Subscript Definition dem Demanded value (e.g., q dem is the demanded value of q) sensor Sensor measurement value (e.g., ψ sensor is the sensed value of ψ) trim Trim value of a variable (e.g., α trim is the trimmed value of α) Unc Uncertain parameter (e.g., C lβunc is the uncertainty parameter representing variation in C lβ )

6 Index ɛ-margin, 58 optimally weighted, 62 weighted, 59 ɛ scaled -margin calibration, 328 definition, 62 µ-analysis, 242 µ-analysis based clearance, 285 n z as an additional uncertainty, 274 altitude as variability, 297 analysis cycle, 309 AoA as an additional uncertainty, 271 comparison of results, 307 computational effort, 301 continuous AoA covering, 307 LFT modelling, 280 LFT validation, 293 Mach number as variability, 297 multi-loop analysis, 306 multivariable root locus method, 270 Nichols exclusion zone approximation, 289 parametric interdependency, 295 short period approximation, 270 stability margin criterion, 300 ν-gap clearance approach analysis cycle, 317 ν-gap metric, 64, 66 n z-limit exceedance criterion, 163, 421 absolute amplitude criterion, 160 aerodynamic fitting, 201, 203 AoA-limit exceedance criterion, 163, 421 average phase rate criterion, 160 baseline solution, 249 n z -limit exceedance criterion, 257 absolute amplitude criterion, 255 AoA-limit exceedance criterion, 257 average phase rate criterion, 255 stability margin criterion, 250 unstable eigenvalues criterion, 252 bifurcation analysis application, 91 background, 89, 93 bifurcation diagrams, 92 numerical continuation, 92 bifurcation and continuation method clearance analysis cycle, 98, 359 clearance implementation, 96, 355 clearance results, 376 comparison with baseline clearance, 372 computation times, 376 conventional implementation, 95 local bifurcation runs, 365 nonlinear sensitivity analysis, 365, 370, 372 selection of worst-case uncertainties, 365, 367, 370, 372, 376, 380 worst-case assumptions, 102 clearance block clearance, 17 flying quality levels, 27 frequency domain criteria, 27 handling analysis, 26 hardware tolerances, 23 limitations, 25, 32 linear handling criteria, 15, 27 linear stability margins, 15 manned simulation, 29 nonlinear analysis, 27 nonlinear simulation, 437, 444

7 468 Index off-line simulation, 28 response after failure, 29 stability analysis, 25 time domain criteria, 27 visualisation tools, 31 clearance models flying qualities, 144 HIRM+, 141 linearisation, 148 nonlinear model, 15, 141 pertubation model, 15 RIDE, 141 trimming, 142 compensation parameters, 208 conservatism, 207 D-stability, 79 robustness, 79 effect of uncertainties, 18 eigenvalue criterion, 48 flat systems, 226 generalised stability margin, 58 gridding based clearance, 108 HIRM+ actuator dynamics, 130 aerodynamics, 127 automated model code generation, 132 control surface deflections limits, 136 controls and gust inputs, 125 discontinuities in model, 317 dynamics model, 121 engine dynamics, 129 flight envelope, 152, 387, 410 linearisation, 148 load factor limits, 135 mass characteristics, 125 measurements and evaluation outputs, 124 object model, 123 sensor dynamics, 131 simulation, 133 trimming, 134 uncertain parameters, 153 industrial evaluation clearance criteria, 434 conservatism, 435 effort, 435, 439 evaluators background, 435 generality, 435 reliability, 435, 443 stability margin, 436 LFT model, 439, 440, 444 LFT modelling, 197 affine uncertainty representations, 198 gridding, 198 LFR-toolbox, 198 LFT validation, 206 min-max method, 208 order reduction, 206 partial differentiation, 206 symbolic equations of motion, 201 symbolic LFT generation, 206 LFT-based uncertainty modelling compensation parameters, 216 min-max approach, 213 nonlinearity compensation, 215 trends and bands approach, 214 linear fractional transformation (LFT), 38, 169, 237 affine dependency, 179 approximation, 189 equivalence, 183 extremal values, 190 input/output equivalence, 183 Kalman decomposition, 187 minimality, 185 Morton s approach, 179 normalization, 175 object-oriented realization, 178 operations, 178 order reduction, 183 polynomial dependency, 181 rational dependency, 181 realization, 176 similarity, 183 system similarity, 185 tree decomposition, 181 multi-loop gain/phase offsets, 62

8 Index 469 Nyquist stability theorem, 39 optimisation based clearance, 385 absolute amplitude, 402 average phase rate, 402 distance function, 385, 389, 398, 403 stability margin, 389 unstable eigenvalues, 397 optimisation methods, 112, 387 COBYLA, 115, 387 genetic algorithm, 115, 387 multilevel coordinate search, 116 pattern search, 114, 387 projected gradient quasi-newton, 114, 387 simulated annealing, 115, 387 software, 113 SQP, 113, 387 trust-region, 115 optimisation software, 387, 388 architecture, 389 COBYLA, 388 genetic algorithm, 388 pattern search, 388 projected gradient quasi-newton, 388 SQP, 388 optimisation-based clearance, 107, 415 analysis cycle, 110 distance function, 107, 416 genetic algorithm, 418 multilevel coordinate search, 418 nonlinear analysis, 415 SQP, 418 parametric uncertainty model, 201, 236 polynomial-based clearance, 76 adaptive grid generation, 82, 336 affine dependence, 78 multiaffine dependence, 80 multivariate dependence, 80 region shape computation, 336 unstable eigenvalues criterion, 333 worst case areas, 338, 348 polytopic set covering, 80 RIDE, 141 control laws, 149 linearization, 149 Riemann sphere, 66 robust inverse dynamic estimation (RIDE), 141 robust performance, 39 skew µ, 298 small gain theorem, 38 stability margin criterion, 44, 155 multi-loop analysis, 156, 314 single-loop analysis, 156 star product, 174 structured singular value (µ), 39 computation, 41 tangent plane, 69 unstable eigenvalues criterion, 158 worst case margins, 207

New Analysis Techniques for Clearance of Flight Control Laws An overview of GARTEUR Flight Mechanics Action Group 11

New Analysis Techniques for Clearance of Flight Control Laws An overview of GARTEUR Flight Mechanics Action Group 11 Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR New Analysis Techniques for Clearance of Flight Control Laws An overview of GARTEUR Flight Mechanics Action Group 11 M. Selier,

More information

8 The HIRM+ Flight Dynamics Model

8 The HIRM+ Flight Dynamics Model 8 The HIRM+ Flight Dynamics Model Dieter Moormann EADS Deutschland GmbH, Military Aircraft MT62 Flight Dynamcis, 81663 München, Germany Dieter.Moormann@m.eads.net Summary. The major objective of the GARTEUR

More information

Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft

Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft SciTech, 8 th -12 th January 2018 Kissimmee, Florida Robert Cook, Chris Wales, Ann Gaitonde,

More information

CLEARANCE OF THE VAAC HARRIER CL002 FLIGHT

CLEARANCE OF THE VAAC HARRIER CL002 FLIGHT CLEARANCE OF THE VAAC HARRIER CL FLIGHT CONTROL LAW USING μ-analysis TECHNIQUES D.G. Bates Λ, R. Kureemun Λ, T. Mannchen y Λ Department of Engineering, University of Leicester, University Road, Leicester

More information

Uncertainty Quantification in Gust Loads Analysis of a Highly Flexible Aircraft Wing

Uncertainty Quantification in Gust Loads Analysis of a Highly Flexible Aircraft Wing Uncertainty Quantification in Gust Loads Analysis of a Highly Flexible Aircraft Wing IFASD 2017 25 th - 28 th June 2017, Como R. G. Cook, C. Wales, A. L. Gaitonde, D. P. Jones and Jonathan Cooper University

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: A infinite B positive (nose-up). C negative (nose-down). D equal to zero. 2 The angle between the aeroplane longitudinal axis

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

An introduction to flight control algorithms. Gertjan Looye 6SX%RQIVOYRKIRZSR71SRXIRIKVS

An introduction to flight control algorithms. Gertjan Looye 6SX%RQIVOYRKIRZSR71SRXIRIKVS An introduction to flight control algorithms Gertjan Looye 6SX%RQIVOYRKIRZSR71SRXIRIKVS About me Name: Gertjan Looye Education: Delft, Faculty of Aerospace Engineering MSc. (1996), PhD. (2008) Career:

More information

Flight Dynamics, Simulation, and Control

Flight Dynamics, Simulation, and Control Flight Dynamics, Simulation, and Control For Rigid and Flexible Aircraft Ranjan Vepa CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an

More information

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford FLIGHT DYNAMICS Robert F. Stengel Princeton University Press Princeton and Oxford Preface XV Chapter One Introduction 1 1.1 ELEMENTS OF THE AIRPLANE 1 Airframe Components 1 Propulsion Systems 4 1.2 REPRESENTATIVE

More information

ONE OF THE major problems in the design of flight

ONE OF THE major problems in the design of flight IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 1, JANUARY 2005 15 Robust Nonlinear Flight Control of a High-Performance Aircraft Qian Wang, Member, IEEE, and Robert F. Stengel, Fellow, IEEE

More information

Flight Dynamics and Control

Flight Dynamics and Control Flight Dynamics and Control Lecture 1: Introduction G. Dimitriadis University of Liege Reference material Lecture Notes Flight Dynamics Principles, M.V. Cook, Arnold, 1997 Fundamentals of Airplane Flight

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information

Flying Qualities Criteria Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018

Flying Qualities Criteria Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Flying Qualities Criteria Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives MIL-F-8785C criteria CAP, C*, and other longitudinal criteria ϕ/β, ω ϕ /ω d, and other lateral-directional

More information

German Aerospace Center (DLR)

German Aerospace Center (DLR) German Aerospace Center (DLR) AEROGUST M30 Progress Meeting 23-24 November 2017, Bordeaux Presented by P. Bekemeryer / J. Nitzsche With contributions of C. Kaiser 1, S. Görtz 2, R. Heinrich 2, J. Nitzsche

More information

DESIGN PROJECT REPORT: Longitudinal and lateral-directional stability augmentation of Boeing 747 for cruise flight condition.

DESIGN PROJECT REPORT: Longitudinal and lateral-directional stability augmentation of Boeing 747 for cruise flight condition. DESIGN PROJECT REPORT: Longitudinal and lateral-directional stability augmentation of Boeing 747 for cruise flight condition. Prepared By: Kushal Shah Advisor: Professor John Hodgkinson Graduate Advisor:

More information

Fault-Tolerant Control of a Unmanned Aerial Vehicle with Partial Wing Loss

Fault-Tolerant Control of a Unmanned Aerial Vehicle with Partial Wing Loss Preprints of the 19th World Congress The International Federation of Automatic Control Fault-Tolerant Control of a Unmanned Aerial Vehicle with Partial Wing Loss Wiaan Beeton J.A.A. Engelbrecht Stellenbosch

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Optimal Control new Methodologies Validation on the Research Aircraft Flight Simulator of the Cessna Citation X Business Aircraft

Optimal Control new Methodologies Validation on the Research Aircraft Flight Simulator of the Cessna Citation X Business Aircraft International Journal of Contemporary ENERGY, Vol. 3, No. 1 (217) ISSN 2363-644 DOI: 1.14621/ce.21712 Optimal Control new Methodologies Validation on the Research Aircraft Flight Simulator of the Cessna

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

Experimental Aircraft Parameter Estimation

Experimental Aircraft Parameter Estimation Experimental Aircraft Parameter Estimation AA241X May 14 2014 Stanford University Overview 1. System & Parameter Identification 2. Energy Performance Estimation Propulsion OFF Propulsion ON 3. Stability

More information

LONGITUDINAL STABILITY AUGMENTATION DESIGN WITH TWO DEGREE OF FREEDOM CONTROL STRUCTURE AND HANDLING QUALITIES REQUIREMENTS

LONGITUDINAL STABILITY AUGMENTATION DESIGN WITH TWO DEGREE OF FREEDOM CONTROL STRUCTURE AND HANDLING QUALITIES REQUIREMENTS LONGITUDINAL STABILITY AUGMENTATION DESIGN WITH TWO DEGREE OF FREEDOM CONTROL STRUCTURE AND HANDLING QUALITIES REQUIREMENTS Francisco J. Triveno Vargas, Fernando J. O. Moreira, Pedro Paglione *EMBRAER,

More information

X-31 Vector Aircraft, Low Speed Stability & Control, Comparisons of Wind Tunnel Data & Theory (Focus on Linear & Panel Codes)

X-31 Vector Aircraft, Low Speed Stability & Control, Comparisons of Wind Tunnel Data & Theory (Focus on Linear & Panel Codes) 39th AIAA Fluid Dynamics Conference 22-25 June 2009, San Antonio, Texas AIAA 2009-3898 27 th AIAA Applied Aerodynamics Conference, 22-25 June. 2009, San Antonio, TX, USA X-31 Vector Aircraft, Low Speed

More information

Automated Generation of LFT-Based Parametric Uncertainty Descriptions from Generic Aircraft Models

Automated Generation of LFT-Based Parametric Uncertainty Descriptions from Generic Aircraft Models Mathematical and Computer Modelling of Dynamical Systems 1387-3954/98/0404-249$12.00 1998, Vol. 4, No. 4, pp. 249-274 c Swets & Zeitlinger Automated Generation of LFT-Based Parametric Uncertainty Descriptions

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

Mech 6091 Flight Control System Course Project. Team Member: Bai, Jing Cui, Yi Wang, Xiaoli

Mech 6091 Flight Control System Course Project. Team Member: Bai, Jing Cui, Yi Wang, Xiaoli Mech 6091 Flight Control System Course Project Team Member: Bai, Jing Cui, Yi Wang, Xiaoli Outline 1. Linearization of Nonlinear F-16 Model 2. Longitudinal SAS and Autopilot Design 3. Lateral SAS and Autopilot

More information

Applications of Linear and Nonlinear Robustness Analysis Techniques to the F/A-18 Flight Control Laws

Applications of Linear and Nonlinear Robustness Analysis Techniques to the F/A-18 Flight Control Laws AIAA Guidance, Navigation, and Control Conference 10-13 August 2009, Chicago, Illinois AIAA 2009-5675 Applications of Linear and Nonlinear Robustness Analysis Techniques to the F/A-18 Flight Control Laws

More information

M 21 M 22 1 S. . x. x u B D A C

M 21 M 22 1 S. . x. x u B D A C Robstness Assessment of Flight Controllers for a Civil Aircraft sing,analysis. G.H.N. Looye ;2, S. Bennani 2, A. Varga, D. Moormann, G. Grbel Detsches Zentrm fr Lft- nd Ramfahrt (DLR) Institt fr Robotik

More information

Applications Linear Control Design Techniques in Aircraft Control I

Applications Linear Control Design Techniques in Aircraft Control I Lecture 29 Applications Linear Control Design Techniques in Aircraft Control I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics Brief Review

More information

Aim. Unit abstract. Learning outcomes. QCF level: 6 Credit value: 15

Aim. Unit abstract. Learning outcomes. QCF level: 6 Credit value: 15 Unit T23: Flight Dynamics Unit code: J/504/0132 QCF level: 6 Credit value: 15 Aim The aim of this unit is to develop learners understanding of aircraft flight dynamic principles by considering and analysing

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS

NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS NDI-BASED STRUCTURED LPV CONTROL A PROMISING APPROACH FOR AERIAL ROBOTICS J-M. Biannic AERIAL ROBOTICS WORKSHOP OCTOBER 2014 CONTENT 1 Introduction 2 Proposed LPV design methodology 3 Applications to Aerospace

More information

Digital Autoland Control Laws Using Direct Digital Design and Quantitative Feedback Theory

Digital Autoland Control Laws Using Direct Digital Design and Quantitative Feedback Theory AIAA Guidance, Navigation, and Control Conference and Exhibit 1-4 August 6, Keystone, Colorado AIAA 6-699 Digital Autoland Control Laws Using Direct Digital Design and Quantitative Feedback Theory Thomas

More information

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011 TTK4190 Guidance and Control Exam Suggested Solution Spring 011 Problem 1 A) The weight and buoyancy of the vehicle can be found as follows: W = mg = 15 9.81 = 16.3 N (1) B = 106 4 ( ) 0.6 3 3 π 9.81 =

More information

AFRL MACCCS Review. Adaptive Control of the Generic Hypersonic Vehicle

AFRL MACCCS Review. Adaptive Control of the Generic Hypersonic Vehicle AFRL MACCCS Review of the Generic Hypersonic Vehicle PI: Active- Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology September 19, 2012, MIT AACL 1/38 Our Team MIT Team

More information

Consider a wing of finite span with an elliptic circulation distribution:

Consider a wing of finite span with an elliptic circulation distribution: Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

More information

FAULT - TOLERANT PROCEDURES FOR AIR DATA ELABORATION

FAULT - TOLERANT PROCEDURES FOR AIR DATA ELABORATION 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FAULT - TOLERANT PROCEDURES FOR AIR DATA ELABORATION Alberto Calia, Eugenio Denti, Roberto Galatolo, Francesco Schettini University of Pisa Department

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

CRANFIELD UNIVERSITY YAN ZHU LONGITUDINAL CONTROL LAWS DESIGN FOR A FLYING WING AIRCRAFT. SCHOOL OF ENGINEERING MSc by Research

CRANFIELD UNIVERSITY YAN ZHU LONGITUDINAL CONTROL LAWS DESIGN FOR A FLYING WING AIRCRAFT. SCHOOL OF ENGINEERING MSc by Research CRANFIELD UNIVERSITY YAN ZHU LONGITUDINAL CONTROL LAWS DESIGN FOR A FLYING WING AIRCRAFT SCHOOL OF ENGINEERING MSc by Research MSc Thesis Academic Year: - Supervisor: Dr. James Whidborne February CRANFIELD

More information

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes Lecture #AC 3 Aircraft Lateral Dynamics Spiral, Roll, and Dutch Roll Modes Copy right 2003 by Jon at h an H ow 1 Spring 2003 16.61 AC 3 2 Aircraft Lateral Dynamics Using a procedure similar to the longitudinal

More information

Modelling the Dynamic Response of a Morphing Wing with Active Winglets

Modelling the Dynamic Response of a Morphing Wing with Active Winglets AIAA Atmospheric Flight Mechanics Conference and Exhibit 20-23 August 2007, Hilton Head, South Carolina AIAA 2007-6500 Modelling the Dynamic Response of a Morphing Wing with Active Winglets N. Ameri, M.

More information

ANALYSIS OF MULTIPLE FLIGHT CONTROL ARCHITECTURES ON A SIX DEGREE OF FREEDOM GENERAL AVIATION AIRCRAFT. A Thesis by. John Taylor Oxford, Jr.

ANALYSIS OF MULTIPLE FLIGHT CONTROL ARCHITECTURES ON A SIX DEGREE OF FREEDOM GENERAL AVIATION AIRCRAFT. A Thesis by. John Taylor Oxford, Jr. ANALYSIS OF MULTIPLE FLIGHT CONTROL ARCHITECTURES ON A SIX DEGREE OF FREEDOM GENERAL AVIATION AIRCRAFT A Thesis by John Taylor Oxford, Jr. Bachelor of Science, Georgia Institute of Technology, 2007 Submitted

More information

Flight Test Data Analysis

Flight Test Data Analysis Flight Test Data Analysis Edward Whalen University of Illinois 3-2 Flight Test Objective: Approach: To develop and evaluate the identification and characterization methods used in the smart icing system

More information

Susceptibility of F/A-18 Flight Control Laws to the Falling Leaf Mode Part I: Linear Analysis

Susceptibility of F/A-18 Flight Control Laws to the Falling Leaf Mode Part I: Linear Analysis Susceptibility of F/A-18 Flight Control Laws to the Falling Leaf Mode Part I: Linear Analysis Abhijit Chakraborty, Peter Seiler and Gary J. Balas Department of Aerospace Engineering & Mechanics University

More information

Aircraft Structures Design Example

Aircraft Structures Design Example University of Liège Aerospace & Mechanical Engineering Aircraft Structures Design Example Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin des Chevreuils

More information

Longitudinal Automatic landing System - Design for CHARLIE Aircraft by Root-Locus

Longitudinal Automatic landing System - Design for CHARLIE Aircraft by Root-Locus International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1 Longitudinal Automatic landing System - Design for CHARLIE Aircraft by Root-Locus Gaber El-Saady, El-Nobi A.Ibrahim,

More information

A WAVELET BASED FLIGHT DATA PREPROCESSING METHOD FOR FLIGHT CHARACTERISTICS ESTIMATION AND FAULT DETECTION

A WAVELET BASED FLIGHT DATA PREPROCESSING METHOD FOR FLIGHT CHARACTERISTICS ESTIMATION AND FAULT DETECTION A WAVELET BASED FLIGHT DATA PREPROCESSING METHOD FOR FLIGHT CHARACTERISTICS ESTIMATION AND FAULT DETECTION Masaru Naruoka Japan Aerospace Exploration Agency Keywords: Flight analyses, Multiresolution Analysis,

More information

Chapter 4 The Equations of Motion

Chapter 4 The Equations of Motion Chapter 4 The Equations of Motion Flight Mechanics and Control AEM 4303 Bérénice Mettler University of Minnesota Feb. 20-27, 2013 (v. 2/26/13) Bérénice Mettler (University of Minnesota) Chapter 4 The Equations

More information

Evaluation of the Drag Reduction Potential and Static Stability Changes of C-130 Aft Body Strakes

Evaluation of the Drag Reduction Potential and Static Stability Changes of C-130 Aft Body Strakes U.S. Air Force T&E Days 2009 10-12 February 2009, Albuquerque, New Mexico AIAA 2009-1721 Evaluation of the Drag Reduction Potential and Static Stability Changes of C-130 Aft Body Strakes Heather G. Pinsky

More information

Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV

Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV Andrei Dorobantu, Austin M. Murch, Bernie Mettler, and Gary J. Balas, Department of Aerospace Engineering & Mechanics University

More information

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

Feasibility study of a novel method for real-time aerodynamic coefficient estimation

Feasibility study of a novel method for real-time aerodynamic coefficient estimation Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 11-4-2010 Feasibility study of a novel method for real-time aerodynamic coefficient estimation Phillip Gurbacki

More information

A model of an aircraft towing a cable-body system

A model of an aircraft towing a cable-body system ANZIAM J. 47 (EMAC2005) pp.c615 C632, 2007 C615 A model of an aircraft towing a cable-body system C. K. H. Chin R. L. May (Received 2 November 2005; revised 31 January 2007) Abstract We integrate together

More information

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 Answer both questions. Question 1 is worth 30 marks and question

More information

PERFORMANCE ANALYSIS OF ISL S GUIDED SUPERSONIC PROJECTILE. Pierre Wey

PERFORMANCE ANALYSIS OF ISL S GUIDED SUPERSONIC PROJECTILE. Pierre Wey 3 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16- APRIL 7 PERFORMANCE ANALYSIS OF ISL S GUIDED SUPERSONIC PROJECTILE Pierre Wey French-German Research Institute of Saint-Louis (ISL) P.O.

More information

Direct spatial motion simulation of aircraft subjected to engine failure

Direct spatial motion simulation of aircraft subjected to engine failure Direct spatial motion simulation of aircraft subjected to engine failure Yassir ABBAS*,1, Mohammed MADBOULI 2, Gamal EL-BAYOUMI 2 *Corresponding author *,1 Aeronautical Engineering Department, Engineering

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

Susceptibility of F/A-18 Flight Control Laws to the Falling Leaf Mode Part II: Nonlinear Analysis

Susceptibility of F/A-18 Flight Control Laws to the Falling Leaf Mode Part II: Nonlinear Analysis Susceptibility of F/A-18 Flight Control Laws to the Falling Leaf Mode Part II: Nonlinear Analysis Abhijit Chakraborty, Peter Seiler and Gary J. Balas Department of Aerospace Engineering & Mechanics University

More information

in the DNW-HST High Speed Wind Tunnel

in the DNW-HST High Speed Wind Tunnel Nationaal Lucht- en Ruinitevaartlaboratorium National Aerospace Laboratory NLR -. GARTEUR LIMITED Test report of the GARTEUR A028 Model AS28 in the DNW-HST High Speed Wind Tunnel F.L.A. Ganzevles and D.

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

More information

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot Taylor S. Clawson, Sawyer B. Fuller Robert J. Wood, Silvia Ferrari American Control Conference Seattle, WA May 25, 2016

More information

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft 3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft Mario A. Santillo, Nalin A. Chaturvedi, N. Harris McClamroch, Dennis S. Bernstein Department of

More information

Worst-case Simulation With the GTM Design Model

Worst-case Simulation With the GTM Design Model Worst-case Simulation With the GTM Design Model Peter Seiler, Gary Balas, and Andrew Packard peter.j.seiler@gmail.com, balas@musyn.com September 29, 29 Overview We applied worst-case simulation analysis

More information

02 Introduction to Structural Dynamics & Aeroelasticity

02 Introduction to Structural Dynamics & Aeroelasticity 02 Introduction to Structural Dynamics & Aeroelasticity Vibraciones y Aeroelasticidad Dpto. de Vehículos Aeroespaciales P. García-Fogeda Núñez & F. Arévalo Lozano ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

More information

Envelopes for Flight Through Stochastic Gusts

Envelopes for Flight Through Stochastic Gusts AIAA Atmospheric Flight Mechanics Conference 08-11 August 2011, Portland, Oregon AIAA 2011-6213 Envelopes for Flight Through Stochastic Gusts Johnhenri R. Richardson, Ella M. Atkins, Pierre T. Kabamba,

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

FLIGHT DYNAMICS NEW STYLE EXAMINATION

FLIGHT DYNAMICS NEW STYLE EXAMINATION 1 FLIGHT DYNAMICS AE3202 NEW STYLE EXAMINATION April 6, 2011 Delft University of Technology Faculty of Aerospace Engineering Control and Simulation Division This exam contains 6 questions. You may use

More information

SIMULATION STUDIES OF MICRO AIR VEHICLE

SIMULATION STUDIES OF MICRO AIR VEHICLE Journal of KONES Powertrain and Transport, Vol. 22, No. 4 2015 SIMULATION STUDIES OF MICRO AIR VEHICLE Krzysztof Sibilski, Andrzej Zyluk, Miroslaw Kowalski Air Force Institute of Technology Ksiecia Boleslawa

More information

Roll Ratcheting: Cause and Analysis. Gordon Hohne. Institut fur Flugsystemtechnik Braunschweig. 268 pages 155 figures 87 tables 187 references

Roll Ratcheting: Cause and Analysis. Gordon Hohne. Institut fur Flugsystemtechnik Braunschweig. 268 pages 155 figures 87 tables 187 references Deutsches Zentrum fur Luft- und Raumfahrt e.v. Forschungsbericht 2001-15 Roll Ratcheting: Cause and Analysis Gordon Hohne Institut fur Flugsystemtechnik Braunschweig 268 pages 155 figures 87 tables 187

More information

. GflRTEUR GROUP FOR AERONAUTICAL RESEARCH AND TECHNOLOGY IN EUROPE

. GflRTEUR GROUP FOR AERONAUTICAL RESEARCH AND TECHNOLOGY IN EUROPE . GflRTEUR GROUP FOR AERONAUTICAL RESEARCH AND TECHNOLOGY IN EUROPE ORIGINAL: ENGLISH GARTEUR FM(AG08)iTP-088-2 May 22,1995 GARTEUR Open Flight Control Law Process Model for Use in the GARTEUR Action Group

More information

Probabilistic Control of Nonlinear Uncertain Systems

Probabilistic Control of Nonlinear Uncertain Systems Probabilistic Control of Nonlinear Uncertain Systems Qian Wang 1 and Robert F. Stengel 2 1 Mechanical Engineering, Penn State University, University Park, PA 1682, quw6@psu.edu 2 Mechanical and Aerospace

More information

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction

Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction Numerical Study on Performance of Innovative Wind Turbine Blade for Load Reduction T. Maggio F. Grasso D.P. Coiro This paper has been presented at the EWEA 011, Brussels, Belgium, 14-17 March 011 ECN-M-11-036

More information

Flight Controller Design for an Autonomous MAV

Flight Controller Design for an Autonomous MAV Flight Controller Design for an Autonomous MAV Dissertation Submitted in partial fulfillment of the requirements for the Master of Technology Program by Gopinadh Sirigineedi 03301012 Under the guidance

More information

Aircraft Maneuver Regulation: a Receding Horizon Backstepping Approach

Aircraft Maneuver Regulation: a Receding Horizon Backstepping Approach Aircraft Maneuver Regulation: a Receding Horizon Backstepping Approach Giuseppe Notarstefano and Ruggero Frezza Abstract Coordinated flight is a nonholonomic constraint that implies no sideslip of an aircraft.

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Study. Aerodynamics. Small UAV. AVL Software

Study. Aerodynamics. Small UAV. AVL Software Study of the Aerodynamics of a Small UAV using AVL Software Prepared For: Prof. Luis Bernal Prepared By: Paul Dorman April 24, 2006 Table of Contents Introduction.1 Aerodynamic Data...2 Flight Assessment..

More information

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 27, Reno, Nevada AIAA 27-672 AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE Wei-Jen Su 1, Curtis Wilson 2, Tony Farina

More information

Modelling and Controlling a Suborbital Reusable Launch Vehicle

Modelling and Controlling a Suborbital Reusable Launch Vehicle Modelling and Controlling a Suborbital Reusable Launch Vehicle Master s Thesis in Systems, Control and Mechatronics PATRIK RODSTEDT Performed at FOI Swedish Defense Research Agency Improving landfill monitoring

More information

Trim 2D. Holly Lewis University of Colorado Center for Aerospace Structures April 29, 2004

Trim 2D. Holly Lewis University of Colorado Center for Aerospace Structures April 29, 2004 rim D Holly Lewis University of Colorado Center for Aerospace Structures April 9 004 Overview rimming an Aircraft in D Forces and Moments AERO-rimD Assumptions Capabilities Results Conclusions Future wor

More information

Improvement of flight regarding safety and comfort

Improvement of flight regarding safety and comfort Prediction of the aeroelastic behavior An application to wind-tunnel models Mickaël Roucou Royal Institute of Technology KTH - Stockholm, Sweden Department of Aerospace and Vehicle Engineering Email: roucou@kth.se

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10.

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10. Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 1. D1 Nonlinear Flight-Mechanics Models and their Linearisation D1.1 Introduction

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

A UNIFYING POINT OF VIEW IN THE PROBLEM OF PIO Pilot In-the-loop Oscillations

A UNIFYING POINT OF VIEW IN THE PROBLEM OF PIO Pilot In-the-loop Oscillations A UNIFYING POINT OF VIEW IN THE PROBLEM OF PIO Pilot Intheloop Oscillations Vladimir Răsvan, Daniela Danciu and Dan Popescu Department of Automatic Control, University of Craiova 13 A. I. Cuza Str., RO200585

More information

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) Homework #2 Due April 17, 2016 This homework focuses on developing a simplified analytical model of the longitudinal dynamics of an aircraft during

More information

Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي

Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:13 No:06 7 Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي

More information

CRANFIELD UNIVERSITY SUNAN CHUMALEE ROBUST GAIN-SCHEDULED H CONTROL FOR UNMANNED AERIAL VEHICLES SCHOOL OF ENGINEERING. PhD THESIS

CRANFIELD UNIVERSITY SUNAN CHUMALEE ROBUST GAIN-SCHEDULED H CONTROL FOR UNMANNED AERIAL VEHICLES SCHOOL OF ENGINEERING. PhD THESIS CRANFIELD UNIVERSITY SUNAN CHUMALEE ROBUST GAIN-SCHEDULED H CONTROL FOR UNMANNED AERIAL VEHICLES SCHOOL OF ENGINEERING PhD THESIS Supervisor: Dr James F. Widborne June 21 This page intentionally contains

More information

FLIGHT DYNAMICS ANALYSIS AND BASIC STABILIZATION STUDY IN EARLY DESIGN STAGES OF THE SAGITTA DEMONSTRATOR UAV

FLIGHT DYNAMICS ANALYSIS AND BASIC STABILIZATION STUDY IN EARLY DESIGN STAGES OF THE SAGITTA DEMONSTRATOR UAV DocumentID: 89 FLIGHT DYNAMICS ANALYSIS AND BASIC STABILIZATION STUDY IN EARLY DESIGN STAGES OF THE SAGITTA DEMONSTRATOR UAV M. Geiser and M. Heller Institute for Advanced Study, Technische Universität

More information

Modeling of a Small Unmanned Aerial Vehicle

Modeling of a Small Unmanned Aerial Vehicle Modeling of a Small Unmanned Aerial Vehicle A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader Abstract Unmanned aircraft systems (UAS) are playing increasingly prominent

More information

Optimization Framework for Design of Morphing Wings

Optimization Framework for Design of Morphing Wings Optimization Framework for Design of Morphing Wings Jian Yang, Raj Nangia & Jonathan Cooper Department of Aerospace Engineering, University of Bristol, UK & John Simpson Fraunhofer IBP, Germany AIAA Aviation

More information

arxiv: v1 [math.oc] 11 Oct 2016

arxiv: v1 [math.oc] 11 Oct 2016 Active Fault Tolerant Flight Control System Design - A UAV Case Study arxiv:1610.03162v1 [math.oc] 11 Oct 2016 Rudaba Khan 1, Paul Williams 2, Paul Riseborough 2, Asha Rao 1, and Robin Hill 1 1 Department

More information

MODELING OF DUST DEVIL ON MARS AND FLIGHT SIMULATION OF MARS AIRPLANE

MODELING OF DUST DEVIL ON MARS AND FLIGHT SIMULATION OF MARS AIRPLANE MODELING OF DUST DEVIL ON MARS AND FLIGHT SIMULATION OF MARS AIRPLANE Hirotaka Hiraguri*, Hiroshi Tokutake* *Kanazawa University, Japan hiraguri@stu.kanazawa-u.ac.jp;tokutake@se.kanazawa-u.ac.jp Keywords:

More information