Towards seismic moment tensor inversion for source mechanism

Size: px
Start display at page:

Download "Towards seismic moment tensor inversion for source mechanism"

Transcription

1 Towards seismic moment tensor inversion for source mechanism Faranak Mahmoudian and Kristopher A. Innanen CREWE, University of Calary ummary The objective of this work is to obtain seismic moment tensor, M pq, from amplitude inversion of multicomponent microseismic data. M pq describes source mechanism and can be decomposed into doublecouple, isotropic and compensated-linear-vector-dipole (related to tensile fracturin) components - the tensile components miht show a correlation to hydrocarbon production rate. The retrieved M pq are sensitive to the accuracy of the source location, the accuracy of the velocity model, and the receiver array eometry. Excludin the first two factors, the determination of the proper observation eometry for which the full moment tensor is resolvable was souht. Havin two vertical or surface receiver arrays, or a combination of them, M pq may be fully determined usin the inversion of - and -wave first arrival amplitudes. This confiuration, which is sufficient for this purpose, includes the receiver arrays located in the vertical and horizontal part of a sinle deviated well. To avoid the cumbersome task of pickin firstarrival amplitudes, we adopted a waveform inversion scheme based on the method proposed by Vavrycük and Kühn (01). This method combines inversions in both the time and frequency domains. The first requirement was the inversion for the source-time function in the frequency domain. econd, a time domain inversion for M pq usin the source-time function calculated in the first step was initiated. For this waveform inversion, we have not yet achieved an accurate retrieval of M pq, but we have been able to obtain an accurate source-time function estimate. Introduction Determination of seismic moment tensor is a routine procedure in earthquake seismoloy (e.., Dziewonski et al., 1981; Jost and Hermann, 1996; Šílený, 1998; hearer, 1999). The seismic moment tensor provides a eneral representation of the seismic source and can be determined from inversion of seismic amplitudes detected on surface/downhole receiver arrays. M pq is commonly decomposed into a double-couple tensor, produced by shear faultin, and a non-double couple tensor, produced by the openin or closin of faults (tensile fracturin) (Vavryčuk, 001). Hence M pq provides information related to the physical processes at the source (e.., Ross et al., 1999; Maxwell and Urbancic, 001; Fouler et al., 004; Vavryčuk, 007). A point source with a eneral radiation pattern can be represented by the seismic moment tensor. In a Cartesian coordinate system, the seismic moment tensor is symmetric matrix of six independent force-couples M pq (M 11, M, M, M 1 ). A force-couple M pq is defined as a pair of opposin forces pointin in the p direction, separated in the q direction. The -components of the displacement wavefield observed at a eophone located at due to a source located at (which described by its moment tensor), are expressed as (Aki and Richards, 00, equation.) where is convolution symbol, n =1,,, summation convention is applied, and of source-receiver offset. m pq (t) is the time-dependent seismic moment tensor. GeoConvention (1) is the vector is the spatial derivative of the Green s function which describes the properties of the medium. For a point source, the time-dependent moment tensor can be factorized as m pq (t) = M pq (t), where (t) is the source-time function and M pq is the seismic moment tensor which are tryin to invert for.

2 Determination of the M pq is a demandin procedure influenced by several factors. The most important of these are: 1) Observations from many stations (ood station coverae of the focal zone), which here is termed receiver eometry effect. ) Derivin the representative source-time function. ) An accurate knowlede of the velocity model and focal location, in order to calculate the Green s functions. 4) The availability of quality data, to enable event pickin in the source location step. We report the effect of receiver eometry on retrieval of the seismic moment tensor, for vertical or surface arrays while inorin the other three factors listed above. As was established by others (e.., Vavryčuk, 007; Rodriuez et al., 011), we found that the full moment tensor may be determined usin - and -wave first-arrival amplitudes from two receiver arrays (vertical or surface) observin the source from two distinctive azimuths. Usin data from a sinle vertical or surface array, five terms may be resolved. Havin receivers in both vertical and horizontal part of a deviated well, we found, reardless of the azimuth of the well, the full moment tensor is resolvable when usin - and -wave amplitude data. Another key factor in recoverin seismic moment tensor is the determination of the time variation of the source, (t). The source-time function is often assumed to have a simple form, a sinle pulse appearin in all elements of the moment tensor. While this is an oversimplified assumption for earthquake sources, it is a reasonable assumption for a point source directly applicable to microseismic events. With this assumption, the determination of M pq and the source-time function is still a non-linear problem (from equations ) and requires non-linear inversions of the seismic waveform (Šílený, 1998). Avoidin a nonlinear inversion, we follow Vavryčuk and Kühn (01) and apply a two-step linear waveform inversion first to estimate the source-time function in frequency domain, and then resolvin the M pq in time domain. Moment tensor inversion of - and - wave amplitudes to investiate receiver eometry effect The -components of the total far-field displacement wavefield (equation ) can be written as the sum of the far-field - and -wave displacements, which for a homoeneous medium are expressed as (Aki and Richards, 00) () () r, a, and b are the density, -velocity, and -velocity respectively. distance. Comparin equations - to equation 1, the Green s function can be defined as is the source-receiver. (4) Equation () can be written as, which for simplicity we took A = 1 4pra assumed that the source-time function is delta function with unit amplitude. This has the form of matrix multiplication; hence equation () can be written as u u = A M 11 M 1 M 1 M 1 M M M M Doin this matrix multiplication, the -wave displacement can be written as a linear function of the six independent M pq as. and (5) GeoConvention 017

3 u u 1 = A 1 1 imilarly, from equation, the -wave displacement can be written as u u = B M 11 M M M M 1. (6) which for simplicity B is defined similar to A. Usin equations 6 and 7, - and -wave first arrival amplitudes from multiple receivers can be used to set up a linear system of equations D = GM, where D is data vector (- and -wave first arrival amplitudes), G is the eometry matrix, and M the model parameters (M 11, M, M, M 1 ); we solved it usin damped least-squares method (the dampin factor is decided based on the ratio of the max/min sinular values of the matrix G. We tested the moment tensor inversion on C synthetics seismorams for a homoeneous isotropic medium with α = 000 m/s, β = 000 m/s, and ρ = 000 K/m. We enerated the C synthetics data by convolvin a source-time function with the Green s functions. The synthetics data are recorded at multiple borehole/surface arrays and used in the moment tensor inversion described above. For all of our tests, the moment tensor source of M = (M 11, M, M, M 1 ) = (1,-, 4,-1,0.5,6) has been used. The resolvability of the full moment tensor, under sinle and multiple vertical/surface receiver array eometries, is examined. Employin - and -wave amplitudes simultaneously in the moment tensor inversion, we found that 1) Havin a sinle vertical or surface array, all elements but the M will be resolved and there exists only one null sinular values. ) Havin two vertical or surface array, the full moment tensor will be resolved. ) The resolvability of the model parameters is insensitive to the distance between the array of receivers and the source. As most of the microseismic monitorin are based on a sinle well confiuration, the use of receiver arrays in a deviated well which receivers are laid out in both vertical and nearly horizontal part of the well is suested. Hence a simultaneous amplitude inversion, usin data from a deviated well should satisfy the resolvability of full moment tensor. This deviated well confiuration was suested by Rodriuez et al. (011). Fiure 6 shows a deviated well, with receivers in both vertical and horizontal part of the well, that full moment tensor is retrievable. M 11 M M M M 1, (7) Fiure 1: Moment tensor inversion for a deviated well eometry, displayin the resolution matrix and sinular values GeoConvention 017

4 resented above, the amplitude data were picked from synthetics noise-free seismorams; we inored all the complexity in pickin the - and -wave first arrivals. For real data, first arrival amplitude pickin is a cumbersome task and normally performed on data after bein rotated into radial and transverse components. Additionally, knowin the source-time function that was used in eneratin the numerical modeled data, we applied the accurate scalar to remove the effect of source-time function. However, knowlede of the source-time function is never achieved in real data prior to the moment tensor inversion. Next followin Vavrycuk and Kuhn (01), we apply a waveform inversion to first estimate the source-time function and second estimate the full moment tensor in a time-frequency approach. No amplitude pickin is required for the followin waveform inversion. Moment tensor inversion of waveforms tep 1: The pair of indices in the Green s function (equation 4) can be reduced to define the G kj (k =1:, j =1: 6) functions as: G k1 = k1,1, G k = k,, G k = k,, G k4 = k, + k,, G k5 = k1, + k1,, and G k6 = k1, + k,1. Then in frequency domain equation 1 will transform For each frequency, ω, equation 8 could be used to construct a linear system of equations "d = Gm" to invert for the m(w) = (m 11 (w),m (w), m (w),m (w),m 1 (w),m 1 (w)), which the data vector is the Fourier transform of the recordins at each receive. We solved this linear system usin a least-squares method. Then takin Fourier transform of each column of this m(ω) matrix will result in the matrix of the six timedependent moment tensor vectors, m(t) = (m 11 (t),m (t),m (t),m (t),m 1 (t),m 1 (t)). We took the sinular value decomposition of this m(t) matrix, the eienvector associated with the larest sinular value is the source-time function, (t) (Vasco,1989). tep : Now that the source-time function is estimated, it will be taken out of the displacement wavefield. In this reard, the elementary seismorams and their spatial derivatives are defined as ubstitutin these elementary functions into equation 1, the displacement components become: With the same fashion as practiced in definin the G kj functions, these elementary functions can be treated to obtain E kj functions. By constructin the E kj functions, a linear system of equation can be set up to solve for M pq. The data vector is the recorded trace at each receiver,. Aain, this timedomain inversion is solved usin a damped least-squares method. We applied this time-domain waveform inversion on the synthetics microseismic data (enerated usin TIGER software from INTEF etroleum Research) invertin for the source moment tensor, and obtained promisin results but not the exact moment tensor that we used in the modelin. However, we obtained the source-time function that we used in the modelin (Fiure ). Retrievin the exact M pq is expected for such noise free data with accurate source location and velocity model, which requires more research at this point. (8) (9) (10) Fiure : Estimated source-time function from frequency domain inversion in step 1. GeoConvention 017 4

5 Acknowledments: We thank NERC (Natural cience and Enineerin Research Council of Canada) and the sponsors of CREWE for their financial support. We thank INTEFF for providin access to TIGER modelin software. We appreciate Dr. Gary Marrave for several discussions and uidance. Drs..F. Daley and Joe Won are reatly appreciated for their uidance. References: Aki, K., and Richards,. G., 00, Quantitative eismoloy: W. H. Freeman and Company, an Francisco. Dziewonski, A., Chou, T., and Woodhouse, J., 1981, Determination of earthquake source parameters from waveform data for studies of lobal and reional seismicity: J. Geophys. Res., 86, No. B4, Fouler, G. R., Julian, B. R., Hill, D.., itt, A. M., and Malin,. E., 004, Non-double-couple micro earthquakes at lon valley caldera, California, provide evidence for hydraulic fracturin: Journal of Volcanoloy and Geothermal Research, 1, Jost, M. L., and Hermann, R. B., 1996, A student s uide to and review of moment tensors: eismoloical Research Letters, 60, No., Maxwell,. C., and Urbancic, T. I., 001, The role of passive microseismic monitorin in the instrumented oil field: The Leadin Ede, 0, Rodriuez, I. V., Gu, Y. J., and acchi, M. D., 011, Resolution of seismic moment tensor inversions from a sinle array of receivers: Bulletin of the eismoloical ociety of America, 101, No. 6. Ross, A., Fouler, G. R., and Julian, B. R., 1999, ource processes of industrially-induced earthquakes at the eysers eothermal area, California: Geophysics, 64, hearer,. M., 1999, Introduction to eismoloy: Cambride U ress. Šílený, J., 1998, Earthquake source parameters and their confidence reions by a enetic alorithm with a memory : Geophysical Journal International, 14, 8 4. Vasco, D. W., 1989, Derivin source-time functions usin principal component analysis: Bull. eism. oc. Am., 79, No., Vavryčuk, V., 001, Inversion for parameters of tensile earthquakes: Journal of Geophysical Research, 106, No. B8, 16,9 16,55. Vavryčuk, V., 007, On the retrieval of moment tenors from borehole data: Geophysical rospectin, 5, Vavryčuk, V., and Ku hn, D., 01, Moment tensor inversion of waveforms: a two-step time-frequency approach: Geophysical Journal International, 190, GeoConvention 017 5

Microseismic Monitoring: Insights from Moment Tensor Inversion

Microseismic Monitoring: Insights from Moment Tensor Inversion Microseismic Monitoring: Insights from Moment Tensor Inversion Farshid Forouhideh and David W. Eaton ABSTRACT This paper reviews the mathematical tools used for describing microseismic source mechanisms.

More information

Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b

Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli

More information

Overview of moment-tensor inversion of microseismic events

Overview of moment-tensor inversion of microseismic events Overview of moment-tensor inversion of microseismic events Thomas S. Eyre 1 and Mirko van der Baan 1 Downloaded 08/11/15 to 142.244.191.52. Redistribution subject to SEG license or copyright; see Terms

More information

F021 Detetection of Mechanical Failure During Hyraulic Fracturing Through Passive Seismic Microseismic Monitoring

F021 Detetection of Mechanical Failure During Hyraulic Fracturing Through Passive Seismic Microseismic Monitoring F021 Detetection of Mechanical Failure During Hyraulic Fracturing Through Passive Seismic Microseismic Monitoring A. De La Pena* (Microseismic Inc.), L. Eisner (Microseismic Inc.), M.P. Thornton (Microseismic

More information

Theory. Summary. Introduction

Theory. Summary. Introduction Waveform similarity for quality control of event locations, time picking and moment tensor solutions Fernando Castellanos, University of Alberta. Edmonton, AB. Mirko van der Baan, University of Alberta.

More information

Calculation of Focal mechanism for Composite Microseismic Events

Calculation of Focal mechanism for Composite Microseismic Events Calculation of Focal mechanism for Composite Microseismic Events Hongliang Zhang, David W. Eaton Department of Geoscience, University of Calgary Summary It is often difficult to obtain a reliable single-event

More information

Magnitude, scaling, and spectral signature of tensile microseisms

Magnitude, scaling, and spectral signature of tensile microseisms Magnitude, scaling, and spectral signature of tensile microseisms David W. Eaton Department of Geoscience, University of Calgary Summary The spatial dimensions and rupture characteristics of microseismic

More information

Microseismic monitoring is a valuable

Microseismic monitoring is a valuable SPECIAL SECTION: M i c r o s e i s m i c moment tensors: A path to understanding frac growth ADAM BAIG and TED URBANCIC, Engineering Seismology Group Canada monitoring is a valuable tool in understanding

More information

Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin

Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin Paige Snelling*, Cameron Wilson, MicroSeismic Inc., Calgary, AB, Canada psnelling@microseismic.com Neil Taylor, Michael de

More information

Monitoring induced microseismic events usually

Monitoring induced microseismic events usually SPECIAL M i c r SECTION: o s e i s m M i ci c r o s e i s m i c Beyond the dots in the box: microseismicity-constrained fracture models for reservoir simulation Leo Eisner, Sherilyn Williams-Stroud, Andrew

More information

AVAZ inversion for fracture orientation and intensity: a physical modeling study

AVAZ inversion for fracture orientation and intensity: a physical modeling study AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian*, Gary F. Margrave, and Joe Wong, University of Calgary. CREWES fmahmoud@ucalgary.ca Summary We present

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

Focal mechanisms produced by shear faulting in weakly transversely isotropic crustal rocks

Focal mechanisms produced by shear faulting in weakly transversely isotropic crustal rocks GEOPHYSICS, VOL. 71, NO. 5 SEPTEMBER-OCTOBER 2006 ; P. D145 D151, 6 FIGS., 2 TABLES. 10.1190/1.2236378 Focal mechanisms produced by shear faulting in weakly transversely isotropic crustal rocks Václav

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger, Barbara Romanowicz, and Jeffry Stevens* Seismological Laboratory 281 McCone Hall University of

More information

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION GSA DATA REPOSITORY 2013310 A.M. Thomas et al. MOMENT TENSOR SOLUTIONS SUPPLEMENTAL INFORMATION Earthquake records were acquired from the Northern California Earthquake Data Center. Waveforms are corrected

More information

LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić

LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić *** N.B. The material presented in these lectures is from the principal textbooks, other books on similar subject, the research and lectures of my colleagues

More information

A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation

A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation A new second order absorbing boundary layer formulation for anisotropic-elastic wavefeld simulation Junxiao Li, Kris Innanen and Bing Wang University of Calgary China University of Petroleum-Beijing Summary

More information

Inversion of Earthquake Rupture Process:Theory and Applications

Inversion of Earthquake Rupture Process:Theory and Applications Inversion of Earthquake Rupture Process:Theory and Applications Yun-tai CHEN 12 * Yong ZHANG 12 Li-sheng XU 2 1School of the Earth and Space Sciences, Peking University, Beijing 100871 2Institute of Geophysics,

More information

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring Bruce R. Julian U. S. Geological Survey, Menlo Park, CA 94025 USA julian@usgs.gov Gillian R. Foulger Dept. Earth

More information

AVAZ inversion for fracture orientation and intensity: a physical modeling study

AVAZ inversion for fracture orientation and intensity: a physical modeling study AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian and Gary F Margrave ABSTRACT AVAZ inversion We present a pre-stack amplitude inversion of P-wave data

More information

Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks

Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks Gisela Viegas*, ESG, Kingston, Ontario, Canada Gisela.Fernandes@esgsolutions.com and

More information

The effect of location error on microseismic mechanism estimation: synthetic and real field data examples

The effect of location error on microseismic mechanism estimation: synthetic and real field data examples The effect of location error on microseismic mechanism estimation: synthetic and real field data examples Michael Kratz 1 and Michael Thornton 1 present an issue that is of primary concern for all basins

More information

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Edmond Sze, M. Nafi Toksöz, and Daniel R. Burns Earth Resources Laboratory Dept. of Earth, Atmospheric and Planetary Sciences

More information

Microearthquake Focal Mechanisms

Microearthquake Focal Mechanisms Microearthquake Focal Mechanisms A Tool for Monitoring Geothermal Systems By Bruce R. Julian (U. S. Geological Survey - Menlo Park, CA) and Gillian R. Foulger (University of Durham - Durham, United Kingdom)

More information

Analytical Stress Modeling for Mine related Microseismicity

Analytical Stress Modeling for Mine related Microseismicity Analytical Stress Modeling for Mine related Microseismicity Himanshu Barthwal and Mirko van der Baan University of Alberta Summary Microseismicity is recorded in an underground mine by a network of 7 boreholes

More information

Radiation pattern in homogeneous and transversely isotropic attenuating media

Radiation pattern in homogeneous and transversely isotropic attenuating media Radiation pattern in homogeneous and transversely isotropic attenuating media Satish Sinha*, Sergey Abaseyev** and Evgeni Chesnokov** *Rajiv Gandhi Institute of Petroleum Technology, Rae Bareli, UP 229010

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media P9 Bayesian Linearized AAZ Inversion in HI Fractured Media L. Zhao* (University of Houston), J. Geng (ongji University), D. Han (University of Houston) & M. Nasser (Maersk Oil Houston Inc.) SUMMARY A new

More information

The robustness of seismic moment and magnitudes estimated using spectral analysis

The robustness of seismic moment and magnitudes estimated using spectral analysis Geophysical Prospecting doi: 10.1111/1365-2478.12134 The robustness of seismic moment and magnitudes estimated using spectral analysis A.L. Stork, J.P. Verdon and J.-M. Kendall School of Earth Sciences,

More information

High Resolution Imaging of Fault Zone Properties

High Resolution Imaging of Fault Zone Properties Annual Report on 1998-99 Studies, Southern California Earthquake Center High Resolution Imaging of Fault Zone Properties Yehuda Ben-Zion Department of Earth Sciences, University of Southern California

More information

Failure Mechanism and Evolution Law of Fractured-Rocks based on Moment Tensor Inversion

Failure Mechanism and Evolution Law of Fractured-Rocks based on Moment Tensor Inversion Failure Mechanism and Evolution Law of Fractured-Rocks based on Moment Tensor Inversion Jinfei Chai 1), Yongtao Gao 1), Shunchuan Wu 1), Langqiu Sun 2), Yu Zhou 1) 1) School of Civil and Environmental

More information

Absolute strain determination from a calibrated seismic field experiment

Absolute strain determination from a calibrated seismic field experiment Absolute strain determination Absolute strain determination from a calibrated seismic field experiment David W. Eaton, Adam Pidlisecky, Robert J. Ferguson and Kevin W. Hall ABSTRACT The concepts of displacement

More information

Elastic wavefield separation for VTI media

Elastic wavefield separation for VTI media CWP-598 Elastic wavefield separation for VTI media Jia Yan and Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT The separation of wave modes from isotropic elastic wavefields is typically

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies IDENTIFYING ISOTROPIC EVENTS USING AN IMPROVED REGIONAL MOMENT TENSOR INVERSION TECHNIQUE Sean R. Ford 1, Douglas S. Dreger 1, and William R. Walter 2 University of California, Berkeley 1 and Lawrence

More information

Automatic Moment Tensor Analyses, In-Situ Stress Estimation and Temporal Stress Changes at The Geysers EGS Demonstration Project

Automatic Moment Tensor Analyses, In-Situ Stress Estimation and Temporal Stress Changes at The Geysers EGS Demonstration Project PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017 SGP-TR-212 Automatic Moment Tensor Analyses, In-Situ Stress Estimation and

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

Phase and group velocity measurements from physically modeled transmission gathers

Phase and group velocity measurements from physically modeled transmission gathers Phase and group velocity measurements Phase and group velocity measurements from physically modeled transmission gathers Faranak Mahmoudian, Gary Margrave, and Joe Wong ABSTRACT Physical model data have

More information

The Unique Source Mechanism of an Explosively Induced Mine Collapse

The Unique Source Mechanism of an Explosively Induced Mine Collapse The Unique Source Mechanism of an Explosively Induced Mine Collapse Xiaoning Yang, Brian W. Stump, W. Scott Phillips Geophysics Group - EES-3, Los Alamos National Laboratory Contract No. W-7405-ENG-36

More information

Earthquake Focal Mechanisms and Waveform Modeling

Earthquake Focal Mechanisms and Waveform Modeling Earthquake Focal Mechanisms and Waveform Modeling Rengin Gök Lawrence Livermore National Laboratory USA RELEMR Workshop İstanbul 2008 Gudmundar E. Sigvaldason The Dynamic Earth, USGS The size of the event

More information

Anisotropic moment tensor inversion and visualization applied to a dual well monitoring survey

Anisotropic moment tensor inversion and visualization applied to a dual well monitoring survey Anisotropic moment tensor inversion and visualization applied to a dual well monitoring survey Scott Leaney, Xin Yu, Chris Chapman, Les Bennett, Shawn Maxwell, Jim Rutledge, Schlumberger Microseismic Services;

More information

Design of Chevron Gusset Plates

Design of Chevron Gusset Plates 017 SEAOC CONENTION PROCEEDINGS Desin of Chevron Gusset Plates Rafael Sali, Director of Seismic Desin Walter P Moore San Francisco, California Leih Arber, Senior Enineer American Institute of Steel Construction

More information

Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique

Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique UCRL-CONF-232584 Identifying Isotropic Events Using an Improved Regional Moment Tensor Inversion Technique S. R. Ford, D. S. Dreger, W. R. Walter July 9, 2007 Monitoring Research Review Denver, CO, United

More information

A collision theory of seismic waves applied to elastic VSP data

A collision theory of seismic waves applied to elastic VSP data A collision theory of seismic waves applied to elastic V data A collision theory of seismic waves applied to elastic V data Kris Innanen and Kevin Hall ABTRACT In previous CREWE reports we have been assembling

More information

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Petr Kolinsky 1, Leo Eisner 1, Vladimir Grechka 2, Dana Jurick 3, Peter Duncan 1 Summary Shear

More information

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave AVAZ inversion for fracture orientation and intensity: A physical modeling study Faranak Mahmoudian Gary Margrave Objective Fracture orientation: direction of fracture planes Fracture intensity: number

More information

The signature of attenuation and anisotropy on AVO and inversion sensitivities

The signature of attenuation and anisotropy on AVO and inversion sensitivities The signature of attenuation and anisotropy on AVO and inversion sensitivities Shahpoor Moradi and Kristopher Innanen University of Calgary, Department of Geoscience, Calgary, Canada Summary We study the

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger 1, Barbara Romanowicz 1, G. Clitheroe 1, Peggy Hellweg 1, Jeffry Stevens 2 University of California,

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient

Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient Shahin Moradi and Edward S. Krebes Anelastic energy-based transmission coefficient Unphysical negative values of the anelastic SH plane wave energybased transmission coefficient ABSTRACT Computing reflection

More information

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING H. Moghaddam 1, N. Fanaie 2* and H. Hamzehloo 1 Professor, Dept. of civil Engineering, Sharif University

More information

Microseismic Monitoring Shale Gas Plays: Advances in the Understanding of Hydraulic Fracturing 20 MAR 16 HANNAH CHITTENDEN

Microseismic Monitoring Shale Gas Plays: Advances in the Understanding of Hydraulic Fracturing 20 MAR 16 HANNAH CHITTENDEN Microseismic Monitoring Shale Gas Plays: Advances in the Understanding of Hydraulic Fracturing 20 MAR 16 HANNAH CHITTENDEN Introduction Early days: Microseismic monitoring has been around since the early

More information

GEOTHERMAL SEISMOLOGY: THE STATE OF THE ART

GEOTHERMAL SEISMOLOGY: THE STATE OF THE ART PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 - February 1, 2012 SGP-TR-194 GEOTHERMAL SEISMOLOGY: THE STATE OF THE ART

More information

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen Azimuthal AVO and Curvature Jesse Kolb* David Cho Kris Innanen Azimuthal AVO What is azimuthal AVO?: Analysis of incidence angle and azimuthal amplitude variations of reflection coefficients; Measures

More information

The Deconvolution of Multicomponent Trace Vectors

The Deconvolution of Multicomponent Trace Vectors The Deconvolution of Multicomponent Trace Vectors Xinxiang Li, Peter Cary and Rodney Couzens Sensor Geophysical Ltd., Calgary, Canada xinxiang_li@sensorgeo.com Summary Deconvolution of the horizontal components

More information

Stimulated Fractured Reservoir DFN Models Calibrated with Microseismic Source Mechanisms

Stimulated Fractured Reservoir DFN Models Calibrated with Microseismic Source Mechanisms ARMA 10-520 Stimulated Fractured Reservoir DFN Models Calibrated with Microseismic Source Mechanisms Williams-Stroud, S. C. and Eisner, L. MicroSeismic, Inc., Houston, TX, USA Copyright 2010 ARMA, American

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies EVALUATION OF CROSS-CORRELATION METHODS ON A MASSIVE SCALE FOR ACCURATE RELOCATION OF SEISMIC EVENTS Won-Young Kim, Paul G. Richards, David P. Schaff, Felix Waldhauser, and Jian Zhang Lamont-Doherty Earth

More information

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C UNVERSTY OF CALFORNA Collee of Enineerin Department of Electrical Enineerin and Computer Sciences E. Alon Homework #3 Solutions EECS 40 P. Nuzzo Use the EECS40 90nm CMOS process in all home works and projects

More information

Estimating energy balance for hydraulic fracture stimulations: Lessons Learned from Basel

Estimating energy balance for hydraulic fracture stimulations: Lessons Learned from Basel Estimating energy balance for hydraulic fracture stimulations: Lessons Learned from Basel David W. Eaton*, Department of Geoscience, University of Calgary, Calgary, Canada eatond@ucalgary.ca and Neda Boroumand,

More information

We Challenges in shale-reservoir characterization by means of AVA and AVAZ

We Challenges in shale-reservoir characterization by means of AVA and AVAZ We-06-15 Challenges in shale-reservoir characterization by means of AVA and AVAZ N.C. Banik* (WesternGeco), M. Egan (WesternGeco), A. Koesoemadinata (WesternGeco) & A. Padhi (WesternGeco) SUMMARY In most

More information

Characterisation of Acoustic Emission Sources in a Rock Salt Specimen under Triaxial Load

Characterisation of Acoustic Emission Sources in a Rock Salt Specimen under Triaxial Load Characterisation of Acoustic Emission Sources in a Rock Salt Specimen under Triaxial Load Gerd Manthei Gesellschaft für Materialprüfung und Geophysik Dieselstraße 6a, D-61239 Ober-Mörlen, Germany Phone.-

More information

Baseline VSP processing for the Violet Grove CO 2 Injection Site

Baseline VSP processing for the Violet Grove CO 2 Injection Site Baseline VSP processing for Violet Grove Baseline VSP processing for the Violet Grove CO 2 Injection Site Marcia L. Couëslan, Don C. Lawton, and Michael Jones * ABSTRACT Injection of CO 2 for enhanced

More information

Identifying faults and fractures using source mechanism inversion, b values, and energy release rates

Identifying faults and fractures using source mechanism inversion, b values, and energy release rates Identifying faults and fractures using source mechanism inversion, b values, and energy release rates Abstract: Identifying and differentiating between fracture stimulation and fault activation is critical

More information

Generalized Least-Squares Regressions V: Multiple Variables

Generalized Least-Squares Regressions V: Multiple Variables City University of New York (CUNY) CUNY Academic Works Publications Research Kinsborouh Community Collee -05 Generalized Least-Squares Reressions V: Multiple Variables Nataniel Greene CUNY Kinsborouh Community

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2012) 190, 1761 1776 doi: 10.1111/j.1365-246X.2012.05592.x Moment tensor inversion of waveforms: a two-step time-frequency approach Václav Vavryčuk 1

More information

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. In the process zone, stress amplitudes are poorly determined and much

More information

Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake

Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 1266-1271, August 1994 Routine Estimation of Earthquake Source Complexity: the 18 October 1992 Colombian Earthquake by Charles J. Ammon,*

More information

LOCAL MAGNITUDE SCALE FOR MONGOLIA AND DETERMINATION OF M WP AND M S (BB)

LOCAL MAGNITUDE SCALE FOR MONGOLIA AND DETERMINATION OF M WP AND M S (BB) Synopses of Master Papers Bulletin of IISEE, 47, 31-36, 2013 LOCAL MAGNITUDE SCALE FOR MONGOLIA AND DETERMINATION OF M WP AND M S (BB) Dashdondog Mungunsuren MEE11606 Supervisor: Tatsuhiko HARA ABSTRACT

More information

CHARACTERIZATION OF ACOUSTIC EMISSION SOURCES IN A ROCK SALT SPECIMEN UNDER TRIAXIAL LOAD

CHARACTERIZATION OF ACOUSTIC EMISSION SOURCES IN A ROCK SALT SPECIMEN UNDER TRIAXIAL LOAD CHARACTERIZATION OF ACOUSTIC EMISSION SOURCES IN A ROCK SALT SPECIMEN UNDER TRIAXIAL LOAD GERD MANTHEI Gesellschaft für Materialprüfung und Geophysik, Dieselstr. 6a, D-61239 Ober-Mörlen, Germany Abstract

More information

Teleseismic waveform modelling of the 2008 Leonidio event

Teleseismic waveform modelling of the 2008 Leonidio event The 6 January 2008 (Mw6.2) Leonidio (southern Greece) intermediate depth earthquake: teleseismic body wave modelling Anastasia Kiratzi and Christoforos Benetatos Department of Geophysics, Aristotle University

More information

Method selection of microseismic studies depending on the problem being solved

Method selection of microseismic studies depending on the problem being solved GEORESURSY = Georesources 2018. V. 20. Is 3. Part 2. Pp. 217-221 Original research article DOI: https://doi.org/10.18599/grs.2018.3.217-221 Method selection of microseismic studies depending on the problem

More information

Optimal wave focusing in elastic media

Optimal wave focusing in elastic media CP-792 Optimal wave focusing in elastic media Farhad Bazargani and Roel Snieder Center for ave Phenomena, Colorado School of Mines, Golden, CO 84, USA ABSTRACT Time-reversal (TR) methods provide a simple

More information

Waveform inversion and time-reversal imaging in attenuative TI media

Waveform inversion and time-reversal imaging in attenuative TI media Waveform inversion and time-reversal imaging in attenuative TI media Tong Bai 1, Tieyuan Zhu 2, Ilya Tsvankin 1, Xinming Wu 3 1. Colorado School of Mines 2. Penn State University 3. University of Texas

More information

Compensating for attenuation by inverse Q filtering. Carlos A. Montaña Dr. Gary F. Margrave

Compensating for attenuation by inverse Q filtering. Carlos A. Montaña Dr. Gary F. Margrave Compensating for attenuation by inverse Q filtering Carlos A. Montaña Dr. Gary F. Margrave Motivation Assess and compare the different methods of applying inverse Q filter Use Q filter as a reference to

More information

Improved Full Moment Tensor Inversions

Improved Full Moment Tensor Inversions Improved Full oment Tensor Inversions Sarah E. inson and Douglas S. Dreger bstract The seismic moment tensors for certain types of sources, such as volcanic earthquakes and nuclear explosions, are expected

More information

THEORETICAL ASSESSMENT OF THE FULL-MOMENT-TENSOR RESOLVABILITY FOR RECEIVER ARRAYS USED IN MICROSEISMIC MONITORING

THEORETICAL ASSESSMENT OF THE FULL-MOMENT-TENSOR RESOLVABILITY FOR RECEIVER ARRAYS USED IN MICROSEISMIC MONITORING Acta Geodyn. Geomater., Vol. 14, No. 2 (186), 235 240, 2017 DOI: 10.13168/AGG.2017.0006 journal homepage: https://www.irsm.cas.cz/acta ORIGINAL PAPER HEOREICAL ASSESSMEN OF HE FULL-MOMEN-ENSOR RESOLVABILIY

More information

Finite element modelling of fault stress triggering due to hydraulic fracturing

Finite element modelling of fault stress triggering due to hydraulic fracturing Finite element modelling of fault stress triggering due to hydraulic fracturing Arsalan, Sattari and David, Eaton University of Calgary, Geoscience Department Summary In this study we aim to model fault

More information

Locating Events using Borehole Microseismic Monitoring by Inclusion of Particle Motion Analysis

Locating Events using Borehole Microseismic Monitoring by Inclusion of Particle Motion Analysis Locating Events using Borehole Microseismic Monitoring by Inclusion of Particle Motion Analysis Balikpapan, October 5th-8th, 2015 REXHA VERDHORA RY Geophysical Engineering Institut Teknologi Bandung ANDRI

More information

A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field, California

A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field, California Bulletin of the Seismological Society of America, Vol. 105, No. 6, pp. 2969 2986, December 2015, doi: 10.1785/0120140285 E A Systematic Analysis of Seismic Moment Tensor at The Geysers Geothermal Field,

More information

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges 2017 SCEC Proposal Report #17133 Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges Principal Investigator Zhongwen Zhan Seismological Laboratory, California

More information

Wire antenna model of the vertical grounding electrode

Wire antenna model of the vertical grounding electrode Boundary Elements and Other Mesh Reduction Methods XXXV 13 Wire antenna model of the vertical roundin electrode D. Poljak & S. Sesnic University of Split, FESB, Split, Croatia Abstract A straiht wire antenna

More information

The roles of baseline Earth elastic properties and time-lapse changes in determining difference AVO. Shahin Jabbari Kris Innanen

The roles of baseline Earth elastic properties and time-lapse changes in determining difference AVO. Shahin Jabbari Kris Innanen The roles of baseline Earth elastic properties and time-lapse changes in determining difference AO hahin Jabbari Kris Innanen Outline Introduction and review A framework for time-lapse AO alidation of

More information

Evaluation Of The Fracture Sizes By Using The Frequency Dependence Of Anisotropy

Evaluation Of The Fracture Sizes By Using The Frequency Dependence Of Anisotropy Evaluation Of The Fracture Sizes By Using The Frequency Dependence Of Anisotropy Vahid Mahmoudian Ataabadi Arvandan Oil and Gas Company Saeed Sajjadian Hafizollah Kashani Birgani Abstract: Frequency-dependent

More information

Equivalent rocking systems: Fundamental rocking parameters

Equivalent rocking systems: Fundamental rocking parameters Equivalent rockin systems: Fundamental rockin parameters M.J. DeJon University of Cambride, United Kindom E.G. Dimitrakopoulos The Hon Kon University of Science and Technoloy SUMMARY Early analytical investiations

More information

Controlled source interferometry with noisy data Jürg Hunziker, Joost van der Neut, Evert Slob and Kees Wapenaar, Delft University of Technology

Controlled source interferometry with noisy data Jürg Hunziker, Joost van der Neut, Evert Slob and Kees Wapenaar, Delft University of Technology Jürg Hunziker, Joost van der Neut, Evert Slob and Kees Wapenaar, Delft University of Technology SUMMARY We investigate the effects of noise on controlled-source interferometry by multi-dimensional deconvolution

More information

Moment tensor inversion of near source seismograms

Moment tensor inversion of near source seismograms Moment tensor inversion of near source seismograms Yuji Yagi and Naoki Nishimura ABSTRACT We construct a program set for estimating moment tensor solution using near source seismograms. We take the effect

More information

Identifying faults and fractures in unconventional reservoirs through microseismic monitoring

Identifying faults and fractures in unconventional reservoirs through microseismic monitoring first break volume 29, July 2011 special topic Identifying faults and fractures in unconventional reservoirs through microseismic monitoring Scott A. Wessels, * Alejandro De La Peña, Michael Kratz, Sherilyn

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara VELOCITY STRUCTURE INVERSIONS FROM HORIZONTAL TO VERTICAL

More information

Application of nonlinear time-lapse AVO to the Pouce Coupe data set. Presented by Shahin Jabbari Supervisor Kris Innanen

Application of nonlinear time-lapse AVO to the Pouce Coupe data set. Presented by Shahin Jabbari Supervisor Kris Innanen Application of nonlinear time-lapse AVO to the Pouce Coupe data set Presented by Shahin Jabbari Supervisor Kris Innanen Outline Motivation and review Geology Seismic surveys Well tie and interpretation

More information

Seismic Reflection Views of the 1994 Northridge Earthquake Hypocentral Region Using Aftershock Data and Imaging Techniques

Seismic Reflection Views of the 1994 Northridge Earthquake Hypocentral Region Using Aftershock Data and Imaging Techniques Seismic Reflection Views of the 1994 Northridge Earthquake Hypocentral Region Using Aftershock Data and Imaging Techniques SERGIO CHÁVEZ-PÉREZ and JOHN N. LOUIE SEISMOLOGICAL LABORATORY/174, MACKAY SCHOOL

More information

Moment tensor inversion and moment tensor interpretation

Moment tensor inversion and moment tensor interpretation Topic Authors Version Moment tensor inversion and moment tensor interpretation Torsten Dahm, GeoForschungsZentrum Potsdam, Germany, University of Potsdam, Institute of Earth and Environmental Sciences

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (013) 194, 839 843 Advance Access publication 013 April 8 doi: 10.1093/gji/ggt137 EXPRESS LETTER Parametrization of general seismic potency and moment

More information

The 2016, October 26, Central Italy Earthquake Origin Time 17:10:36 UTC, M L(ISNet) =5.3; M W(ISNet) =5.6

The 2016, October 26, Central Italy Earthquake Origin Time 17:10:36 UTC, M L(ISNet) =5.3; M W(ISNet) =5.6 The 2016, October 26, Central Italy Earthquake Origin Time 17:10:36 UTC, M L(ISNet) =5.3; M W(ISNet) =5.6 RISSC-Lab: Laboratorio di RIcerca in Sismologia Sperimentale e Computazionale The event as seen

More information

Constrained inversion of P-S seismic data

Constrained inversion of P-S seismic data PS Inversion Constrained inversion of P-S seismic data Robert J. Ferguson, and Robert R. Stewart ABSTRACT A method to estimate S-wave interval velocity, using P-S seismic data is presented. The method

More information

Location uncertainty for a microearhquake cluster

Location uncertainty for a microearhquake cluster Analysis of location uncertainty for a microearhquake cluster: A case study Gabriela Melo, Alison Malcolm, Oleg Poliannikov, and Michael Fehler Earth Resources Laboratory - Earth, Atmospheric, and Planetary

More information

Body wave moment tensor inversion of local earthquakes: an application to the South Iceland Seismic Zone

Body wave moment tensor inversion of local earthquakes: an application to the South Iceland Seismic Zone Geophys. J. Int. (2000) 140, 63 70 Body wave moment tensor inversion of local earthquakes: an application to the South Iceland Seismic Zone Z. Hossein Shomali and Ragnar Slunga Department of Earth Sciences,

More information

Integrated Fracture Identification with Z-VSP and Borehole Images: A study from Cambay Basin

Integrated Fracture Identification with Z-VSP and Borehole Images: A study from Cambay Basin P-124 Integrated Fracture Identification with Z-VSP and Borehole Images: A study from Cambay Basin Sattwati Dey, Jubilant Energy; Chandramani Shrivastva, Schlumberger; Sreemanti Gijare*, Schlumberger;

More information

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada Shahpoor Moradi,Kristopher. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada SUMMRY Study of linearized reflectivity is very important for amplitude versus offset VO) analysis.

More information

Microseismicity applications in hydraulic fracturing monitoring

Microseismicity applications in hydraulic fracturing monitoring Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (4):13-19 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Microseismicity

More information

Regional distance seismic moment tensors of nuclear explosions

Regional distance seismic moment tensors of nuclear explosions Tectonophysics 356 (2002) 139 156 www.elsevier.com/locate/tecto Regional distance seismic moment tensors of nuclear explosions Douglas Dreger a, *, Bradley Woods b a UC Berkeley, Seismological Laboratory,

More information