AVAZ inversion for fracture orientation and intensity: a physical modeling study

Size: px
Start display at page:

Download "AVAZ inversion for fracture orientation and intensity: a physical modeling study"

Transcription

1 AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian*, Gary F. Margrave, and Joe Wong, University of Calgary. CREWES fmahmoud@ucalgary.ca Summary We present a pre-stack amplitude inversion of P-wave data to determine fracture orientation and intensity. We test the method on multi-azimuth multi-offset physical model reflection data acquired over a simulated fractured medium. This medium is composed of phenolic material with controlled symmetry planes, and its elastic properties have already been determined using traveltime analysis. This experimental model represents a HTI layer. We apply amplitude inversion of small incident angle data to extract the fracture orientation (direction of isotropic plane of the medium), and are able estimate the fracture orientation quite accurately. Knowing the fracture orientation, we modified the available linear PP reflection coefficient equation to invert for the anisotropy parameters (ε (V), δ (V), γ). The results for all three anisotropy parameters from AVAZ inversion compare very favorably to those obtained previously by a traveltime inversion. This result makes it possible to compute the shear-wave splitting parameter directly related to fracture intensity, which historically had been determined from shear-wave data, from a quantitative analysis of the PP reflected data. Introduction The ultimate goal of using AVO in fracture-detection studies is to invert the pre-stack amplitude data for fracture orientation (strike) and the magnitude of fracture intensity. Fracture orientation is defined as the dominant direction of fracture faces. Fracture intensity is the number of fractures per unit volume (Nelson, 1). Assuming fractures can be described by a horizontal transverse isotropic (HTI) medium, we present the AVAZ inversion for fracture orientation, based on the method of Jenner (), and tested on physically modeled data acquired over a simulated fractured medium. We initially characterized this simulated fractured layer as a HTI layer with known symmetry axis; using traveltime analysis on transmission data we estimated all its elastic stiffness coefficients (Mahmoudian, 1a). The AVAZ inversion result for the fracture orientation is quite accurate. For fracture intensity, we propose a pre-stack amplitude inversion of large-offset P-wave data, based on Rüger s equation (1), to invert for (ε (V), δ (V), γ), where γ is directly related to fracture intensity. Theory A plane-wave approximation for the PP reflection coefficient at a boundary between two HTI media with the same orientation of the symmetry axis (along φ azimuth) is given by Rüger (1) as 1 Z 1 G ( V ) R(, ) cos ( ) sin Z G (1) 1 ( V) 4 ( V) cos ( ) sin ( )cos ( ) sin tan. where θ is the incident angle, φ is the source-receiver azimuth, α is the vertical P-wave velocity (fast P velocity), Z is the P-wave impedance, β is the vertical S-wave velocity (fast S velocity), G is the shear modulus, denotes the difference in the elastic properties across the boundary. The average values of elastic properties in the two layers are denoted by the terms with overscores. (ε (V), δ (V), γ) are GeoConvention 13: Integration 1

2 the Thomsen-style anisotropy parameters for HTI media, defined using stiffness coefficients by ( V ) c11 c33 c44 c55 ( V ) ( c13 c55 ) ( c33 c55 ),, and. c33 c55 c33 ( c33 c55 ) We reformulate equation (1) as a function of P- and S-wave velocities, using Z / Z / / and G/ G / /, as R(, ) sin + 1 sin cos Fracture intensity estimation 1 4 ( V ) 4 cos ( )sin tan cos ( )sin 1 cos ( )sin 1 sin ( )tan ( V ). Assuming the fracture orientation is known (then φ is the perpendicular direction to it) equation () can ( ) ( ) be written as a function of six parameters ( /, /, /, V V,, ) : ( ) ( ) (, ) + V V R A B C D + E F, (3) where the coefficients A, B, C, D, E, and F are functions of the incident angle, azimuth, and velocity, and defined as in equation (). We use PP ray tracing of a smooth background velocity, at each azimuth for a given offset and depth to determine the incident angle, then to calculate the coefficients. Assuming that the pre-stack PP reflection amplitudes approximate reflection coefficients, incorporating n reflection amplitudes up to large incident angles (e.g., far-offset up to 45⁰) from m different azimuths as the input data, we use equation (3) to form a linear system of equations to invert for the six parameters solved using a damped least-squares inversion. Fracture orientation estimation Considering only small incident angle data (e.g., less than 35⁰), for which the sin tan term can be neglected, equation (1) can then be written as: R(, ) I G1 G cos ( ) sin, (4) ( V ) where I (.5) Z / Z, G1.5( / ( / ) G / G), and G.5( ( / ) ). Equation (4) has the form of AVO intercept and gradient. The gradient term Q G 1 G cos ( ) () is nonlinear with respect to three unknowns ( G1, G, ).The goal here is to invert the PP amplitude data for these three unknowns. The following describes how to bypass this non-linearity and to apply a linear inversion. Using the identity sin ( ) cos ( ) 1, the gradient becomes 1 1 Q = ( G G )cos ( ) G sin ( ). If the AVO gradient does not change sign azimuthally, the gradient versus azimuth vector delineates a curve that closely resembles an ellipse (Rüger, 1) with the semi-axes aligned with the symmetry plane directions of the fracture system (Figure 1). For a coordinate system aligned with the fracture system, every point of the gradient ellipse is ( y1, y) r(cos( ),sin( )), where r is the vector magnitude. In this coordinate system the gradient term can be written as: Q r(( G G ) y G y ). (5) GeoConvention 13: Integration

3 Figure 1: Reference coordinate systems. (x 1,x ) is the acquisition coordinate system, and (y 1,y ) is the coordinate system aligned with the fracture system. φ is the source-receiver azimuth, and φ is the fracture orientation azimuth. On the other hand by expanding trigonometric terms, the gradient term can be written as Q r( W11 cos W 1 cos sin W sin ), where W ij are functions of ( G1, G, ). In the acquisition coordinate system (Figure 1), every point on the gradient ellipse is ( x1, x) r(cos,sin ), so the last equation becomes Q r( W x W x x W x ), a quadratic form and can be written in a matrix form, W11 W1 x1 T [ x1 x] X WX W1 W x. If we wish to eliminate the mixed term xx 1 using the eigenvalues of matrix W ( 1, ), it reads Q r( 1Y 1 Y ), (6) where ( Y1, Y) are the eigenvectors of matrix W. Comparing coefficients from equations (5) and (6), we obtain: G1 G 1 and G1, so G1 and G can be obtained from eigenvalues. From the eigenvalue problem, we also know that a orthogonal rotation matrix, relates the two coordinate systems as [ y y ] R [ x x ], where the rotation angle obeys (e.g., Lax, 1997) 1 1 This results in two values for where W 1 tan. W W11 () (1) /, as (1),() 1 W11 W ( W11 W ) 4W1 W1 tan. (8) Equation (8) is used by Jenner (), and is equivalent to that used by Grechka et al. (1999) in solving for fracture orientation from the azimuthal variation of NMO velocity. Incorporating the amplitudes from different azimuths and small incident angles (e.g., up to 35⁰) as in the input data, we apply a linear inversion to solve for ( W11, W1, W ). Then, knowing W ij we use equation (8) to estimate the fracture orientation. Physical model reflection data We test the proposed AVAZ inversions for fracture orientation and intensity on physical model reflection data acquired over a four-layered model (Figure ). Our model consists of isotropic water and plexiglas and an HTI layer composed of phenolic material. The construction of the experimental phenolic layer and its initial characterization is presented in Mahmoudian et al. (1a). The experimental phenolic layer approximates a weakly anisotropic HTI layer, or equivalently a vertically fractured transversely isotropic layer with known fracture orientation. The five independent parameters required to describe ( V) ( V) our simulated fractured medium (,,,, ) are listed in Table 1. Table 1: Elastic properties of the simulated fractured layer. α (m/s) β (m/s) ε (V) δ (V) γ R, (7) GeoConvention 13: Integration 3

4 Figure : The four-layered earth model used to acquire reflection data. The acquisition ⁰ azimuth is parallel to the fracture symmetry axis. Figure 3: (left) 9⁰ azimuth data with a long gate automatic gain control applied. Our target is event "B", the PP reflection from the top of the fractured layer. (right) 9⁰ azimuth data, zoomed on the target reflector. We used reflection amplitudes from nine long offset common midpoint (CMP) gathers acquired along azimuths between ⁰ and 9⁰. Figure 3(left) shows the CMP seismic line acquired along the 9⁰ azimuth (fracture plane). The amplitudes reflected from the top of the simulated fractured layer are inputs to AVAZ inversion. We manually picked the amplitudes and applied deterministic corrections to make them represent reflection coefficients required by an amplitude inversion. The corrections for geometrical spreading, emergence angle, transmission loss, and source-receiver transducer directivity (specific to physical model transducers) have been applied. A detailed description for the data acquisition and corrections is given in Mahmoudian et al. (1b). The corrected reflected amplitudes from the top of the fractured layer for nine azimuths between ⁰ and 9⁰ are shown in Figure 4(left). The large oscillations in the amplitude data are due to the interference with the top reflector reverberations which has a different dip than the target event, Figure 3(right) shows the wave interference effect on the target amplitudes. The presence of large oscillations in the data causes the AVAZ inversion to be unstable depending on the maximum incident angle used. To avoid unstable inversion, we smooth the amplitude data prior to inversion. Smoothing is applied by using the best fit polynomial of degree n = 1 to the amplitude data. The smoothed amplitude data are shown in Figure 4(right). Estimated orientation and anisotropy parameters of the simulated fractured layer We use small incident angle data (maximum incident angle of 35⁰) in the AVAZ inversion. Since the symmetry of the simulated fractured medium is known and the physical model data acquisition coordinate was aligned with the fracture system, we rotate our acquisition coordinate system to arbitrary directions and used the proposed AVAZ inversion to estimate the fracture orientation. Table shows the predicted fracture orientations. Table : Estimated fracture orientation from the AVAZ inversion. True φ ⁰ ⁰ 4⁰ 5⁰ 6⁰ 8⁰ 9⁰ -1.5⁰ 18.5⁰ 38.5⁰ 48.5⁰ 58.5⁰ 78.5⁰ 88.5⁰ Estimated φ 88.5⁰ 18.5⁰ 18.5⁰ 138.5⁰ 148.5⁰ 168.5⁰ 178.5⁰ GeoConvention 13: Integration 4

5 Amplitude Amplitude.3.5. Az 9 Az 76 Az 63 Az 53 Az 45 Az 7 Az 37 Az 14 Az Incident angle (degrees) Incident angle (degrees) Figure 4: (left) Fracture top corrected reflection amplitudes from all nine azimuths and incident angles before the critical angle. (right) Smooth amplitude data input to the AVAZ inversions. The method is successful in predicting the fracture orientation; however, there is an ambiguity in the estimation as the method predicts both the fracture orientation and the direction normal (symmetry axis) to it. Therefore, a priori knowledge of the fracture orientation is required, perhaps from NMO analysis. To estimate the anisotropy parameters, knowing the fracture orientation for our simulated fractured medium, we tested the proposed six-parameter AVAZ inversion on the physical model data. In the first implementation, we estimated all six parameters simultaneously. Figure 5 shows the six-parameter AVAZ inversion for different maximum incorporated incident angles. The six-parameter AVAZ inversion using small incident angles does not produce good estimates for any of the six parameters. Incorporating large incident angles (e.g., 4⁰) within 1⁰ of the critical angle can result in good estimates for the first three isotropic terms, showing of the larger influence of the isotopic terms on the reflection coefficients, while the estimates of anisotropy parameters still have large errors. Incorporating larger incident angles, closer to the critical angle, results in better estimates for the anisotropy parameters as the azimuthal anisotropy is more pronounced at larger incident angle data. However, it produces large errors for the estimates of the three isotropic terms. The ε (V) and γ parameters are more accurately estimated, but the δ (V) parameter which governs the near-vertical wave propagation loses its accuracy. The overall error for all six parameters is larger when incorporating incident angles close to the critical angle, since the linear Rüger s equation is not valid in this region. 15 Max incident angle = Max incident angle = Max incident angle = / / / (v) (v) -5 / / / (v) (v) -5 / / / (v) (v) Figure 5: Six-parameter AVAZ inversion for three maximum incorporated incident angles. The estimates are compared to the values previously estimated from traveltime inversion. In an effort to obtain better estimates for the anisotropic terms, we used a second implementation in which we applied some constraints to the three isotropic terms. We put constraints on these first three variables using their estimated values from an isotropic AVA inversion of 9⁰ (isotropic plane) azimuth data. With such constraints, we examined the three-parameter inversion results for various maximum incorporated incident angles. Similar to six-parameter inversion the best results come from a large maximum incident angle but not close to critical angle. Figure 6 shows the constrained AVAZ inversion GeoConvention 13: Integration 5

6 for three different maximum incident angles. As a result of these constraints, for the right choice of the maximum incident angle, the inversion results for the three anisotropy parameters agree very favorably with those obtained previously by traveltime inversion. The estimate for anisotropy parameters from constrained AVAZ inversion is within 1%. These estimates are better than those from the simultaneous six-parameter inversion. Max incident angle = 35 Max incident angle = 39 Max incident angle = (v) (v) (v) (v) (v) (v) Figure 6: Constrained AVAZ inversion for anisotropy parameters. Conclusions We presented pre-stack amplitude inversion procedures to extract the anisotropy parameters (ε (V), δ (V), γ), and fracture orientation from the azimuthal variations in the PP reflection amplitudes. Since the shear-wave splitting factor, γ, is directly related to fracture intensity. We showed that it is possible to relate the difference in P-wave azimuthal AVO variations directly to the fracture intensity of our simulated fracture layer. Accurate linear inversion for the anisotropy parameters requires the use of large-offset data. However, incorporating very large offset data close to the critical angle should be avoided as the linear Rüger s equation is a plane wave solution and not valid close to the critical angle. The AVAZ inversion determines the fracture orientation with an inherent ambiguity, as it predicts both the directions of the isotropic plane and symmetry axis of an HTI medium. To resolve the ambiguity some other information is required, such as azimuthal NMO or shear-wave splitting. These effects are qualitatively different from azimuthal AVO and can be combined effectively to invert for fracture orientation. Our inversion is based on the approximate reflection coefficients by Rüger (1), the inversion estimates demonstrate that the Rüger s equation is suitable for quantitative amplitude analysis of anisotropic targets, and can be employed for numerical inversion algorithms. Acknowledgements We thank the sponsors of CREWES for their financial support. Dr. P.F. Daley, Dr. Kris Innanen, Dave Henley and Marcus Wilson are acknowledged for discussions. References Grechka, V., and Tsvankin, I., 1998, 3-D description of normal moveout in anisotropic inhomogeneous media, 63, Jenner, E.,, Azimuthal AVO: methodology and data example: The Leading Edge, 1, No. 8, Lax, P. D., 1997, Linear algebra and its applications. Mahmoudian F., Margrave G. F., Daley P. F., and Wong j., 1a, Anisotropy estimation for a simulated fractured medium using traveltime inversion: A physical modeling study, SEG expanded abstracts. Mahmoudian F., Wong J, Margrave G. F., 1b, Azimuthal AVO over a simulated fractured medium: A physical modeling experiment, SEG expanded abstracts. Nelson, R. A., 1, Geologic analysis of naturally fractured reservoirs, Second edition: Elsevier. Rüger, A., 1, Reflection coefficients and azimuthal AVO analysis in anisotropic media: Geophysical Monograph Series. GeoConvention 13: Integration 6

AVAZ inversion for fracture orientation and intensity: a physical modeling study

AVAZ inversion for fracture orientation and intensity: a physical modeling study AVAZ inversion for fracture orientation and intensity: a physical modeling study Faranak Mahmoudian and Gary F Margrave ABSTRACT AVAZ inversion We present a pre-stack amplitude inversion of P-wave data

More information

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave

AVAZ inversion for fracture orientation and intensity: A physical modeling study. Faranak Mahmoudian Gary Margrave AVAZ inversion for fracture orientation and intensity: A physical modeling study Faranak Mahmoudian Gary Margrave Objective Fracture orientation: direction of fracture planes Fracture intensity: number

More information

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen Azimuthal AVO and Curvature Jesse Kolb* David Cho Kris Innanen Azimuthal AVO What is azimuthal AVO?: Analysis of incidence angle and azimuthal amplitude variations of reflection coefficients; Measures

More information

AVAZ and VVAZ practical analysis to estimate anisotropic properties

AVAZ and VVAZ practical analysis to estimate anisotropic properties AVAZ and VVAZ practical analysis to estimate anisotropic properties Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Seismic anisotropic properties, such as orientation

More information

We Challenges in shale-reservoir characterization by means of AVA and AVAZ

We Challenges in shale-reservoir characterization by means of AVA and AVAZ We-06-15 Challenges in shale-reservoir characterization by means of AVA and AVAZ N.C. Banik* (WesternGeco), M. Egan (WesternGeco), A. Koesoemadinata (WesternGeco) & A. Padhi (WesternGeco) SUMMARY In most

More information

Nonhyperbolic Reflection Moveout for Orthorhombic Media

Nonhyperbolic Reflection Moveout for Orthorhombic Media Nonhyperbolic Reflection Moveout for Orthorhombic Media AbdulFattah Al-Dajani and M. Nafi Toksöz Earth Resources Laboratory Dept. of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of

More information

Phase and group velocity measurements from physically modeled transmission gathers

Phase and group velocity measurements from physically modeled transmission gathers Phase and group velocity measurements Phase and group velocity measurements from physically modeled transmission gathers Faranak Mahmoudian, Gary Margrave, and Joe Wong ABSTRACT Physical model data have

More information

Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium

Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium GEOPHYSICS, VOL. 67, NO. 1 (JANUARY-FEBRUARY 2002); P. 292 299, 3 FIGS. 10.1190/1.1451801 Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium Andrey Bakulin,

More information

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale Joanne Wang, Paradigm Duane Dopkin, Paradigm Summary To improve the success

More information

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study Yungui Xu 1,2, Gabril Chao 3 Xiang-Yang Li 24 1 Geoscience School, University of Edinburgh, UK

More information

NMO ellipse for a stratified medium with laterally varying velocity

NMO ellipse for a stratified medium with laterally varying velocity CWP-685 NMO ellipse for a stratified medium with laterally varying velocity Mamoru Takanashi 1, 2 & Ilya Tsvankin 1 1 Center for Wave Phenomena, Geophysics Department, Colorado School of Mines, Golden,

More information

Reflection moveout and parameter estimation for horizontal transverse isotropy

Reflection moveout and parameter estimation for horizontal transverse isotropy GEOPHYSICS, VOL. 62, NO. 2 (MARCH-APRIL 1997); P. 614 629, 7 FIGS. Reflection moveout and parameter estimation for horizontal transverse isotropy Ilya Tsvankin ABSTRACT Transverse isotropy with a horizontal

More information

Estimation of stiffness coefficients of an orthorhombic physical model from group velocity measurements

Estimation of stiffness coefficients of an orthorhombic physical model from group velocity measurements Estimation of stiffness coefficients Estimation of stiffness coefficients of an orthorhombic physical model from group velocity measurements Faranak Mahmoudian, Gary Margrave, P.F. Daley, and Joe Wong

More information

Interval anisotropic parameters estimation in a least squares sense Case histories from West Africa

Interval anisotropic parameters estimation in a least squares sense Case histories from West Africa P-263 Summary Interval anisotropic parameters estimation in a least squares sense Patrizia Cibin*, Maurizio Ferla Eni E&P Division (Milano, Italy), Emmanuel Spadavecchia - Politecnico di Milano (Milano,

More information

An Improvement of Velocity Variation with Offset (VVO) Method in Estimating Anisotropic Parameters

An Improvement of Velocity Variation with Offset (VVO) Method in Estimating Anisotropic Parameters DOI 10.7603/s40875-014-0003-0 GSTF Journal of Geological Sciences (JGS) Vol. No.1, July 015 An Improvement of Velocity Variation with Offset (VVO) Method in Estimating Anisotropic Parameters Ida Herawati,

More information

The roles of baseline Earth elastic properties and time-lapse changes in determining difference AVO. Shahin Jabbari Kris Innanen

The roles of baseline Earth elastic properties and time-lapse changes in determining difference AVO. Shahin Jabbari Kris Innanen The roles of baseline Earth elastic properties and time-lapse changes in determining difference AO hahin Jabbari Kris Innanen Outline Introduction and review A framework for time-lapse AO alidation of

More information

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs Yexin Liu*, SoftMirrors Ltd., Calgary, Alberta, Canada yexinliu@softmirrors.com Summary Worldwide interest

More information

SHEAR-WAVE REFLECTION MOVEOUT FOR AZIMUTHALLY ANISOTROPIC MEDIA

SHEAR-WAVE REFLECTION MOVEOUT FOR AZIMUTHALLY ANISOTROPIC MEDIA SHEAR-WAVE REFLECTION MOVEOUT FOR AZIMUTHALLY ANISOTROPIC MEDIA AbdulFattah AI-Dajani and M. Nafi Toksoz Earth Resources Laboratory Department of Earth, Atmospheric, and Planetary Sciences Massachusetts

More information

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media P9 Bayesian Linearized AAZ Inversion in HI Fractured Media L. Zhao* (University of Houston), J. Geng (ongji University), D. Han (University of Houston) & M. Nasser (Maersk Oil Houston Inc.) SUMMARY A new

More information

3-D description of normal moveout in anisotropic inhomogeneous media

3-D description of normal moveout in anisotropic inhomogeneous media GEOPHYSICS, VOL. 63, NO. 3 (MAY-JUNE 1998); P. 1079-1092,10 FIGS. 3-D description of normal moveout in anisotropic inhomogeneous media Vladimir Grechka* and Ilya Tsvankin* ABSTRACT We present a new equation

More information

Azimuthal Velocity Analysis of 3D Seismic for Fractures: Altoment-Bluebell Field

Azimuthal Velocity Analysis of 3D Seismic for Fractures: Altoment-Bluebell Field Azimuthal Velocity Analysis of 3D Seismic for Fractures: Altoment-Bluebell Field Khaled Al Dulaijan and Gary F. Margrave CREWES Summary The 3D seismic data was acquired within Bluebell Field, the eastern

More information

CHARACTERIZATION OF SATURATED POROUS ROCKS WITH OBLIQUELY DIPPING FRACTURES. Jiao Xue and Robert H. Tatham

CHARACTERIZATION OF SATURATED POROUS ROCKS WITH OBLIQUELY DIPPING FRACTURES. Jiao Xue and Robert H. Tatham CHARACTERIZATION OF SATURATED POROUS ROCS WITH OBLIQUELY DIPPING FRACTURES Jiao Xue and Robert H. Tatham Department of Geological Sciences The University of Texas at Austin ABSTRACT Elastic properties,

More information

Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data

Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data Huaizhen Chen and Kris Innanen CREWES project Department of Geoscience University of Calgary Summary Seismic wave

More information

QVOA analysis: P-wave attenuation anisotropy for fracture characterization

QVOA analysis: P-wave attenuation anisotropy for fracture characterization GEOPHYSCS, VOL. 7, NO. 3 MAY-JUNE 2006 ; P. C37 C48, FGS., 2 TABLES. 0.90/.29453 QVOA analysis: P-wave attenuation anisotropy for fracture characterization Tatiana Chichinina, Vladimir Sabinin, and Gerardo

More information

Inversion of normal moveout for monoclinic media

Inversion of normal moveout for monoclinic media Inversion of normal moveout for monoclinic media Vladimir Grechka, Pedro Contreras, and Ilya Tsvankin Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, CO 80401-1887

More information

Geomechanics, Anisotropy and LMR

Geomechanics, Anisotropy and LMR Geomechanics, Anisotropy and LMR Marco Perez *, Apache Canada Ltd, Calgary, AB, Canada marco.perez@apachecorp.com Bill Goodway, Apache Canada Ltd, Calgary, AB, Canada bill.goodway@apachecorp.com David

More information

An acoustic wave equation for orthorhombic anisotropy

An acoustic wave equation for orthorhombic anisotropy Stanford Exploration Project, Report 98, August 1, 1998, pages 6?? An acoustic wave equation for orthorhombic anisotropy Tariq Alkhalifah 1 keywords: Anisotropy, finite difference, modeling ABSTRACT Using

More information

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses PROC. ITB Eng. Science Vol. 38 B, No. 2, 2006, 159-170 159 Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses Fatkhan Program Studi Teknik Geofisika FIKTM-ITB

More information

Reflection and Transmission coefficient for VTI media

Reflection and Transmission coefficient for VTI media Reflection and Transmission coefficient for VTI media R. K. Sharma and R. J. Ferguson ABSTRACT VTI, R & T coefficients Presently, we obtain the reflection (R and transmission (T coefficients of plane waves

More information

3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study

3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study GEOPHYSICS, VOL. 64, NO. 4 JULY-AUGUST 1999); P. 1 118, 1 FIGS. -D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study Vladimir Grechka and Ilya

More information

Envelope of Fracture Density

Envelope of Fracture Density Dragana Todorovic-Marinic* Veritas DGC Ltd., Calgary, Alberta, Canada dragant@veritasdgc.com Dave Gray, Ye Zheng Veritas DGC Ltd., Calgary, Alberta, Canada Glenn Larson and Jean Pelletier Devon Canada

More information

Phase-shift modelling for HTI media

Phase-shift modelling for HTI media HTI-Modelling Phase-shift modelling for HTI media R. K. Sharma and R. J. Ferguson ABSTRACT Fractures play an important role in hydrocarbon production as they determine the pathways and volume of crustal

More information

P306 Seismic Velocity Anisotropy in the Illizi Basin of Eastern Algeria

P306 Seismic Velocity Anisotropy in the Illizi Basin of Eastern Algeria P306 Seismic Velocity Anisotropy in the Illizi Basin of Eastern Algeria M. Wallace* (GX Technology), J. Maher (GX Technology), S. Schapper (GX Technology), B. Taylor (BP) & S.R. Tod (BP) SUMMARY The Tiguentourine

More information

The signature of attenuation and anisotropy on AVO and inversion sensitivities

The signature of attenuation and anisotropy on AVO and inversion sensitivities The signature of attenuation and anisotropy on AVO and inversion sensitivities Shahpoor Moradi and Kristopher Innanen University of Calgary, Department of Geoscience, Calgary, Canada Summary We study the

More information

Exact Seismic Velocities for VTI and HTI Media and Extended Thomsen Formulas for Stronger Anisotropies. Abstract

Exact Seismic Velocities for VTI and HTI Media and Extended Thomsen Formulas for Stronger Anisotropies. Abstract Submitted to : Geophysics Exact Seismic Velocities for VTI and HTI Media and Extended Thomsen Formulas for Stronger Anisotropies James G. Berryman 1, 1 University of California, Lawrence Berkeley National

More information

AZIMUTHAL VELOCITY ANALYSIS OF 3D SEISMIC FOR FRACTURES: ALTOMENT-BLUEBELL FIELD

AZIMUTHAL VELOCITY ANALYSIS OF 3D SEISMIC FOR FRACTURES: ALTOMENT-BLUEBELL FIELD VVAz: Altamont-Bluebell field AZIMUTHAL VELOCITY ANALYSIS OF 3D SEISMIC FOR FRACTURES: ALTOMENT-BLUEBELL FIELD Khaled Al Dulaijan and Gary F. Margrave ABSTRACT The 3D seismic data was acquired within Bluebell

More information

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling 6298 Stress induced azimuthally anisotropic reservoir - AVO modeling M. Brajanovski* (Curtin University of Technology), B. Gurevich (Curtin University of Technology), D. Nadri (CSIRO) & M. Urosevic (Curtin

More information

Anisotropic inversion and imaging of PP and PS reflection data in the North Sea

Anisotropic inversion and imaging of PP and PS reflection data in the North Sea Anisotropic inversion and imaging of PP and PS reflection data in the North Sea VLADIMIR GRECHKA, Shell International Exploration and Production, Houston, Texas, U.S. ILYA TSVANKIN, Colorado School of

More information

Correspondence between the low- and high-frequency limits for anisotropic parameters in a layered medium

Correspondence between the low- and high-frequency limits for anisotropic parameters in a layered medium GEOPHYSICS VOL. 74 NO. MARCH-APRIL 009 ; P. WA5 WA33 7 FIGS. 10.1190/1.3075143 Correspondence between the low- and high-frequency limits for anisotropic parameters in a layered medium Mercia Betania Costa

More information

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry GEOPHYSICS, VOL. 62, NO. 3 (MAY-JUNE 1997); P. 713 722, 7 FIGS., 1 TABLE. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry Andreas Rüger ABSTRACT

More information

Numerical Modeling for Different Types of Fractures

Numerical Modeling for Different Types of Fractures umerical Modeling for Different Types of Fractures Xiaoqin Cui* CREWES Department of Geoscience University of Calgary Canada xicui@ucalgary.ca and Laurence R. Lines Edward S. Krebes Department of Geoscience

More information

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story Petr Kolinsky 1, Leo Eisner 1, Vladimir Grechka 2, Dana Jurick 3, Peter Duncan 1 Summary Shear

More information

Mapping the conversion point in vertical transversely isotropic (VTI) media

Mapping the conversion point in vertical transversely isotropic (VTI) media Mapping the conversion point in vertical transversely isotropic (VTI) media Jianli Yang and Don. C. Lawton Conversion-point mapping ABSTRACT The important aspect of converted-wave (P-S) seismology is that

More information

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC)

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC) Downloaded 01/03/14 to 16.01.198.34. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ 3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie

More information

Exact elastic impedance in orthorhombic media

Exact elastic impedance in orthorhombic media Exact elastic impedance in orthorhombic media F. Zhang (hina University of Petroleum), X.Y. Li (hina University of Petroleum, British Geological Survey) SUMMARY onventional elastic/ray impedance approximations

More information

Investigating fault shadows in a normally faulted geology

Investigating fault shadows in a normally faulted geology Investigating fault shadows in a normally faulted geology Sitamai Ajiduah* and Gary Margrave CREWES, University of Calgary, sajiduah@ucalgary.ca Summary Fault shadow poses a potential development risk

More information

Estimation of fracture parameters from reflection seismic data Part II: Fractured models with orthorhombic symmetry

Estimation of fracture parameters from reflection seismic data Part II: Fractured models with orthorhombic symmetry GEOPHYSICS, VOL. 65, NO. 6 (NOVEMBER-DECEMBER 2000); P. 1803 1817, 5 FIGS., 1 TABLE. Estimation of fracture parameters from reflection seismic data Part II: Fractured models with orthorhomic symmetry Andrey

More information

Stacking-velocity tomography in tilted orthorhombic media

Stacking-velocity tomography in tilted orthorhombic media Stacking-velocity tomography in tilted orthorhombic media Qifan Liu* and Ilya Tsvankin Center for Wave Phenomena, Colorado School of Mines Methodology modes: PP, S 1 S 1, S 2 S 2 (PP + PS = SS) input:

More information

TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use?

TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use? TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use? Francois Audebert* CGG Americas, Calgary, Alberta, Canada faudebert@cgg.com and Volker Dirks CGG Americas, Calgary, Alberta, Canada Abstract

More information

Multi-scale fracture prediction using P-wave data: a case study

Multi-scale fracture prediction using P-wave data: a case study Multi-scale fracture prediction using P-wave data: a case study Wanlu Zhang 1,2,*, Shuangquan Chen 1,2, Jian Wang 3, Lianbo Zeng 1, Xiang-Yang Li 1,2,4, 1. State Key Laboratory of Petroleum Resources and

More information

ANISOTROPIC PRESTACK DEPTH MIGRATION: AN OFFSHORE AFRICA CASE STUDY

ANISOTROPIC PRESTACK DEPTH MIGRATION: AN OFFSHORE AFRICA CASE STUDY Copyright 000 by the Society of Exploration Geophysicists ANISOTROPIC PRESTACK DEPTH MIGRATION: AN OFFSHORE AFRICA CASE STUDY Philippe Berthet *, Paul Williamson *, Paul Sexton, Joachim Mispel * * Elf

More information

Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible?

Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible? GEOPHYSICS, VOL. 66, NO. 3 (MAY-JUNE 2001); P. 897 903, 4 FIGS., 1 TABLE. Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible? Yves Le Stunff, Vladimir Grechka, and Ilya

More information

An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models Item Type Conference Paper Authors Waheed Umair bin; Alkhalifah Tariq Ali Eprint version Pre-print

More information

Fracture-porosity inversion from P-wave AVOA data along 2D seismic lines: An example from the Austin Chalk of southeast Texas

Fracture-porosity inversion from P-wave AVOA data along 2D seismic lines: An example from the Austin Chalk of southeast Texas GEOPHYSICS, VOL. 72, NO. 1 JANUARY-FEBRUARY 2007 ; P. B1 B7, 7 FIGS., 3 TABLES. 10.1190/1.2399444 Fracture-porosity inversion from P-wave AVOA data along 2D seismic lines: An example from the Austin Chalk

More information

Seismic anisotropy in coal beds David Gray Veritas, Calgary, Canada

Seismic anisotropy in coal beds David Gray Veritas, Calgary, Canada Seismic anisotropy in coal beds David Gray Veritas, Calgary, Canada Dave_Gray@veritasdgc.com Summary Methods of measuring seismic azimuthal anisotropy are being used increasingly to detect fractures in

More information

A case study of azimuthal AVO analysis with anisotropic spreading correction

A case study of azimuthal AVO analysis with anisotropic spreading correction A case study of azimuthal AVO analysis with anisotropic spreading correction Xiaoxia Xu and Ilya Tsvankin, Colorado School of Mines, Golden, USA Geomechanical properties of tight, low-porosity reservoirs

More information

An empirical method for estimation of anisotropic parameters in clastic rocks

An empirical method for estimation of anisotropic parameters in clastic rocks An empirical method for estimation of anisotropic parameters in clastic rocks YONGYI LI, Paradigm Geophysical, Calgary, Alberta, Canada Clastic sediments, particularly shale, exhibit transverse isotropic

More information

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties P.W. Wild* (Ikon Science Ltd), M. Kemper (Ikon Science Ltd), L. Lu (Ikon Science Ltd) & C.D. MacBeth (Heriot Watt University)

More information

Case History. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Antonio C. B. Ramos and Thomas L.

Case History. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Antonio C. B. Ramos and Thomas L. GEOPHYSICS, VOL. 62, NO. 6 (NOVEMBER-DECEMBER 1997); P. 1683 1695, 23 FIGS., 1 TABLE. Case History 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs Antonio C. B.

More information

Full-Azimuth 3-D Characterizes Shales

Full-Azimuth 3-D Characterizes Shales JULY 2013 The Better Business Publication Serving the Exploration / Drilling / Production Industry Full-Azimuth 3-D Characterizes Shales By Duane Dopkin, Joanne Wang and Shiv Pujan Singh HOUSTON Shale

More information

The Deconvolution of Multicomponent Trace Vectors

The Deconvolution of Multicomponent Trace Vectors The Deconvolution of Multicomponent Trace Vectors Xinxiang Li, Peter Cary and Rodney Couzens Sensor Geophysical Ltd., Calgary, Canada xinxiang_li@sensorgeo.com Summary Deconvolution of the horizontal components

More information

Examples of prestack depth migration in TI media

Examples of prestack depth migration in TI media Eamples of prestack depth migration in TI media Robert J. Ferguson and Gary F. Margrave ABSTRACT Wave field etrapolation by nonstationary phase shift can be formulated to allow velocity variation with

More information

Velocity and VTI anisotropy scanning in multicomponent seismic data

Velocity and VTI anisotropy scanning in multicomponent seismic data PS multi-parameter scan Velocity and VTI anisotropy scanning in multicomponent seismic data Christopher O. Ogiesoba *, James E. Gaiser **, and Robert R. Stewart * ABSTRACT We present a prestack method

More information

P185 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use?

P185 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use? P18 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use? F.S. Audebert* (CGG Americas Inc.), A. Pettenati (Ecole Supérieure d' Electricité) & V. Dirks (CGG Americas Inc) SUMMARY We perform

More information

Fracture characterization at Valhall: Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set

Fracture characterization at Valhall: Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set GEOPHYSICS, VOL. 68, NO. 4 (JULY-AUGUST 2003); P. 1150 1160, 11 FIGS. 10.1190/1.1598107 Fracture characterization at Valhall: Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis

More information

arxiv: v1 [physics.geo-ph] 31 Dec 2018

arxiv: v1 [physics.geo-ph] 31 Dec 2018 Generalized Dix equation and analytic treatment of normal-moveout velocity for anisotropic media Vladimir Grechka 1,, Ilya Tsvankin 1, and Jack K Cohen 1 1 Center for Wave Phenomena, Colorado School of

More information

Comparison of two physical modeling studies of 3D P-wave fracture detection

Comparison of two physical modeling studies of 3D P-wave fracture detection Comparison of two physical modeling studies of 3D P-wave fracture detection ZHONGPING QIAN 1,2, XIANG-YANG LI 1 AND SHANGXU WANG 3 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh

More information

SENSITIVITY ANALYSIS OF AMPLITUDE VARIATION WITH OFFSET (AVO) IN FRACTURED MEDIA

SENSITIVITY ANALYSIS OF AMPLITUDE VARIATION WITH OFFSET (AVO) IN FRACTURED MEDIA SENSITIVITY ANALYSIS OF AMPLITUDE VARIATION WITH OFFSET AVO) IN FRACTURED MEDIA Mary L. Krasovec, William L. Rodi, and M. Nafi Toksoz Earth Resources Laboratory Department of Earth, Atmospheric, and Planetary

More information

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave

Elastic wave-equation migration for laterally varying isotropic and HTI media. Richard A. Bale and Gary F. Margrave Elastic wave-equation migration for laterally varying isotropic and HTI media Richard A. Bale and Gary F. Margrave a Outline Introduction Theory Elastic wavefield extrapolation Extension to laterally heterogeneous

More information

Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis

Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis Geophysical Prospecting, 2013, 61, 495 503 doi: 10.1111/j.1365-2478.2012.01067.x Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis Tariq Alkhalifah

More information

UNIVERSITY OF CALGARY. Elasto-static and -dynamic Analysis of Subsurface Fracture Phenomena. David Cho A THESIS

UNIVERSITY OF CALGARY. Elasto-static and -dynamic Analysis of Subsurface Fracture Phenomena. David Cho A THESIS UNIVERSITY OF CALGARY Elasto-static and -dynamic Analysis of Subsurface Fracture Phenomena by David Cho A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

More information

Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis

Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis Geophysical Prospecting doi: 10.1111/1365-478.1011 Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis ehdi E. Far 1, Colin. Sayers 1,, Leon Thomsen

More information

Seismic fracture detection in the Second White Speckled Shale: Anisotropic perspectives on an isotropic workflow

Seismic fracture detection in the Second White Speckled Shale: Anisotropic perspectives on an isotropic workflow Fracture detection in the SWS Seismic fracture detection in the Second White Speckled Shale: Anisotropic perspectives on an isotropic workflow David Cho, Craig Coulombe, Scott McLaren, Kevin Johnson and

More information

Moveout approximation for P waves in a homogeneous VTI medium

Moveout approximation for P waves in a homogeneous VTI medium Moveout approximation for P waves in a homogeneous VTI medium Véronique Farra 1 and Ivan Pšenčík 2 1 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS,

More information

Modelling of linearized Zoeppritz approximations

Modelling of linearized Zoeppritz approximations Modelling of linearized Zoeppritz approximations Arnim B. Haase Zoeppritz approximations ABSTRACT The Aki and Richards approximations to Zoeppritz s equations as well as approximations by Stewart, Smith

More information

Snell s law in transversely isotropic media using linearized group velocities and related quantities

Snell s law in transversely isotropic media using linearized group velocities and related quantities Snell's law using group angles and velocities Snell s law in transversely isotropic media using linearized group velocities and related quantities P.F. Daley ABSTRACT Using a linearized approximation for

More information

A Petroleum Geologist's Guide to Seismic Reflection

A Petroleum Geologist's Guide to Seismic Reflection A Petroleum Geologist's Guide to Seismic Reflection William Ashcroft WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Contents Preface Acknowledgements xi xiii Part I Basic topics and 2D interpretation

More information

Chapter 1. Introduction EARTH MODEL BUILDING

Chapter 1. Introduction EARTH MODEL BUILDING Chapter 1 Introduction Seismic anisotropy in complex earth subsurface has become increasingly important in seismic imaging due to the increasing offset and azimuth in modern seismic data. To account for

More information

Stacking and Interval Velocities in a Medium with Laterally Inhomogeneous Layers

Stacking and Interval Velocities in a Medium with Laterally Inhomogeneous Layers Stacking and Interval Velocities in a Medium with Laterally Inhomogeneous Layers E. Blias* Revolution Geoservices, 110, 733-14 Ave SW, Calgary, AB, TR 0N3 emilb@shaw.ca ABSTRACT Depth velocity models are

More information

Improvement of stacking image by anisotropic velocity analysis using P-wave seismic data

Improvement of stacking image by anisotropic velocity analysis using P-wave seismic data P-46 Improvement of stacking image by anisotropic velocity analysis using P-wave seismic data Laxmidhar Behera*, and Prakash Khare, National Geophysical Research Institute (NGRI), Hyderabad Summary Anisotropy

More information

Finite difference elastic modeling of the topography and the weathering layer

Finite difference elastic modeling of the topography and the weathering layer Finite difference elastic modeling of the topography and the weathering layer Saul E. Guevara and Gary F. Margrave ABSTRACT Finite difference 2D elastic modeling is used to study characteristics of the

More information

Robert W. Vestrum and R. James Brown

Robert W. Vestrum and R. James Brown Group versus phase velocity in laboratory measurements on orthorhombic samples Robert W. Vestrum and R. James Brown ABSTRACT In laboratory measurements of traveltimes across anisotropic materials, there

More information

Reservoir properties inversion from AVO attributes

Reservoir properties inversion from AVO attributes Reservoir properties inversion from AVO attributes Xin-gang Chi* and De-hua Han, University of Houston Summary A new rock physics model based inversion method is put forward where the shaly-sand mixture

More information

Elastic wavefield separation for VTI media

Elastic wavefield separation for VTI media CWP-598 Elastic wavefield separation for VTI media Jia Yan and Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT The separation of wave modes from isotropic elastic wavefields is typically

More information

Joint PP and PS AVO inversion based on Zoeppritz equations

Joint PP and PS AVO inversion based on Zoeppritz equations Earthq Sci (2011)24: 329 334 329 doi:10.1007/s11589-011-0795-1 Joint PP and PS AVO inversion based on Zoeppritz equations Xiucheng Wei 1,2, and Tiansheng Chen 1,2 1 SINOPEC Key Laboratory of Seismic Multi-Component

More information

Developments in seismic anisotropy: Treating realistic. subsurface models in imaging and fracture detection

Developments in seismic anisotropy: Treating realistic. subsurface models in imaging and fracture detection Developments in seismic anisotropy: Treating realistic subsurface models in imaging and fracture detection Ilya Tsvankin and Vladimir Grechka Colorado School of Mines, Department of Geophysics, Center

More information

Variation of P-wave reflectivity with offset and azimuth in anisotropic media

Variation of P-wave reflectivity with offset and azimuth in anisotropic media GEOPHYSICS, VOL. 63, NO.3 (MAY-JUNE 1998); P.935-947,7 FIGS., 4 TABLES. Variation of P-wave reflectivity with offset azimuth in anisotropic media Andreas Ruger* ABSTRACT P-wave amplitudes may be sensitive

More information

P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients

P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients M. Ayzenberg (StatoilHydro), A. Aizenberg (Institute of Petroleum Geology and Geophysics),

More information

COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES. Robert H.

COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES. Robert H. COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES Robert H. Tatham Department of Geological Sciences The University of Texas at Austin

More information

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains Frequency-dependent AVO attribute: theory and example Xiaoyang Wu, 1* Mark Chapman 1,2 and Xiang-Yang Li 1 1 Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains Road, Edinburgh

More information

Acoustic anisotropic wavefields through perturbation theory

Acoustic anisotropic wavefields through perturbation theory GEOPHYSICS, VOL. 78, NO. 5 (SEPTEMBER-OCTOBER 2013); P. WC41 WC50, 22 FIGS. 10.1190/GEO2012-0391.1 Acoustic anisotropic wavefields through perturbation theory Tariq Alkhalifah 1 ABSTRACT Solving the anisotropic

More information

Downloaded 08/30/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 08/30/13 to Redistribution subject to SEG license or copyright; see Terms of Use at Modeling the effect of pores and cracks interactions on the effective elastic properties of fractured porous rocks Luanxiao Zhao*, De-hua Han, Qiuliang Yao and Fuyong Yan, University of Houston; Mosab

More information

NMO residual reduction on medium anisotropy in field X using Fomel and Stovas method

NMO residual reduction on medium anisotropy in field X using Fomel and Stovas method Journal of Physics: Conference Series PAPER OPEN ACCESS NMO residual reduction on medium anisotropy in field X using Fomel and Stovas method To cite this article: M S Rosid et al 018 J. Phys.: Conf. Ser.

More information

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity PEAT8002 - SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity Nick Rawlinson Research School of Earth Sciences Australian National University Anisotropy Introduction Most of the theoretical

More information

Cross-well seismic modelling for coal seam delineation

Cross-well seismic modelling for coal seam delineation P-134 Sanjeev Rajput, CSIRO, P. Prasada Rao*, N. K. Thakur, NGRI Summary Finite-difference analyses is attempted to simulate a multi layered complex coal seam model in order to differentiate top and bottom

More information

Seismic reservoir characterisation

Seismic reservoir characterisation Seismic reservoir characterisation Unconventional reservoir (shale gas) Robert Porjesz 1 2014 B A K E R H U G H E S I N C O R P O R A TED. A LL R I G H TS R E S E R V E D. TERMS A N D C O N D I TI O N

More information

NMO-velocity surfaces and Dix-type formulas in anisotropic heterogeneous media

NMO-velocity surfaces and Dix-type formulas in anisotropic heterogeneous media GEOPHYSICS, VOL. 67, NO. 3 (MAY-JUNE 2002); P. 939 951, 6 FIGS., 1 TABLE. 10.1190/1.1484536 NMO-velocity surfaces and Dix-type formulas in anisotropic heterogeneous media Vladimir Grechka and Ilya Tsvankin

More information

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, August 2013.

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, August 2013. URTeC Control ID Number: 1581818 Correlation of Azimuthal AVO Gradient Anisotropic Analysis and Curvature on Prediction of Fractures on Barnett Shale Shiguang Guo*, Bo Zhang, Tengfei Lin, Kurt J. Marfurt

More information

A synthetic example of anisotropic P -wave. processing for a model from the Gulf of Mexico

A synthetic example of anisotropic P -wave. processing for a model from the Gulf of Mexico A synthetic example of anisotropic P -wave processing for a model from the Gulf of Mexico Baoniu Han, Tagir Galikeev, Vladimir Grechka, Jérôme Le Rousseau and Ilya Tsvankin Center for Wave Phenomena, Department

More information

A case study of azimuthal AVO analysis with anisotropic spreading correction

A case study of azimuthal AVO analysis with anisotropic spreading correction CWP-568 A case study of azimuthal AVO analysis with anisotropic spreading correction Xiaoxia Xu 1 and Ilya Tsvankin 2 1 Formerly Colorado School of Mines, Department of Geophysics, Center for Wave Phenomena;

More information