Bidirectional Search: Is It For Me? Nathan R. Sturtevant Associate Professor University of Denver

Size: px
Start display at page:

Download "Bidirectional Search: Is It For Me? Nathan R. Sturtevant Associate Professor University of Denver"

Transcription

1 Bidirectional Search: Is It For Me? Nathan R. Sturtevant Associate Professor University of Denver

2

3

4 practice, the most common heuristic es in the runtime distribution (looked during search) must be preserved. directional Pathmax (BPMX) is crucial ocal propagation of heuristic values and overy of lost information. with BPMX as well as combinations of EC and VC. Combinations with VC have the best performance (bold). Memory (A) (B) 0.5 (A) 0.25 (B) (C) 0.25 (B) (C) Collaborators C is most effective when the number alues in the PDB is just larger than the rest power of two. C can be effectively combined with VC. EC VC VC-bits Nodes 3.88M 3.88M 4.03M 10.39M 7.11M 7.11M 7.37M 30.43M 13.75M 13.74M 14.31M 30.48M Time Moving AI Lab Award DANIEL FELIX RITCHIE SCHOOL OF ENGINEERING & COMPUTER SCIENCE Sneha Sawlani Jingwei Chen University of Denver 4.63M 5.42M 5.19M Ariel Felner Robert Holte University of Alberta Sandra Zilles Eshed Shaham

5 Who am I? Designed and implemented pathfinding engine

6 Lecture Takeaways When should I use bidirectional search? What algorithm should I use for bidirectional search?

7 Pathfinding Architecture Optimizations by Steve Rabin & Nathan Sturtevant Bad Idea #2: Bidirectional Pathfinding

8 Optimal Bidirectional Search

9 Optimal Bidirectional Search!

10 Optimal Bidirectional Search! All states that could be expanded

11 Optimal Bidirectional Search! Choose a meeting point

12 Optimal Bidirectional Search! Expand up to that point forward

13 Optimal Bidirectional Search! Expand up to that point forward Expand up to that point backward

14 Demo

15 Explanation Perfect heuristic near goal Open space Symmetric

16 New Algorithm: NBS! NBS never expands more than 2x the states expanded by the best possible algorithm In our theoretical framework NBS does equal work in each direction

17 When should we use NBS?

18 Scenario 1: Weighted terrain

19 Weighted terrain Costly to look for alternate paths around weighted terrain

20 Scenario 2: Problem Asymmetry

21 Problem Asymmetry When forward is much more expensive than backwards 3x worse on average Also happens with weighted terrain

22 Scenario 3: Map Asymmetry

23 Map Asymmetry Common in city maps Dense regions of pathfinding nodes Bidirectional search will avoid the densest region

24 Scenario 4: Local Minima

25 ! Local Minima Many states look close, but aren t Could be fixed by a better heuristic

26 Testing in practice Web tool available for analysis

27 NBS Details

28

29

30 A*

31 A* Put start onto priority queue

32 A* Put start onto priority queue While queue not empty / solution not found

33 A* Put start onto priority queue While queue not empty / solution not found Among all states on queue:

34 A* Put start onto priority queue While queue not empty / solution not found Among all states on queue: Select the state with lowest f-cost

35 A* Put start onto priority queue While queue not empty / solution not found Among all states on queue: Select the state with lowest f-cost Expand it

36 A*: f-cost start goal

37 A*: f-cost start goal

38 A*: f-cost cost-so-far (g-cost) start goal

39 A*: f-cost cost-so-far (g-cost) estimate to goal (h-cost) start goal

40 A*: f-cost cost-so-far (g-cost) estimate to goal (h-cost) start goal f-cost = g-cost + h-cost = estimated path length

41 A* Put start onto priority queue While queue not empty / solution not found Among all states on queue: Select the state with lowest f-cost Expand it

42 A* NBS! Put start onto priority queue While queue not empty / solution not found Among all states on queue: Select the state with lowest f-cost Expand it Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, International Joint Conference on Artificial Intelligence (IJCAI), 2017

43 A* NBS! Put start/goal onto forward/backward priority queues While queue not empty / solution not found Among all states on queue: Select the state with lowest f-cost Expand it Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, International Joint Conference on Artificial Intelligence (IJCAI), 2017

44 A* NBS! Put start/goal onto forward/backward priority queues While queues not empty / solution not found Among all states on queue: Select the state with lowest f-cost Expand it Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, International Joint Conference on Artificial Intelligence (IJCAI), 2017

45 A* NBS! Put start/goal onto forward/backward priority queues While queues not empty / solution not found Among all states on queues: Select the state with lowest f-cost Expand it Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, International Joint Conference on Artificial Intelligence (IJCAI), 2017

46 A* NBS! Put start/goal onto forward/backward priority queues While queues not empty / solution not found Among all states on queues: Select the pair with lowest lower bound Expand it Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, International Joint Conference on Artificial Intelligence (IJCAI), 2017

47 A* NBS! Put start/goal onto forward/backward priority queues While queues not empty / solution not found Among all states on queues: Select the pair with lowest lower bound Expand both of them Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, International Joint Conference on Artificial Intelligence (IJCAI), 2017

48 NBS: lower bound start goal

49 NBS: lower bound u v start goal

50 NBS: lower bound u v start goal

51 NBS: lower bound u v start goal

52 NBS: lower bound u v gf(u) start goal

53 NBS: lower bound u v gf(u) start h(u, goal) goal

54 NBS: lower bound u v gf(u) start h(u, goal) goal ff(u) = gf(u) + h(u, goal)

55 NBS: lower bound u v start goal

56 NBS: lower bound u v gb(v) start goal

57 NBS: lower bound u v gb(v) start h(start, v) goal

58 NBS: lower bound u v gb(v) start h(start, v) goal fb(v) = gb(v) + h(start, v)

59 NBS: lower bound! u v start goal

60 NBS: lower bound! u v gf(u) start goal

61 NBS: lower bound! u v gf(u) gb(v) start goal

62 NBS: lower bound! u v gf(u) gb(v) start goal gf(u) + gb(v)

63 NBS: lower bound! lb(u, v) =max(f F (u), f B (v), g F (u)+g B (v))

64 NBS Data Structure! Can efficiently find pair with minimum lower bound Filter by f-cost then by g-cost

65 NBS Data Structure! Can efficiently find pair with minimum lower bound Filter by f-cost then by g-cost Cannot just select by f-cost (A*) or g-cost (Dijkstra)

66 NBS Guarantee! NBS never expands more than 2x the states expanded by the best possible algorithm In our theoretical framework NBS does equal work in each direction

67 Suboptimal Solutions! Use weighted A* if path quality doesn t matter Terminate the search when the first solution is found in bidirectional search

68 Summary / Conclusions! Use NBS for bidirectional search May want bidirectional search for: Weighted terrain Problem Asymmetry Map Asymmetry Local Minima

69 Questions? Open-source implementation of NBS Demo from this lecture* Offline analyzer for analyzing pathfinding Technical reference papers Find me on

Sufficient Conditions for Node Expansion in Bidirectional Heuristic Search

Sufficient Conditions for Node Expansion in Bidirectional Heuristic Search Sufficient Conditions for Node Expansion in Bidirectional Heuristic Search Jürgen Eckerle Berner Fachhochschule Departement Technik und Informatik Switzerland Jingwei Chen Nathan R. Sturtevant University

More information

Predicting the Performance of IDA* with Conditional Distributions

Predicting the Performance of IDA* with Conditional Distributions Predicting the Performance of IDA* with Conditional Distributions Uzi Zahavi Computer Science Bar-Ilan University Ramat-Gan, Israel 92500 zahaviu@cs.biu.ac.il Ariel Felner Information Systems Engineering

More information

Worst-Case Solution Quality Analysis When Not Re-Expanding Nodes in Best-First Search

Worst-Case Solution Quality Analysis When Not Re-Expanding Nodes in Best-First Search Worst-Case Solution Quality Analysis When Not Re-Expanding Nodes in Best-First Search Richard Valenzano University of Alberta valenzan@ualberta.ca Nathan R. Sturtevant University of Denver sturtevant@cs.du.edu

More information

Informed Search. Chap. 4. Breadth First. O(Min(N,B L )) BFS. Search. have same cost BIBFS. Bi- Direction. O(Min(N,2B L/2 )) BFS. have same cost UCS

Informed Search. Chap. 4. Breadth First. O(Min(N,B L )) BFS. Search. have same cost BIBFS. Bi- Direction. O(Min(N,2B L/2 )) BFS. have same cost UCS Informed Search Chap. 4 Material in part from http://www.cs.cmu.edu/~awm/tutorials Uninformed Search Complexity N = Total number of states B = Average number of successors (branching factor) L = Length

More information

Homework 2: MDPs and Search

Homework 2: MDPs and Search Graduate Artificial Intelligence 15-780 Homework 2: MDPs and Search Out on February 15 Due on February 29 Problem 1: MDPs [Felipe, 20pts] Figure 1: MDP for Problem 1. States are represented by circles

More information

Informed Search. Day 3 of Search. Chap. 4, Russel & Norvig. Material in part from

Informed Search. Day 3 of Search. Chap. 4, Russel & Norvig. Material in part from Informed Search Day 3 of Search Chap. 4, Russel & Norvig Material in part from http://www.cs.cmu.edu/~awm/tutorials Uninformed Search Complexity N = Total number of states B = Average number of successors

More information

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 4: Informed Search Teacher: Gianni A. Di Caro UNINFORMED VS. INFORMED Uninformed Can only generate successors and distinguish goals from non-goals Informed Strategies that can distinguish

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: I I Select a variable to change Select a new value for that variable Until a satisfying assignment

More information

Tree/Graph Search. q IDDFS-? B C. Search CSL452 - ARTIFICIAL INTELLIGENCE 2

Tree/Graph Search. q IDDFS-? B C. Search CSL452 - ARTIFICIAL INTELLIGENCE 2 Informed Search Tree/Graph Search q IDDFS-? A B C D E F G Search CSL452 - ARTIFICIAL INTELLIGENCE 2 Informed (Heuristic) Search q Heuristic problem specific knowledge o finds solutions more efficiently

More information

EPL442: Computational

EPL442: Computational EPL442: Computational Learning Systems Lab 2 Vassilis Vassiliades Department of Computer Science University of Cyprus Outline Artificial Neuron Feedforward Neural Network Back-propagation Algorithm Notes

More information

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes.

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2014 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your two-page crib sheet. Mark your answers

More information

A* with Lookahead Re-evaluated

A* with Lookahead Re-evaluated A* with Lookahead Re-evaluated Zhaoxing Bu Department of Computing Science University of Alberta Edmonton, AB Canada T6G 2E8 zhaoxing@ualberta.ca Roni Stern and Ariel Felner Information Systems Engineering

More information

Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search

Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Jordan Thayer and Wheeler Ruml {jtd7, ruml} at cs.unh.edu Jordan Thayer (UNH) Optimistic Search 1 / 45 Motivation Motivation

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011) State-Set Search

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011) State-Set Search roceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011) State-Set Search Bo ang and Robert C. Holte Computing Science Department University of Alberta Edmonton, AB Canada T6G

More information

Time Dependent Contraction Hierarchies Basic Algorithmic Ideas

Time Dependent Contraction Hierarchies Basic Algorithmic Ideas Time Dependent Contraction Hierarchies Basic Algorithmic Ideas arxiv:0804.3947v1 [cs.ds] 24 Apr 2008 Veit Batz, Robert Geisberger and Peter Sanders Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Binary Search Introduction Problem Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Strategy 1: Random Search Randomly select a page until the page containing

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

Analyzing Tie-Breaking Strategies for the A Algorithm

Analyzing Tie-Breaking Strategies for the A Algorithm Analyzing Tie-reaking Strategies for the A Algorithm Augusto. orrêa, André G. Pereira 2 and Marcus Ritt 2 University of asel, Switzerland 2 Federal University of Rio Grande do Sul, razil {abcorrea, agpereira,

More information

A Parameterized Family of Equilibrium Profiles for Three-Player Kuhn Poker

A Parameterized Family of Equilibrium Profiles for Three-Player Kuhn Poker A Parameterized Family of Equilibrium Profiles for Three-Player Kuhn Poker Duane Szafron University of Alberta Edmonton, Alberta dszafron@ualberta.ca Richard Gibson University of Alberta Edmonton, Alberta

More information

quantum information technology Tad Hogg HP Labs

quantum information technology Tad Hogg HP Labs quantum information technology Tad Hogg HP Labs Hype or reality? possible in principle difficult in practice quantum states are fragile limited progress so far, e.g., factoring: 15 = 3x5 search: 3-variable

More information

When does Weighted A* Fail?

When does Weighted A* Fail? When does Weighted A* Fail? Christopher Wilt and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 3824 USA {wilt, ruml} at cs.unh.edu Abstract Weighted A* is the most

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 8. Satisfiability and Model Construction Davis-Putnam-Logemann-Loveland Procedure, Phase Transitions, GSAT Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for solving

More information

Parsing with Context-Free Grammars

Parsing with Context-Free Grammars Parsing with Context-Free Grammars Berlin Chen 2005 References: 1. Natural Language Understanding, chapter 3 (3.1~3.4, 3.6) 2. Speech and Language Processing, chapters 9, 10 NLP-Berlin Chen 1 Grammars

More information

Relative-Order Abstractions for the Pancake Problem

Relative-Order Abstractions for the Pancake Problem Relative-Order Abstractions for the Pancake Problem Malte Helmert and Gabriele Röger 1 Abstract. The pancake problem is a famous search problem where the objective is to sort a sequence of objects (pancakes)

More information

Summary. Local Search and cycle cut set. Local Search Strategies for CSP. Greedy Local Search. Local Search. and Cycle Cut Set. Strategies for CSP

Summary. Local Search and cycle cut set. Local Search Strategies for CSP. Greedy Local Search. Local Search. and Cycle Cut Set. Strategies for CSP Summary Greedy and cycle cut set Greedy... in short G.B. Shaw A life spent doing mistakes is not only more honorable, but more useful than a life spent doing nothing Reminder: Hill-climbing Algorithm function

More information

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability Due: Thursday 10/15 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis Motivation Introduction to Algorithms Hash Tables CSE 680 Prof. Roger Crawfis Arrays provide an indirect way to access a set. Many times we need an association between two sets, or a set of keys and associated

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 4 Metaheuristic Algorithms Sarah Gaggl Dresden, 5th May 2017 Agenda 1 Introduction 2 Constraint

More information

The Generalized A* Architecture

The Generalized A* Architecture Journal of Artificial Intelligence Research? (2007)? Submitted?; published? The Generalized A* Architecture Pedro Felzenszwalb Department of Computer Science University of Chicago Chicago, IL 60637 David

More information

Recap: Bayes Nets. CS 473: Artificial Intelligence Bayes Nets: Independence. Conditional Independence. Bayes Nets. Independence in a BN

Recap: Bayes Nets. CS 473: Artificial Intelligence Bayes Nets: Independence. Conditional Independence. Bayes Nets. Independence in a BN CS 473: Artificial Intelligence ayes Nets: Independence A ayes net is an efficient encoding of a probabilistic model of a domain ecap: ayes Nets Questions we can ask: Inference: given a fixed N, what is

More information

CS 188: Artificial Intelligence Fall Recap: Inference Example

CS 188: Artificial Intelligence Fall Recap: Inference Example CS 188: Artificial Intelligence Fall 2007 Lecture 19: Decision Diagrams 11/01/2007 Dan Klein UC Berkeley Recap: Inference Example Find P( F=bad) Restrict all factors P() P(F=bad ) P() 0.7 0.3 eather 0.7

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

Principles of AI Planning

Principles of AI Planning Principles of AI Planning 5. Planning as search: progression and regression Albert-Ludwigs-Universität Freiburg Bernhard Nebel and Robert Mattmüller October 30th, 2013 Introduction Classification Planning

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability Due: Thursday 10/15 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

Optimal Target Assignment and Path Finding for Teams of Agents

Optimal Target Assignment and Path Finding for Teams of Agents Optimal Target Assignment and Path Finding for Teams of Agents Hang Ma Sven Koenig University of Southern California May 12, 2016 AAMAS, Singapore Multi-Agent Path Finding (MAPF) Find collision-free paths

More information

Extending the Associative Rule Chaining Architecture for Multiple Arity Rules

Extending the Associative Rule Chaining Architecture for Multiple Arity Rules Extending the Associative Rule Chaining Architecture for Multiple Arity Rules Nathan Burles, James Austin, and Simon O Keefe Advanced Computer Architectures Group Department of Computer Science University

More information

8. Lecture Neural Networks

8. Lecture Neural Networks Soft Control (AT 3, RMA) 8. Lecture Neural Networks Learning Process Contents of the 8 th lecture 1. Introduction of Soft Control: Definition and Limitations, Basics of Intelligent" Systems 2. Knowledge

More information

Extended breadth-first search algorithm in practice

Extended breadth-first search algorithm in practice Proceedings of the 9 th International Conference on Applied Informatics Eger, Hungary, January 29 February 1, 2014. Vol. 1. pp. 59 66 doi: 10.14794/ICAI.9.2014.1.59 Extended breadth-first search algorithm

More information

Product rule. Chain rule

Product rule. Chain rule Probability Recap CS 188: Artificial Intelligence ayes Nets: Independence Conditional probability Product rule Chain rule, independent if and only if: and are conditionally independent given if and only

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Automatic Move Pruning Revisited

Automatic Move Pruning Revisited Automatic Move Pruning Revisited Neil Burch Computing Science Department University of Alberta Edmonton, AB Canada T6G 2E8 (nburch@ualberta.ca) Robert C. Holte Computing Science Department University of

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Hidden Markov Models Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Pacman Sonar (P4) [Demo: Pacman Sonar

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets: Independence Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Improving Repair-based Constraint Satisfaction Methods by Value Propagation

Improving Repair-based Constraint Satisfaction Methods by Value Propagation From: AAAI-94 Proceedings. Copyright 1994, AAAI (www.aaai.org). All rights reserved. Improving Repair-based Constraint Satisfaction Methods by Value Propagation Nobuhiro Yugami Yuiko Ohta Mirotaka Nara

More information

Multimapping Abstractions and Hierarchical Heuristic Search

Multimapping Abstractions and Hierarchical Heuristic Search Multimapping Abstractions and Hierarchical Heuristic Search Bo Pang Computing Science Department University of Alberta Edmonton, AB Canada T6G 2E8 (bpang@ualberta.ca) Robert C. Holte Computing Science

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Hidden Markov Models Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Finding optimal configurations ( combinatorial optimization)

Finding optimal configurations ( combinatorial optimization) CS 1571 Introduction to AI Lecture 10 Finding optimal configurations ( combinatorial optimization) Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Constraint

More information

Breadth First Search, Dijkstra s Algorithm for Shortest Paths

Breadth First Search, Dijkstra s Algorithm for Shortest Paths CS 374: Algorithms & Models of Computation, Spring 2017 Breadth First Search, Dijkstra s Algorithm for Shortest Paths Lecture 17 March 1, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 42 Part I Breadth

More information

Problem-Solving via Search Lecture 3

Problem-Solving via Search Lecture 3 Lecture 3 What is a search problem? How do search algorithms work and how do we evaluate their performance? 1 Agenda An example task Problem formulation Infrastructure for search algorithms Complexity

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. CS 1571 Introduction to AI Lecture 8 Constraint satisfaction search. Combinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Objective:

More information

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008 CS 88: Artificial Intelligence Fall 28 Lecture 9: HMMs /4/28 Announcements Midterm solutions up, submit regrade requests within a week Midterm course evaluation up on web, please fill out! Dan Klein UC

More information

A* Search. 1 Dijkstra Shortest Path

A* Search. 1 Dijkstra Shortest Path A* Search Consider the eight puzzle. There are eight tiles numbered 1 through 8 on a 3 by three grid with nine locations so that one location is left empty. We can move by sliding a tile adjacent to the

More information

Graph Search Howie Choset

Graph Search Howie Choset Graph Search Howie Choset 16-11 Outline Overview of Search Techniques A* Search Graphs Collection of Edges and Nodes (Vertices) A tree Grids Stacks and Queues Stack: First in, Last out (FILO) Queue: First

More information

Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle

Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle CS 7880 Graduate Cryptography October 20, 2015 Lecture 11: Hash Functions, Merkle-Damgaard, Random Oracle Lecturer: Daniel Wichs Scribe: Tanay Mehta 1 Topics Covered Review Collision-Resistant Hash Functions

More information

Heuristic Search Algorithms

Heuristic Search Algorithms CHAPTER 4 Heuristic Search Algorithms 59 4.1 HEURISTIC SEARCH AND SSP MDPS The methods we explored in the previous chapter have a serious practical drawback the amount of memory they require is proportional

More information

Data Flow Analysis. Lecture 6 ECS 240. ECS 240 Data Flow Analysis 1

Data Flow Analysis. Lecture 6 ECS 240. ECS 240 Data Flow Analysis 1 Data Flow Analysis Lecture 6 ECS 240 ECS 240 Data Flow Analysis 1 The Plan Introduce a few example analyses Generalize to see the underlying theory Discuss some more advanced issues ECS 240 Data Flow Analysis

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning

Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning Symbolic Search and Abstraction Heuristics for Cost-Optimal Planning Álvaro Torralba Advisors: Daniel Borrajo and Carlos Linares López Universidad Carlos III de Madrid June 2, 2015 Álvaro Torralba PhD

More information

Principles of AI Planning

Principles of AI Planning Principles of 5. Planning as search: progression and regression Malte Helmert and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 4th, 2010 Planning as (classical) search Introduction Classification

More information

Discrete Event Simulation. Motive

Discrete Event Simulation. Motive Discrete Event Simulation These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable copy and print a single

More information

CS 188: Artificial Intelligence Spring 2009

CS 188: Artificial Intelligence Spring 2009 CS 188: Artificial Intelligence Spring 2009 Lecture 21: Hidden Markov Models 4/7/2009 John DeNero UC Berkeley Slides adapted from Dan Klein Announcements Written 3 deadline extended! Posted last Friday

More information

Densest subgraph computation and applications in finding events on social media

Densest subgraph computation and applications in finding events on social media Densest subgraph computation and applications in finding events on social media Oana Denisa Balalau advised by Mauro Sozio Télécom ParisTech, Institut Mines Télécom December 4, 2015 1 / 28 Table of Contents

More information

: Cryptography and Game Theory Ran Canetti and Alon Rosen. Lecture 8

: Cryptography and Game Theory Ran Canetti and Alon Rosen. Lecture 8 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 8 December 9, 2009 Scribe: Naama Ben-Aroya Last Week 2 player zero-sum games (min-max) Mixed NE (existence, complexity) ɛ-ne Correlated

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning COMP219: Artificial Intelligence Lecture 20: Propositional Reasoning 1 Overview Last time Logic for KR in general; Propositional Logic; Natural Deduction Today Entailment, satisfiability and validity Normal

More information

Further information: Basic principles of quantum computing Information on development areas of Volkswagen Group IT

Further information: Basic principles of quantum computing Information on development areas of Volkswagen Group IT Media information Further information: Basic principles of quantum computing Information on development areas of Volkswagen Group IT Basic principles of quantum computing Development areas of Volkswagen

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Appendix of Computational Protein Design Using AND/OR Branch and Bound Search

Appendix of Computational Protein Design Using AND/OR Branch and Bound Search Appendix of Computational Protein Design Using AND/OR Branch and Bound Search Yichao Zhou 1, Yuexin Wu 1, and Jianyang Zeng 1,2, 1 Institute for Interdisciplinary Information Sciences, Tsinghua University,

More information

Analysis of a Boost Converter Circuit Using Linear Hybrid Automata

Analysis of a Boost Converter Circuit Using Linear Hybrid Automata Analysis of a Boost Converter Circuit Using Linear Hybrid Automata Ulrich Kühne LSV ENS de Cachan, 94235 Cachan Cedex, France, kuehne@lsv.ens-cachan.fr 1 Introduction Boost converter circuits are an important

More information

Feature Design. Feature Design. Feature Design. & Deep Learning

Feature Design. Feature Design. Feature Design. & Deep Learning Artificial Intelligence and its applications Lecture 9 & Deep Learning Professor Daniel Yeung danyeung@ieee.org Dr. Patrick Chan patrickchan@ieee.org South China University of Technology, China Appropriately

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Algorithm Design Strategies V

Algorithm Design Strategies V Algorithm Design Strategies V Joaquim Madeira Version 0.0 October 2016 U. Aveiro, October 2016 1 Overview The 0-1 Knapsack Problem Revisited The Fractional Knapsack Problem Greedy Algorithms Example Coin

More information

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella Entropy and irreversibility in gas dynamics Joint work with T. Bodineau, I. Gallagher and S. Simonella Kinetic description for a gas of hard spheres Hard sphere dynamics The system evolves under the combined

More information

Lesson 3-1: Solving Linear Systems by Graphing

Lesson 3-1: Solving Linear Systems by Graphing For the past several weeks we ve been working with linear equations. We ve learned how to graph them and the three main forms they can take. Today we re going to begin considering what happens when we

More information

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Prof. Carolina Caetano For a while we talked about the regression method. Then we talked about the linear model. There were many details, but

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Summary of last lecture We know how to do probabilistic reasoning over time transition model P(X t

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria

12. LOCAL SEARCH. gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria 12. LOCAL SEARCH gradient descent Metropolis algorithm Hopfield neural networks maximum cut Nash equilibria Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley h ttp://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K HiSeq X & NextSeq Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization:

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions BACK-PROPAGATION NETWORKS Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks Cannot approximate (learn) non-linear functions Difficult (if not impossible) to design

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

Networked Embedded Systems WS 2016/17

Networked Embedded Systems WS 2016/17 Networked Embedded Systems WS 2016/17 Lecture 2: Real-time Scheduling Marco Zimmerling Goal of Today s Lecture Introduction to scheduling of compute tasks on a single processor Tasks need to finish before

More information

Time-Dependent SHARC-Routing

Time-Dependent SHARC-Routing Time-Dependent SHARC-Routing Daniel Delling 1 1 Universität Karlsruhe (TH), 76128 Karlsruhe, Germany Email:delling@ira.uka.de Abstract In recent years, many speed-up techniques for Dijkstra s algorithm

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information