Tree/Graph Search. q IDDFS-? B C. Search CSL452 - ARTIFICIAL INTELLIGENCE 2

Size: px
Start display at page:

Download "Tree/Graph Search. q IDDFS-? B C. Search CSL452 - ARTIFICIAL INTELLIGENCE 2"

Transcription

1 Informed Search

2 Tree/Graph Search q IDDFS-? A B C D E F G Search CSL452 - ARTIFICIAL INTELLIGENCE 2

3 Informed (Heuristic) Search q Heuristic problem specific knowledge o finds solutions more efficiently q New terms o g(n) cost from the initial state to the state at node n o h(n) estimated cost from the state at node n to a goal state o f(n) evaluation function, cost estimate from the initial state to a goal state passing to through a state at node n q Search o Greedy Best First Search o A* Search Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 3

4 Greedy Best First Search (GBFS) q Expand the most desirable node o Desirability is measured through the evaluation function f(n) and here f(n)= h(n) q Implementation: priority queue based on h(n) Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 4

5 GBFS - Analysis q Completeness: No, Can get stuck in loops o can be made complete with repeated state checking q Optimality: No q Time Complexity: O(b m ) q Space Complexity: O(b m ) o keeps all nodes in memory Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 5

6 A* search q Idea: avoid expanding paths that are already expensive. q Implementation: priority queue based on the evaluation function f(n) o f(n)=g(n)+h(n) Ø g(n) cost so far to reach the node n Ø h(n) estimated cost to goal from n Ø f(n) estimated total cost of path through n to goal o Identical to uniform cost search(ucs) except that we use g+h instead of only g. Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 6

7 A* - Example Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 7

8 A* search - Analysis q Completeness: Yes, unless there are infinitely many nodes with f f(g) q Optimality:??? Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 8

9 Admissible Heuristic q A* uses an admissible heuristic h(n) h(n) apple h (n), 8n o h*(n) is the true cost to the goal node from node n o h(n) 0, for all n Search noes Heuristic value h* h_1 h_2 h_3 h_4 h_5 Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 9

10 Example Heuristic Functions q 8-puzzle problem q Examples: o Number of misplaced tiles o Total Manhattan distance Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 10

11 Example Heuristic Functions q Romania Tourist Problem Arad Bucharest Craiova Drobeta Eforie Fagaras Giurgiu Hirsova Iasi Lugoj Mehadia Neamt Oradea Pitesti Rimnicu Vilcea Sibiu Timisoara Urziceni Vaslui Zerind Figure 3.22 Values of h SLD straight-line distances to Bucharest. q Examples: o straight line distance- never overestimates the actual road distance. Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 11

12 19/01/16 CSL452 - ARTIFICIAL INTELLIGENCE 12

13 Visualizing A* Search q A* expands nodes of increasing! value Uniform cost search Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 13

14 A* Search Optimality q Proof by Contradiction o Let N be the goal node reached by A*, and suppose there is another goal node N. Then g(n) g(n ) o Assume to the contrary g(n )<g(n) o When we picked N for expansion either N or an ancestor of N, say N, must have been on the queue. Since we picked N for expansion o f(n) F(N ) implies g(n)+h(n) g(n )+h(n ) o g(n) g(n )+h(n ) (h(n)=0 - for a goal node) o g(n )=g(n )+effort(n,n ), h(n ) effort(n,n ) o g(n ) g(n )+h(n ) - contradiction 19/01/16 CSL452 - ARTIFICIAL INTELLIGENCE 14

15 A* search - Analysis q Completeness: Yes, unless there are infinitely many nodes with!!(") q Optimality: Yes q Time Complexity: exponential in [relative error in h * length of the solution] q Space Complexity: Keeps all nodes in memory Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 15

16 Admissibility, Monotonicity, Pathmax Correction q Is orange h admissible? q Is green h admissible? q Does f(c) make sense? o f(b) = = 8.9 o f(c) = = 0.2 q Path cost estimate reduces o not good, though optimal solution is reachable q Apply Pathmax correction o f(n) = max(f(parent(n)),g(n)+h(n)) o makes f monotonic along the path B C D A G 9 19/01/16 CSL452 - ARTIFICIAL INTELLIGENCE 16

17 Monotonic Heuristic q Consistent Heuristic q A heuristic is monotonic if h(n) c(n,a,n )+h(n ) q If h is monotonic o f(n ) = g(n )+h(n ) = g(n)+c(n,a,n )+h(n ) o Therefore, f(n ) g(n)+h(n) = f(n) q f is monotonic along any path. Triangle Inequality 19/01/16 CSL452 - ARTIFICIAL INTELLIGENCE 17

18 Heuristic Functions q h1 number of misplaced tiles - 8 q h2- Manhattan distance =18 q True cost - 26 Informed Search CSL452 - ARTIFICIAL INTELLIGENCE 18

19 Accuracy of the Heuristic q Effective branching factor b* q If the total number of nodes generated by A* for a particular problem is N, and the solution depth is d, then b* is the branching factor that a uniform tree of depth d would have in order to contain N+1 nodes. Search Cost (nodes generated) Effective Branching Factor d IDS A (h 1 ) A (h 2 ) IDS A (h 1 ) A (h 2 ) Figure 3.29 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A algorithms with h 1, h 2. Data are averaged over 100 instances of the 8-puzzle for each of various solution lengths d. 19/01/16 CSL452 - ARTIFICIAL INTELLIGENCE 19

20 Accuracy of the Heuristic q Is h2 always better than h1? q Yes h2 dominates h1 q domination efficiency (of search) Search Cost (nodes generated) Effective Branching Factor d IDS A (h 1 ) A (h 2 ) IDS A (h 1 ) A (h 2 ) Figure 3.29 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A algorithms with h 1, h 2. Data are averaged over 100 instances of the 8-puzzle for each of various solution lengths d. 19/01/16 CSL452 - ARTIFICIAL INTELLIGENCE 20

AI Programming CS S-06 Heuristic Search

AI Programming CS S-06 Heuristic Search AI Programming CS662-2013S-06 Heuristic Search David Galles Department of Computer Science University of San Francisco 06-0: Overview Heuristic Search - exploiting knowledge about the problem Heuristic

More information

Game Engineering CS F-12 Artificial Intelligence

Game Engineering CS F-12 Artificial Intelligence Game Engineering CS420-2011F-12 Artificial Intelligence David Galles Department of Computer Science University of San Francisco 12-0: Artifical Intelligence AI in games is a huge field Creating a believable

More information

Problem solving and search. Chapter 3. Chapter 3 1

Problem solving and search. Chapter 3. Chapter 3 1 Problem solving and search Chapter 3 Chapter 3 1 eminders ssignment 0 due 5pm today ssignment 1 posted, due 2/9 Section 105 will move to 9-10am starting next week Chapter 3 2 Problem-solving agents Problem

More information

Deterministic Planning and State-space Search. Erez Karpas

Deterministic Planning and State-space Search. Erez Karpas Planning and Search IE&M Technion to our Problem-solving agents Restricted form of general agent def Simple-Problem-Solving-Agent (problem): state, some description of the current world state seq, an action

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

22c:145 Artificial Intelligence

22c:145 Artificial Intelligence 22c:145 Artificial Intelligence Fall 2005 Problem Solving by Search Cesare Tinelli The University of Iowa Copyright 2001-05 Cesare Tinelli and Hantao Zhang. a a These notes are copyrighted material and

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2017 Problem Solving by Search Cesare Tinelli The University of Iowa Copyright 2004 17, Cesare Tinelli and Stuart ussell a a These notes were originally developed

More information

Artificial Intelligence Methods. Problem solving by searching

Artificial Intelligence Methods. Problem solving by searching rtificial Intelligence Methods Problem solving by searching In which we see how an agent can find a sequence of actions that achieves its goals, when no single action will do. Dr. Igor Trajkovski Dr. Igor

More information

State Space Representa,ons and Search Algorithms

State Space Representa,ons and Search Algorithms State Space Representa,ons and Search Algorithms CS171, Fall 2016 Introduc,on to Ar,ficial Intelligence Prof. Alexander Ihler Reading: R&N 3.1-3.4 Architectures for Intelligence Search? Determine how to

More information

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 4: Informed Search Teacher: Gianni A. Di Caro UNINFORMED VS. INFORMED Uninformed Can only generate successors and distinguish goals from non-goals Informed Strategies that can distinguish

More information

Informed Search. Day 3 of Search. Chap. 4, Russel & Norvig. Material in part from

Informed Search. Day 3 of Search. Chap. 4, Russel & Norvig. Material in part from Informed Search Day 3 of Search Chap. 4, Russel & Norvig Material in part from http://www.cs.cmu.edu/~awm/tutorials Uninformed Search Complexity N = Total number of states B = Average number of successors

More information

Solutions. Dynamic Programming & Optimal Control ( ) Number of Problems: 4. Use only the provided sheets for your solutions.

Solutions. Dynamic Programming & Optimal Control ( ) Number of Problems: 4. Use only the provided sheets for your solutions. Final Exam January 26th, 2012 Dynamic Programming & Optimal Control (151-0563-01) Prof. R. D Andrea Solutions Exam Duration: 150 minutes Number of Problems: 4 Permitted aids: One A4 sheet of paper. Use

More information

Informed Search. Chap. 4. Breadth First. O(Min(N,B L )) BFS. Search. have same cost BIBFS. Bi- Direction. O(Min(N,2B L/2 )) BFS. have same cost UCS

Informed Search. Chap. 4. Breadth First. O(Min(N,B L )) BFS. Search. have same cost BIBFS. Bi- Direction. O(Min(N,2B L/2 )) BFS. have same cost UCS Informed Search Chap. 4 Material in part from http://www.cs.cmu.edu/~awm/tutorials Uninformed Search Complexity N = Total number of states B = Average number of successors (branching factor) L = Length

More information

Artificial Intelligence (Künstliche Intelligenz 1) Part II: Problem Solving

Artificial Intelligence (Künstliche Intelligenz 1) Part II: Problem Solving Kohlhase: Künstliche Intelligenz 1 76 July 12, 2018 Artificial Intelligence (Künstliche Intelligenz 1) Part II: Problem Solving Michael Kohlhase Professur für Wissensrepräsentation und -verarbeitung Informatik,

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Chapter 1 Chapter 1 1 Outline Course overview What is AI? A brief history The state of the art Chapter 1 2 intelligent agents search and game-playing logical systems planning systems

More information

Artificial Intelligence Prof. Dr. Jürgen Dix

Artificial Intelligence Prof. Dr. Jürgen Dix Artificial Intelligence Prof. Dr. Jürgen Dix Computational Intelligence Group TU Clausthal Clausthal, SS 2012 Time and place: Tuesday and Wednesday 10 12 in Multimediahörsaal (Tannenhöhe) Exercises: See

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Prof. Dr. Jürgen Dix Computational Intelligence Group TU Clausthal Clausthal, SS 2014 Prof. Dr. Jürgen Dix Clausthal, SS 2014 1 Time and place: Tuesday and Wednesday 10 12 in Multimediahörsaal

More information

Search' How"do"we"plan"our"holiday?" How"do"we"plan"our"holiday?" Many"problems"can"be"solved"by"search:"

Search' Howdoweplanourholiday? Howdoweplanourholiday? Manyproblemscanbesolvedbysearch: CSC384"Introduc0on"to"Ar0ficial"Intelligence" Search OneofthemostbasictechniquesinAI UnderlyingsubBmoduleinmostAIsystems Cansolvemanyproblemsthathumansarenot goodat(achievingsuperbhumanperformance) Veryusefulasageneralalgorithmictechniquefor

More information

Problem-Solving via Search Lecture 3

Problem-Solving via Search Lecture 3 Lecture 3 What is a search problem? How do search algorithms work and how do we evaluate their performance? 1 Agenda An example task Problem formulation Infrastructure for search algorithms Complexity

More information

CSC242: Artificial Intelligence. Lecture 4 Local Search

CSC242: Artificial Intelligence. Lecture 4 Local Search CSC242: Artificial Intelligence Lecture 4 Local Search Upper Level Writing Topics due to me by next class! First draft due Mar 4 Goal: final paper 15 pages +/- 2 pages 12 pt font, 1.5 line spacing Get

More information

CMU-Q Lecture 3: Search algorithms: Informed. Teacher: Gianni A. Di Caro

CMU-Q Lecture 3: Search algorithms: Informed. Teacher: Gianni A. Di Caro CMU-Q 5-38 Lecure 3: Search algorihms: Informed Teacher: Gianni A. Di Caro UNINFORMED VS. INFORMED SEARCH Sraegy How desirable is o be in a cerain inermediae sae for he sake of (effecively) reaching a

More information

CS360 Homework 12 Solution

CS360 Homework 12 Solution CS360 Homework 12 Solution Constraint Satisfaction 1) Consider the following constraint satisfaction problem with variables x, y and z, each with domain {1, 2, 3}, and constraints C 1 and C 2, defined

More information

CSC242: Intro to AI. Lecture 5. Tuesday, February 26, 13

CSC242: Intro to AI. Lecture 5. Tuesday, February 26, 13 CSC242: Intro to AI Lecture 5 CSUG Tutoring: bit.ly/csug-tutoring League of Legends LAN Party: Sat 2/2 @ 2PM in CSB 209 $2 to benefit Big Brothers Big Sisters bit.ly/urlol ULW Topics due to me by tomorrow

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Time and place: Tuesday and Wednesday 10 12 in Multimediahörsaal (Tannenhöhe) Exercises: Approximately every other Tuesday. Prof. Dr. Jürgen Dix Department of Informatics TU Clausthal

More information

Solving Problems By Searching

Solving Problems By Searching Solving Problems By Searching Instructor: Dr. Wei Ding Fall 2010 1 Problem-Solving Agent Goal-based agents: considering future actions and the desirability of their outcomes. Decide what to do by finding

More information

Artificial Intelligence Prof. Dr. Jürgen Dix

Artificial Intelligence Prof. Dr. Jürgen Dix Artificial Intelligence Prof. Dr. Jürgen Dix Department of Informatics TU Clausthal Summer 2007 Time and place: Mondays and Tuesdays 10 12 in Multimediahörsaal (Tannenhöhe) Exercises: Approximately every

More information

Predicting the Performance of IDA* with Conditional Distributions

Predicting the Performance of IDA* with Conditional Distributions Predicting the Performance of IDA* with Conditional Distributions Uzi Zahavi Computer Science Bar-Ilan University Ramat-Gan, Israel 92500 zahaviu@cs.biu.ac.il Ariel Felner Information Systems Engineering

More information

Graph Search Howie Choset

Graph Search Howie Choset Graph Search Howie Choset 16-11 Outline Overview of Search Techniques A* Search Graphs Collection of Edges and Nodes (Vertices) A tree Grids Stacks and Queues Stack: First in, Last out (FILO) Queue: First

More information

Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search

Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search Jordan Thayer and Wheeler Ruml {jtd7, ruml} at cs.unh.edu Jordan Thayer (UNH) Optimistic Search 1 / 45 Motivation Motivation

More information

CS 4700: Foundations of Artificial Intelligence Homework 2 Solutions. Graph. You can get to the same single state through multiple paths.

CS 4700: Foundations of Artificial Intelligence Homework 2 Solutions. Graph. You can get to the same single state through multiple paths. CS 4700: Foundations of Artificial Intelligence Homework Solutions 1. (30 points) Imagine you have a state space where a state is represented by a tuple of three positive integers (i,j,k), and you have

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Spring 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

A* Search. 1 Dijkstra Shortest Path

A* Search. 1 Dijkstra Shortest Path A* Search Consider the eight puzzle. There are eight tiles numbered 1 through 8 on a 3 by three grid with nine locations so that one location is left empty. We can move by sliding a tile adjacent to the

More information

2 Chapter 1. Introduction

2 Chapter 1. Introduction 1 INTRODUCTION 1 2 Chapter 1. Introduction Axonal arborization Axon from another cell Dendrite Synapse Axon Nucleus Synapses Cell body or Soma Figure 1.2 FILES: figures/neuron.eps (Tue Nov 3 16:23:13 2009).

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007. Fall 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

2 GRAPH AND NETWORK OPTIMIZATION. E. Amaldi Introduction to Operations Research Politecnico Milano 1

2 GRAPH AND NETWORK OPTIMIZATION. E. Amaldi Introduction to Operations Research Politecnico Milano 1 2 GRAPH AND NETWORK OPTIMIZATION E. Amaldi Introduction to Operations Research Politecnico Milano 1 A variety of decision-making problems can be formulated in terms of graphs and networks Examples: - transportation

More information

Last time: Summary. Last time: Summary

Last time: Summary. Last time: Summary 1 Last time: Summary Definition of AI? Turing Test? Intelligent Agents: Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors

More information

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 )

(tree searching technique) (Boolean formulas) satisfying assignment: (X 1, X 2 ) Algorithms Chapter 5: The Tree Searching Strategy - Examples 1 / 11 Chapter 5: The Tree Searching Strategy 1. Ex 5.1Determine the satisfiability of the following Boolean formulas by depth-first search

More information

Principles of AI Planning

Principles of AI Planning Principles of 7. State-space search: relaxed Malte Helmert Albert-Ludwigs-Universität Freiburg November 18th, 2008 A simple heuristic for deterministic planning STRIPS (Fikes & Nilsson, 1971) used the

More information

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes Analysis of Algorithms Single Source Shortest Path Andres Mendez-Vazquez November 9, 01 1 / 108 Outline 1 Introduction Introduction and Similar Problems General Results Optimal Substructure Properties

More information

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes Name: Roll Number: Please read the following instructions carefully Ø Calculators are allowed. However, laptops or mobile phones are not

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

CSE 473: Artificial Intelligence Spring 2014

CSE 473: Artificial Intelligence Spring 2014 CSE 473: Artificial Intelligence Spring 2014 Hanna Hajishirzi Problem Spaces and Search slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer Outline Agents that

More information

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees , 2009 Lecture 5: Shortest Paths & Spanning Trees University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Shortest Path Problem "#$%&'%()*%"()$#+,&- Given directed "#$%&'()*+,%+('-*.#/'01234564'.*,'7+"-%/8',&'5"4'84%#3

More information

Bidirectional Search: Is It For Me? Nathan R. Sturtevant Associate Professor University of Denver

Bidirectional Search: Is It For Me? Nathan R. Sturtevant Associate Professor University of Denver Bidirectional Search: Is It For Me? Nathan R. Sturtevant (@nathansttt) Associate Professor University of Denver practice, the most common heuristic es in the runtime distribution (looked during search)

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Essentials of the A* Algorithm

Essentials of the A* Algorithm Essentials of the A* Algorithm Keith L. Downing Search problems are ubiquitous in Artificial Intelligence (AI), and they are often so complex that standard brute-force methods (i.e. those that try every

More information

CS 662 Sample Midterm

CS 662 Sample Midterm Name: 1 True/False, plus corrections CS 662 Sample Midterm 35 pts, 5 pts each Each of the following statements is either true or false. If it is true, mark it true. If it is false, correct the statement

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

CITS4211 Mid-semester test 2011

CITS4211 Mid-semester test 2011 CITS4211 Mid-semester test 2011 Fifty minutes, answer all four questions, total marks 60 Question 1. (12 marks) Briefly describe the principles, operation, and performance issues of iterative deepening.

More information

Country Romania Romania Romania Romania Romania Romania Romania Romania IIRUC SERVICE IIRUC SERVICE

Country Romania Romania Romania Romania Romania Romania Romania Romania IIRUC SERVICE IIRUC SERVICE Country Romania Romania Romania Romania Romania Romania Romania Romania DASP name Genesys Systems Address (incl. post code) and Company Name 8 th Dimitrie Pompei Blvd., 2 nd District, Bucharest, POST E

More information

Optimal Planning for Delete-free Tasks with Incremental LM-cut

Optimal Planning for Delete-free Tasks with Incremental LM-cut Theoretical Background Contributions Experiments Conclusion Optimal Planning for Delete-free Tasks with Incremental LM-cut Florian Pommerening and Malte Helmert Universität Basel Departement Informatik

More information

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] 575 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Approximation 576 Let ε (0, 1) given. Let I opt an optimal selection. No try to find a valid selection

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

Principles of AI Planning

Principles of AI Planning Principles of 5. Planning as search: progression and regression Malte Helmert and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 4th, 2010 Planning as (classical) search Introduction Classification

More information

Homework 2: MDPs and Search

Homework 2: MDPs and Search Graduate Artificial Intelligence 15-780 Homework 2: MDPs and Search Out on February 15 Due on February 29 Problem 1: MDPs [Felipe, 20pts] Figure 1: MDP for Problem 1. States are represented by circles

More information

Chapter 4 Beyond Classical Search 4.1 Local search algorithms and optimization problems

Chapter 4 Beyond Classical Search 4.1 Local search algorithms and optimization problems Chapter 4 Beyond Classical Search 4.1 Local search algorithms and optimization problems CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline

More information

Principles of AI Planning

Principles of AI Planning Principles of AI Planning 5. Planning as search: progression and regression Albert-Ludwigs-Universität Freiburg Bernhard Nebel and Robert Mattmüller October 30th, 2013 Introduction Classification Planning

More information

Single Source Shortest Paths

Single Source Shortest Paths CMPS 00 Fall 015 Single Source Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk 1 Paths in graphs Consider a digraph G = (V, E) with an edge-weight

More information

6.01: Introduction to EECS I. Optimizing a Search

6.01: Introduction to EECS I. Optimizing a Search 6.0: Introduction to CS I Optimizing a Search May 3, 0 Nano-Quiz Makeups Wednesday, May 4, 6-pm, 34-50. everyone can makeup/retake NQ everyone can makeup/retake two additional NQs you can makeup/retake

More information

Single Source Shortest Paths

Single Source Shortest Paths CMPS 00 Fall 017 Single Source Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight

More information

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 Exam #1 Solutions This is a take-home examination. The exam includes 8 questions.

More information

Heuristic Hill-Climbing as a Markov Process

Heuristic Hill-Climbing as a Markov Process Heuristic Hill-Climbing as a Markov Process Carlos Linares López Planning and Learning Group, Computer Science Department Universidad Carlos III de Madrid, Avda. de la Universidad, 30 28911 Leganés - Madrid,

More information

Decoding Revisited: Easy-Part-First & MERT. February 26, 2015

Decoding Revisited: Easy-Part-First & MERT. February 26, 2015 Decoding Revisited: Easy-Part-First & MERT February 26, 2015 Translating the Easy Part First? the tourism initiative addresses this for the first time the die tm:-0.19,lm:-0.4, d:0, all:-0.65 tourism touristische

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence Marc Toussaint February 6, 2017 The majority of slides on search, CSP and logic are adapted from Stuart Russell. This is a direct concatenation and reformatting

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Greedy Algorithms Interval Scheduling Interval Partitioning Guest lecturer: Martin Furer Review In a DFS tree of an undirected graph, can there be an edge (u,v)

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Focused on finding a goal state Less focused on solution path or cost } Choose a state and search nearby (local) states Not a systematic

More information

arxiv: v1 [cs.ds] 6 Feb 2015

arxiv: v1 [cs.ds] 6 Feb 2015 Tree Search and Quantum Computation Luís Tarrataca 1 and Andreas Wichert 1 GAIPS/INESC-ID Department of Informatics IST - Technical University of Lisbon - Portugal {luis.tarrataca,andreas.wichert}@ist.utl.pt

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Spring 2017 Introduction to Artificial Intelligence Midterm V2 You have approximately 80 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark

More information

Markov Decision Processes Chapter 17. Mausam

Markov Decision Processes Chapter 17. Mausam Markov Decision Processes Chapter 17 Mausam Planning Agent Static vs. Dynamic Fully vs. Partially Observable Environment What action next? Deterministic vs. Stochastic Perfect vs. Noisy Instantaneous vs.

More information

Artificial Intelligence. Topic

Artificial Intelligence. Topic Artificial Intelligence Topic What is decision tree? A tree where each branching node represents a choice between two or more alternatives, with every branching node being part of a path to a leaf node

More information

Math 391: Midterm 1.0 Spring 2016

Math 391: Midterm 1.0 Spring 2016 Math 391: Midterm 1.0 Spring 2016 James Skon skonjp@kenyon.edu Test date: October 5 Submission Instructions: Give all your assumptions. Show all your work. Be as complete as possible. Grading Problem 1

More information

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk CMPS 6610 Fall 018 Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight function w

More information

Homework Assignment 1 Solutions

Homework Assignment 1 Solutions MTAT.03.286: Advanced Methods in Algorithms Homework Assignment 1 Solutions University of Tartu 1 Big-O notation For each of the following, indicate whether f(n) = O(g(n)), f(n) = Ω(g(n)), or f(n) = Θ(g(n)).

More information

Appendix of Computational Protein Design Using AND/OR Branch and Bound Search

Appendix of Computational Protein Design Using AND/OR Branch and Bound Search Appendix of Computational Protein Design Using AND/OR Branch and Bound Search Yichao Zhou 1, Yuexin Wu 1, and Jianyang Zeng 1,2, 1 Institute for Interdisciplinary Information Sciences, Tsinghua University,

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao Homework 3 released Due on 12/13 (Thur) 14:20 (one week only) Mini-HW 9 released Due on 12/13 (Thur) 14:20 Homework 4 released Due on 1/3 (Thur) 14:20 (four

More information

I. Induction. Po-Shen Loh June 16, 2003

I. Induction. Po-Shen Loh June 16, 2003 I. Induction Po-Shen Loh June 16, 2003 1 News Flash From Zuming! Remind Po to take all the markers from CBA 337 Tonight s study session for Red/Blue is in Bessey 104 Future Red lectures are in NM B-7,

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: I I Select a variable to change Select a new value for that variable Until a satisfying assignment

More information

CMPS 2200 Fall Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk. 10/8/12 CMPS 2200 Intro.

CMPS 2200 Fall Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk. 10/8/12 CMPS 2200 Intro. CMPS 00 Fall 01 Single Source Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk 1 Paths in graphs Consider a digraph G = (V, E) with edge-weight function

More information

Great Theoretical Ideas in Computer Science. Lecture 7: Introduction to Computational Complexity

Great Theoretical Ideas in Computer Science. Lecture 7: Introduction to Computational Complexity 15-251 Great Theoretical Ideas in Computer Science Lecture 7: Introduction to Computational Complexity September 20th, 2016 What have we done so far? What will we do next? What have we done so far? > Introduction

More information

Heuristic Search Algorithms

Heuristic Search Algorithms CHAPTER 4 Heuristic Search Algorithms 59 4.1 HEURISTIC SEARCH AND SSP MDPS The methods we explored in the previous chapter have a serious practical drawback the amount of memory they require is proportional

More information

CSE 4502/5717 Big Data Analytics Spring 2018; Homework 1 Solutions

CSE 4502/5717 Big Data Analytics Spring 2018; Homework 1 Solutions CSE 502/5717 Big Data Analytics Spring 2018; Homework 1 Solutions 1. Consider the following algorithm: for i := 1 to α n log e n do Pick a random j [1, n]; If a[j] = a[j + 1] or a[j] = a[j 1] then output:

More information

CERTIFICATE. Str. Aurel Vlaicu, nr Satu Mare Romania

CERTIFICATE. Str. Aurel Vlaicu, nr Satu Mare Romania CERTIFICATE This is to certify that with the organizational units/sites as listed in the annex has implemented and maintains a Quality Management System. : Packaging, labelling, storage, distribution and

More information

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Matroids Shortest Paths Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Marc Uetz University of Twente m.uetz@utwente.nl Lecture 2: sheet 1 / 25 Marc Uetz Discrete Optimization Matroids

More information

Decision Trees. Lewis Fishgold. (Material in these slides adapted from Ray Mooney's slides on Decision Trees)

Decision Trees. Lewis Fishgold. (Material in these slides adapted from Ray Mooney's slides on Decision Trees) Decision Trees Lewis Fishgold (Material in these slides adapted from Ray Mooney's slides on Decision Trees) Classification using Decision Trees Nodes test features, there is one branch for each value of

More information

Learning in State-Space Reinforcement Learning CIS 32

Learning in State-Space Reinforcement Learning CIS 32 Learning in State-Space Reinforcement Learning CIS 32 Functionalia Syllabus Updated: MIDTERM and REVIEW moved up one day. MIDTERM: Everything through Evolutionary Agents. HW 2 Out - DUE Sunday before the

More information

A* with Lookahead Re-evaluated

A* with Lookahead Re-evaluated A* with Lookahead Re-evaluated Zhaoxing Bu Department of Computing Science University of Alberta Edmonton, AB Canada T6G 2E8 zhaoxing@ualberta.ca Roni Stern and Ariel Felner Information Systems Engineering

More information

Multimapping Abstractions and Hierarchical Heuristic Search

Multimapping Abstractions and Hierarchical Heuristic Search Multimapping Abstractions and Hierarchical Heuristic Search Bo Pang Computing Science Department University of Alberta Edmonton, AB Canada T6G 2E8 (bpang@ualberta.ca) Robert C. Holte Computing Science

More information

Lecture 10: Big-Oh. Doina Precup With many thanks to Prakash Panagaden and Mathieu Blanchette. January 27, 2014

Lecture 10: Big-Oh. Doina Precup With many thanks to Prakash Panagaden and Mathieu Blanchette. January 27, 2014 Lecture 10: Big-Oh Doina Precup With many thanks to Prakash Panagaden and Mathieu Blanchette January 27, 2014 So far we have talked about O() informally, as a way of capturing the worst-case computation

More information

When does Weighted A* Fail?

When does Weighted A* Fail? When does Weighted A* Fail? Christopher Wilt and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 3824 USA {wilt, ruml} at cs.unh.edu Abstract Weighted A* is the most

More information

New rubric: AI in the news

New rubric: AI in the news New rubric: AI in the news 3 minutes Headlines this week: Silicon Valley Business Journal: Apple on hiring spreee for AI experts Forbes: Toyota Invests $50 Million In Artificial Intelligence Research For

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 2 Analysis of Algorithms Stable matching problem Asymptotic growth Adam Smith Stable Matching Problem Unstable pair: man m and woman w are unstable if m prefers w

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Principles of AI Planning

Principles of AI Planning Principles of 7. Planning as search: relaxed Malte Helmert and Bernhard Nebel Albert-Ludwigs-Universität Freiburg June 8th, 2010 How to obtain a heuristic STRIPS heuristic Relaxation and abstraction A

More information

Great Theoretical Ideas in Computer Science. Lecture 9: Introduction to Computational Complexity

Great Theoretical Ideas in Computer Science. Lecture 9: Introduction to Computational Complexity 15-251 Great Theoretical Ideas in Computer Science Lecture 9: Introduction to Computational Complexity February 14th, 2017 Poll What is the running time of this algorithm? Choose the tightest bound. def

More information

A strongly rigid binary relation

A strongly rigid binary relation A strongly rigid binary relation Anne Fearnley 8 November 1994 Abstract A binary relation ρ on a set U is strongly rigid if every universal algebra on U such that ρ is a subuniverse of its square is trivial.

More information

Introduction to Fall 2008 Artificial Intelligence Final Exam

Introduction to Fall 2008 Artificial Intelligence Final Exam CS 188 Introduction to Fall 2008 Artificial Intelligence Final Exam INSTRUCTIONS You have 180 minutes. 100 points total. Don t panic! The exam is closed book, closed notes except a two-page crib sheet,

More information