Summary. Local Search and cycle cut set. Local Search Strategies for CSP. Greedy Local Search. Local Search. and Cycle Cut Set. Strategies for CSP

Size: px
Start display at page:

Download "Summary. Local Search and cycle cut set. Local Search Strategies for CSP. Greedy Local Search. Local Search. and Cycle Cut Set. Strategies for CSP"

Transcription

1 Summary Greedy and cycle cut set

2 Greedy... in short G.B. Shaw A life spent doing mistakes is not only more honorable, but more useful than a life spent doing nothing Reminder: Hill-climbing Algorithm function Hill-Climbing( problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, a node current Make-Node(Initial-State[problem]) loop do end neighbor a highest-valued successor of current if Value[neighbor] Value[current] then return State[current] current neighbor

3 Greedy s Hill-climbing, simulated annealing, etc. typically work with complete states, i.e., all variables assigned To apply to CSPs: allow states with unsatised constraints operators reassign variable values Variable selection: randomly select any conicted variable Value selection by min-conicts heuristic choose value that violates the fewest constraints i.e., hillclimb with Value[State] = total number of violated constraints in State Example: 4-Queens States: 4 queens in 4 columns (4 4 = 256 states) Operators: move queen in column Goal test: no attacks Evaluation: Value(State) = h(state) = number of attacks in State

4 Reminder: Hill-climbing issues Example Example ( for 4-Queens) (1, 2, 3, 4) Conicts: 6 (1, 2, 4, 4) Conicts: 4 (1, 2, 4, 1) Conicts: 2 (3, 2, 4, 1) Conicts: 1 Local Minima

5 Performance of min-conicts Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000) The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio R = number of constraints number of variables Improvements to Hill Climbing Improving HC Trying to avoid local minima Plateau (aka Ramdom Sideway Moves) Constraint Weighting Tabu

6 Plateau Going Sideways Plateau: set of solutions that have same cost Local minima can be due to a plateau: HC stops as soon as a plateau is found Keep on changing as long as solution is no worse than current one We can still have local minima Example Example (Plateau ) Variables: x, y, z, k, s, r Domains: D i = {0, 1, 2, 3} Constraints: x < z, y < z, z < k, k < r, k < s Initial Assignment (0, 0, 1, 1, 2, 2) cost = 1 z < k No single variable change improves the cost but a solution exists (0, 0, 1, 2, 3, 3) Changing to a same cost assignment we can nd the solution

7 Example: Cycles in Plateau Example (Plateau s) Variables: x, y, z, k, m, r, s Domains: D i = {0, 1, 2, 3} Constraints: x = z, x = y, y = z, z < k, k < m, m = r, r = s, m = s Initial Assignment (0, 0, 0, 1, 1, 1, 1) cost = 1 k < m Modifying any variable in {x, y, z, m, r, s} results in at least two violated constraints Setting k = 0 cost is constant but now z < k is violated The only modication with constant cost is k = 1 cycle Constraint Weighting Breakout Method Cost function: F (ā) = i w i C i (ā) w i current cost weight, C i (ā) = 1 i ā violates constraint C i Find local modication that maximise the decrement of F When local minima increase by one violated constraints Current assignment is no longer a local minima and we can progress towards a solution In general is not complete but extremely good empirical results [Morris 93] If no solution exists we can still cycle through inconsistent solutions

8 Example: Constraint Weighting Example (Constraint Weighting) Variables: x, y, z, k, m, r, s Domains: D i = {0, 1, 2} Constraints: x = z, x = y, y = z, z < k, k < m, m = r, r = s, m = s Initial Assignment (0, 0, 0, 1, 1, 1, 1) cost = 1 k < m Increasing constraints by 1 each time a local minima is reached we can nd a solution Example: Inconsistent Problem Example (Constraint Weighting and Inconsistency) Variables: x, y, z Domains: D i = {R, B} Constraints: x! = y, x! = z, y! = z Initial Assignment (R, B, R) cost = 1 Lifting weights results in cycling over inconsistent states

9 Tabu Tabu Given an assignment ā, consider all other assignments that change only one variable (as in hill climbing) Avoid backward moves (i.e. assignments already visited) Build a queue of last n assignments <variable,value> Assignments in the queue are forbidden Forget the oldest assignment when the queue is full Choose the assignment that has lowest cost Example: Tabu search Example (Tabu ) Variables: x, y, z, k, m, r, s Domains: D i = {0, 1, 2} Constraints: x = z, x = y, y = z, z < k, k < m, m = r, r = s, m = s Initial Assignment (0, 0, 0, 1, 1, 1, 1) cost = 1 k < m Fix n = 4, rst three moves k = 0, k = 1, k = 2 with constant cost Then k can not be changed anymore and we can get out of the cycle e.g. m = 2 We could make a wrong choice z = 1 If list is long enough at some point we will change m If list is too long we can make good paths longer

10 Exploiting Problem Structure in Cycle + Arc Consisteny on Tree Cycle + Tree Solving (Dynamic Programming on Tree) Cycle + Arc Consistency Hybrid approach 1 Find a cycle cutset 2 Fix an assignment for the cutset variables (this leaves a forest of unassigned subproblems) 3 Force arc consistency on each tree and propagate constraints. If solution found stop. 4 Otherwise stochastic local search on cutset variables only. 5 If improvement, change assignment and go to step 3 6 Otherwise stop

11 Example: Arc Consistency Example (Arc Consistency for Australia Map Coloring) Solve this map colouring problem by using Cycle and Arc Consistency Tree Solving based on cycle cutset Decomposing the problem Idea: given an assignment for cutset cycle variables nd an assignment of other variables that minimises number of violated constraints Partition X in {Z, Y } Y cutset variables, Z = X \ Y tree variables ā y current assignment of cycle cutset variables Divide the problem in rooted sub-trees Duplicate cutset variables for each neighbour and assign current value (ā y [y i ])

12 Tree Inference based on cycle cutset Propagating constraints C zi (a i, ā y ) number of violated conicts in the tree rooted at the tree variable z i C(ā z, ā y ) number of violated constraint for overall problem with assignments z and ȳ Want to compute C min = min Y =y min Z=z C(z, y) General Idea compute number of violated constraint from leaves to root choose assignment at root propagate assignment from root to leaves Tree Algorithm Tree Algorithm Algorithm 1 Tree Require: An arc consistent network R, a partition of X = {Z, Y }, an assignment for cutset variables ā y Ensure: An assignment ā z such that C(ā z, ā y ) = C T min (ā y ) Initialisation: C yi (ā y [y i ], ā y ) = 0 for all y i Y going from leaves to root on the tree compute: for all variable z i and every value a i D zi compute C zi (a i, ā y ) end for going from root to leaves on the tree compute: for all every tree variable z i Z let D zi its consistent values with its parent's value v pj do do compute best a i end for return {< z 1, a 1 >,, < z k, a k >}

13 Main Computation for Tree Algorithm Main Computation Computations performed in the algorithm C zi (a i, ā y ) = z j z j child of z i min aj D zj (C zj (a j, ā y ) + R zi,z j (a i, a j )) R zi,z j (a i, a j ) = 0 if < a i, a j > R zi,z j ; 1 Otherwise a i = arg min ai D zi C zi (a i, ā y ) + R zi,p j (a i, v pj ) p j parent of z i Example: Tree Algorithm Example (Tree Algorithm for Australia Map Colouring) Solve this map colouring problem by using Cycle and Tree Algorithm

14 HC with cycle cutset HC + CC-TREE Replace backtracking with local search Start random initial assignment Perform a given number of TRY within each TRY alternate between HC and CC-TREE: Fix one assignment for CC variables, perform TREE Fix the given assignment for tree variables and perform HC on CC HC with cycle cutset: performance Behaviour of HC and CC-TREE Empirical result on randomly generated instances: HC + CC-TREE Not always better than HC Empirical evidence show that behavior depends on ratio of CC variables Crossing point around 36% Not completely clear how general these results are

15 Dierences between HC+tree and CC+AC What does the tree solving phase give us? Tree solving phase provides a quantitative measure of how good a CC variable assignment is. Crucial to run the HC phase (or use heuristics in Backtracking) Example (Dierence between CC+AC and HC+tree) Solve the following problem using the CC+AC and HC+Tree Variables: x 1, x 2, x 3, x 4 Domain: D 1 = {G, R, B}, D 2 = D 3 = D 4 = {R, B} Constraints: x 1! = x 2, x 1! = x 3, x 1! = x 4, x 2! = x 3, x 3! = x 4 Cycle Cutset variables Y = {x 1 } Start with ā y = x 1 = R Properties of stochastic General Features Anytime: the longer they run the better the solution Local Minima: guaranteed to terminate at local minima Not complete: can not be used to prove inconsistency

16 Exercise Cycle and Tree Solving Solve the following problem using the Tree Solving approach Variables: x 1, x 2, x 3, x 4, x 5 Domain: R, B, Y Constraints: x 1! = x 2, x 1! = x 3, x 1! = x 4, x 1! = x 5, x 2! = x 3, x 3! = x 5, x 4! = x 5 Cycle Cutset variables Y = {x 3, x 5 } Assignment for cycle cutset variables ā y = x 3 = R, x 5 = B

A.I.: Beyond Classical Search

A.I.: Beyond Classical Search A.I.: Beyond Classical Search Random Sampling Trivial Algorithms Generate a state randomly Random Walk Randomly pick a neighbor of the current state Both algorithms asymptotically complete. Overview Previously

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. CS 1571 Introduction to AI Lecture 8 Constraint satisfaction search. Combinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Objective:

More information

Finding optimal configurations ( combinatorial optimization)

Finding optimal configurations ( combinatorial optimization) CS 1571 Introduction to AI Lecture 10 Finding optimal configurations ( combinatorial optimization) Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Constraint

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure

More information

Local Search and Optimization

Local Search and Optimization Local Search and Optimization Outline Local search techniques and optimization Hill-climbing Gradient methods Simulated annealing Genetic algorithms Issues with local search Local search and optimization

More information

Summary. AIMA sections 4.3,4.4. Hill-climbing Simulated annealing Genetic algorithms (briey) Local search in continuous spaces (very briey)

Summary. AIMA sections 4.3,4.4. Hill-climbing Simulated annealing Genetic algorithms (briey) Local search in continuous spaces (very briey) AIMA sections 4.3,4.4 Summary Hill-climbing Simulated annealing Genetic (briey) in continuous spaces (very briey) Iterative improvement In many optimization problems, path is irrelevant; the goal state

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE PROBLEM SOLVING: LOCAL SEARCH 10/11/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Recall: Problem Solving Idea:

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

Local and Online search algorithms

Local and Online search algorithms Local and Online search algorithms Chapter 4 Chapter 4 1 Outline Local search algorithms Hill-climbing Simulated annealing Genetic algorithms Searching with non-deterministic actions Searching with partially/no

More information

22c:145 Artificial Intelligence

22c:145 Artificial Intelligence 22c:145 Artificial Intelligence Fall 2005 Informed Search and Exploration III Cesare Tinelli The University of Iowa Copyright 2001-05 Cesare Tinelli and Hantao Zhang. a a These notes are copyrighted material

More information

Introduction to Simulated Annealing 22c:145

Introduction to Simulated Annealing 22c:145 Introduction to Simulated Annealing 22c:145 Simulated Annealing Motivated by the physical annealing process Material is heated and slowly cooled into a uniform structure Simulated annealing mimics this

More information

Local and Stochastic Search

Local and Stochastic Search RN, Chapter 4.3 4.4; 7.6 Local and Stochastic Search Some material based on D Lin, B Selman 1 Search Overview Introduction to Search Blind Search Techniques Heuristic Search Techniques Constraint Satisfaction

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 9: Search 8 Victor R. Lesser CMPSCI 683 Fall 2010 ANNOUNCEMENTS REMEMBER LECTURE ON TUESDAY! EXAM ON OCTOBER 18 OPEN BOOK ALL MATERIAL COVERED IN LECTURES REQUIRED READINGS WILL MOST PROBABLY NOT

More information

New rubric: AI in the news

New rubric: AI in the news New rubric: AI in the news 3 minutes Headlines this week: Silicon Valley Business Journal: Apple on hiring spreee for AI experts Forbes: Toyota Invests $50 Million In Artificial Intelligence Research For

More information

Beyond Classical Search

Beyond Classical Search Beyond Classical Search Chapter 4 (Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!) 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces

More information

Scaling Up. So far, we have considered methods that systematically explore the full search space, possibly using principled pruning (A* etc.).

Scaling Up. So far, we have considered methods that systematically explore the full search space, possibly using principled pruning (A* etc.). Local Search Scaling Up So far, we have considered methods that systematically explore the full search space, possibly using principled pruning (A* etc.). The current best such algorithms (RBFS / SMA*)

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: I I Select a variable to change Select a new value for that variable Until a satisfying assignment

More information

Methods for finding optimal configurations

Methods for finding optimal configurations CS 1571 Introduction to AI Lecture 9 Methods for finding optimal configurations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Search for the optimal configuration Optimal configuration search:

More information

Single Solution-based Metaheuristics

Single Solution-based Metaheuristics Parallel Cooperative Optimization Research Group Single Solution-based Metaheuristics E-G. Talbi Laboratoire d Informatique Fondamentale de Lille Single solution-based metaheuristics Improvement of a solution.

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

Constraint sat. prob. (Ch. 6)

Constraint sat. prob. (Ch. 6) Constraint sat. prob. (Ch. 6) ypes of constraints ry to do this job problem with: J1, J2 and J3 Jobs cannot overlap J3 takes 3 time units J2 takes 2 time units J1 takes 1 time unit J1 must happen before

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Constraint Satisfaction Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell Constraint Satisfaction Problems The

More information

Minimax strategies, alpha beta pruning. Lirong Xia

Minimax strategies, alpha beta pruning. Lirong Xia Minimax strategies, alpha beta pruning Lirong Xia Reminder ØProject 1 due tonight Makes sure you DO NOT SEE ERROR: Summation of parsed points does not match ØProject 2 due in two weeks 2 How to find good

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

Improving Repair-based Constraint Satisfaction Methods by Value Propagation

Improving Repair-based Constraint Satisfaction Methods by Value Propagation From: AAAI-94 Proceedings. Copyright 1994, AAAI (www.aaai.org). All rights reserved. Improving Repair-based Constraint Satisfaction Methods by Value Propagation Nobuhiro Yugami Yuiko Ohta Mirotaka Nara

More information

Constraint Satisfaction [RN2] Sec [RN3] Sec Outline

Constraint Satisfaction [RN2] Sec [RN3] Sec Outline Constraint Satisfaction [RN2] Sec 5.1-5.2 [RN3] Sec 6.1-6.3 CS 486/686 Lecture 4: Jan 12, 2012 University of Waterloo 1 Outline What are CSPs? Standard search and CSPs Improvements Backtracking Backtracking

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 8. Satisfiability and Model Construction Davis-Putnam-Logemann-Loveland Procedure, Phase Transitions, GSAT Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

More information

Constraint Satisfaction

Constraint Satisfaction Constraint Satisfaction CS 486/686 May 16, 2006 University of Waterloo 1 Outline What are CSPs? Standard search and CSPs Improvements Backtracking Backtracking + heuristics Forward checking 2 Introduction

More information

Steven Minton 1 Mark D. Johnston 2 Andrew B. Philips 1 Philip Laird 3. NASA Ames Research Center 3700 San Martin Drive, AI Research Branch

Steven Minton 1 Mark D. Johnston 2 Andrew B. Philips 1 Philip Laird 3. NASA Ames Research Center 3700 San Martin Drive, AI Research Branch Minimizing Conicts: A Heuristic Repair Method for Constraint-Satisfaction and Scheduling Problems Steven Minton 1 Mark D. Johnston 2 Andrew B. Philips 1 Philip Laird 3 1 Sterling Federal Systems 2 Space

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

HILL-CLIMBING JEFFREY L. POPYACK

HILL-CLIMBING JEFFREY L. POPYACK HILL-CLIMBING JEFFREY L. POPYACK IN SEARCH OF INTELLIGENCE I: HILL CLIMBING Covered so far: AI Overview Production Systems Agents AI Programming (LISP + Python) PRODUCTION SYSTEMS AND SEARCH Starting w/

More information

Search and Lookahead. Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 4/6, 2012

Search and Lookahead. Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 4/6, 2012 Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Search and Lookahead Enforcing consistency is one way of solving constraint networks:

More information

Artificial Intelligence Heuristic Search Methods

Artificial Intelligence Heuristic Search Methods Artificial Intelligence Heuristic Search Methods Chung-Ang University, Jaesung Lee The original version of this content is created by School of Mathematics, University of Birmingham professor Sandor Zoltan

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Analyzing a Heuristic Strategy. for Constraint-Satisfaction and Scheduling. Mark D. Johnston and Steven Minton. Abstract

Analyzing a Heuristic Strategy. for Constraint-Satisfaction and Scheduling. Mark D. Johnston and Steven Minton. Abstract Analyzing a Heuristic Strategy for Constraint-Satisfaction and Scheduling Mark D. Johnston and Steven Minton Abstract This paper describes a simple heuristic approach to solving large-scale constraint

More information

Iterative improvement algorithms. Beyond Classical Search. Outline. Example: Traveling Salesperson Problem

Iterative improvement algorithms. Beyond Classical Search. Outline. Example: Traveling Salesperson Problem Iterative improvement algorithms In many optimization problems, path is irrelevant; the goal state itself is the solution Beyond Classical earch Chapter 4, ections 4.1-4.2 Then state space = set of complete

More information

CS360 Homework 12 Solution

CS360 Homework 12 Solution CS360 Homework 12 Solution Constraint Satisfaction 1) Consider the following constraint satisfaction problem with variables x, y and z, each with domain {1, 2, 3}, and constraints C 1 and C 2, defined

More information

Algorithms and Complexity theory

Algorithms and Complexity theory Algorithms and Complexity theory Thibaut Barthelemy Some slides kindly provided by Fabien Tricoire University of Vienna WS 2014 Outline 1 Algorithms Overview How to write an algorithm 2 Complexity theory

More information

The Story So Far... The central problem of this course: Smartness( X ) arg max X. Possibly with some constraints on X.

The Story So Far... The central problem of this course: Smartness( X ) arg max X. Possibly with some constraints on X. Heuristic Search The Story So Far... The central problem of this course: arg max X Smartness( X ) Possibly with some constraints on X. (Alternatively: arg min Stupidness(X ) ) X Properties of Smartness(X)

More information

Local search algorithms

Local search algorithms Local search algorithms CS171, Winter 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop Reading: R&N 4.1-4.2 Local search algorithms In many optimization problems, the path to the goal

More information

The Constrainedness Knife-Edge. Toby Walsh. APES Group. Glasgow, Scotland.

The Constrainedness Knife-Edge. Toby Walsh. APES Group. Glasgow, Scotland. Abstract A general rule of thumb is to tackle the hardest part of a search problem rst. Many heuristics therefore try to branch on the most constrained variable. To test their eectiveness at this, we measure

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

&hod I: Escaping F!rom Escal inima

&hod I: Escaping F!rom Escal inima From: AAAI-93 Proceedings. Copyright 1993, AAAI (www.aaai.org). All rights reserved. &hod I: Escaping F!rom Escal inima Paul Morris Intelli Corp 1975 El Camino Real West Mountain View, CA 94040 morris@intellicorp.com

More information

Methods for finding optimal configurations

Methods for finding optimal configurations S 2710 oundations of I Lecture 7 Methods for finding optimal configurations Milos Hauskrecht milos@pitt.edu 5329 Sennott Square S 2710 oundations of I Search for the optimal configuration onstrain satisfaction

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Focused on finding a goal state Less focused on solution path or cost } Choose a state and search nearby (local) states Not a systematic

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for solving

More information

CSC242: Intro to AI. Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction

CSC242: Intro to AI. Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction CSC242: Intro to AI Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction What is This? 25" 20" 15" 10" 5" 0" Quiz 1 25" B 20" 15" 10" F D C A 5" F 0" Moral Many people cannot learn from lectures

More information

Greedy. Outline CS141. Stefano Lonardi, UCR 1. Activity selection Fractional knapsack Huffman encoding Later:

Greedy. Outline CS141. Stefano Lonardi, UCR 1. Activity selection Fractional knapsack Huffman encoding Later: October 5, 017 Greedy Chapters 5 of Dasgupta et al. 1 Activity selection Fractional knapsack Huffman encoding Later: Outline Dijkstra (single source shortest path) Prim and Kruskal (minimum spanning tree)

More information

Outline What are CSPs? Standard search and CSPs Improvements. Constraint Satisfaction. Introduction. Introduction

Outline What are CSPs? Standard search and CSPs Improvements. Constraint Satisfaction. Introduction. Introduction Constraint Satisfaction CS 86/686 May 6, 006 University of Waterloo Outline What are CSPs? Standard search and CSPs Improvements acktracking acktracking + heuristics Forward checking Introduction In the

More information

Local search and agents

Local search and agents Artificial Intelligence Local search and agents Instructor: Fabrice Popineau [These slides adapted from Stuart Russell, Dan Klein and Pieter Abbeel @ai.berkeley.edu] Local search algorithms In many optimization

More information

Pengju

Pengju Introduction to AI Chapter04 Beyond Classical Search Pengju Ren@IAIR Outline Steepest Descent (Hill-climbing) Simulated Annealing Evolutionary Computation Non-deterministic Actions And-OR search Partial

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems S 331: rtificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines Or

More information

CITS4211 Mid-semester test 2011

CITS4211 Mid-semester test 2011 CITS4211 Mid-semester test 2011 Fifty minutes, answer all four questions, total marks 60 Question 1. (12 marks) Briefly describe the principles, operation, and performance issues of iterative deepening.

More information

Incremental Stochastic Gradient Descent

Incremental Stochastic Gradient Descent Incremental Stochastic Gradient Descent Batch mode : gradient descent w=w - η E D [w] over the entire data D E D [w]=1/2σ d (t d -o d ) 2 Incremental mode: gradient descent w=w - η E d [w] over individual

More information

Artificial Intelligence Methods (G5BAIM) - Examination

Artificial Intelligence Methods (G5BAIM) - Examination Question 1 a) Explain the difference between a genotypic representation and a phenotypic representation. Give an example of each. (b) Outline the similarities and differences between Genetic Algorithms

More information

Constraint Satisfaction 101

Constraint Satisfaction 101 Constraint Satisfaction 101 Berthe Y. Choueiry (Shu-we-ri) Nov 14, 2006 Constraint Satisfaction 101 1 Constraint Processing Constraint Satisfaction Computational problem Constraint Satisfaction Problem

More information

Written examination: Solution suggestions TIN175/DIT411, Introduction to Artificial Intelligence

Written examination: Solution suggestions TIN175/DIT411, Introduction to Artificial Intelligence Written examination: Solution suggestions TIN175/DIT411, Introduction to Artificial Intelligence Question 1 had completely wrong alternatives, and cannot be answered! Therefore, the grade limits was lowered

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 4 Metaheuristic Algorithms Sarah Gaggl Dresden, 5th May 2017 Agenda 1 Introduction 2 Constraint

More information

Unsatised Variables in Local Search. Department of AI Mechanized Reasoning Group. University of Edinburgh IRST, Trento &

Unsatised Variables in Local Search. Department of AI Mechanized Reasoning Group. University of Edinburgh IRST, Trento & Unsatised Variables in Local Search Ian P. Gent Toby Walsh Department of AI Mechanized Reasoning Group University of Edinburgh IRST, Trento & 80 South Bridge, Edinburgh DIST, University of Genoa, United

More information

Part V. Matchings. Matching. 19 Augmenting Paths for Matchings. 18 Bipartite Matching via Flows

Part V. Matchings. Matching. 19 Augmenting Paths for Matchings. 18 Bipartite Matching via Flows Matching Input: undirected graph G = (V, E). M E is a matching if each node appears in at most one Part V edge in M. Maximum Matching: find a matching of maximum cardinality Matchings Ernst Mayr, Harald

More information

Random Search. Shin Yoo CS454, Autumn 2017, School of Computing, KAIST

Random Search. Shin Yoo CS454, Autumn 2017, School of Computing, KAIST Random Search Shin Yoo CS454, Autumn 2017, School of Computing, KAIST Random Search The polar opposite to the deterministic, examineeverything, search. Within the given budget, repeatedly generate a random

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 fall 2006 Eli Bozorgzadeh Computer Science Department-UCI References and Copyright Textbooks referred [Mic94] G. De Micheli Synthesis and Optimization of Digital Circuits McGraw-Hill, 1994. [CLR90]

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology 6.034 Articial Intelligence Solutions # Final96 6034 Item # 33 Problem 1 Rules Step Ready to fire Selected Rule Assertion Added 1 R1 R3 R7 R1 Fuzzy is a mammal 2 R5

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

Structure Learning: the good, the bad, the ugly

Structure Learning: the good, the bad, the ugly Readings: K&F: 15.1, 15.2, 15.3, 15.4, 15.5 Structure Learning: the good, the bad, the ugly Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 29 th, 2006 1 Understanding the uniform

More information

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 4: Informed Search Teacher: Gianni A. Di Caro UNINFORMED VS. INFORMED Uninformed Can only generate successors and distinguish goals from non-goals Informed Strategies that can distinguish

More information

Learning' Probabilis2c' Graphical' Models' BN'Structure' Structure' Learning' Daphne Koller

Learning' Probabilis2c' Graphical' Models' BN'Structure' Structure' Learning' Daphne Koller Probabilis2c' Graphical' Models' Learning' BN'Structure' Structure' Learning' Why Structure Learning To learn model for new queries, when domain expertise is not perfect For structure discovery, when inferring

More information

An Introduction to Differential Evolution. Kelly Fleetwood

An Introduction to Differential Evolution. Kelly Fleetwood An Introduction to Differential Evolution Kelly Fleetwood Synopsis Introduction Basic Algorithm Example Performance Applications The Basics of Differential Evolution Stochastic, population-based optimisation

More information

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14 LOCAL SEARCH Today Reading AIMA Chapter 4.1-4.2, 5.1-5.2 Goals Local search algorithms n hill-climbing search n simulated annealing n local beam search n genetic algorithms n gradient descent and Newton-Rhapson

More information

Advances in Bayesian Network Learning using Integer Programming

Advances in Bayesian Network Learning using Integer Programming Advances in Bayesian Network Learning using Integer Programming Mark Bartlett and James Cussens UAI-13, 2013-07-12 Supported by the UK Medical Research Council (Project Grant G1002312) Mark Bartlett and

More information

Integer Programming for Bayesian Network Structure Learning

Integer Programming for Bayesian Network Structure Learning Integer Programming for Bayesian Network Structure Learning James Cussens Prague, 2013-09-02 Supported by the UK Medical Research Council (Project Grant G1002312) James Cussens IP for BNs Prague, 2013-09-02

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search II Instructor: Anca Dragan University of California, Berkeley [These slides adapted from Dan Klein and Pieter Abbeel] Minimax Example 3 12 8 2 4 6 14

More information

Priority queues implemented via heaps

Priority queues implemented via heaps Priority queues implemented via heaps Comp Sci 1575 Data s Outline 1 2 3 Outline 1 2 3 Priority queue: most important first Recall: queue is FIFO A normal queue data structure will not implement a priority

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

What we will try to do...

What we will try to do... Constraint Satisfaction Problems (CSP) (Where we postpone making difficult decisions until they become easy to make) R&N: Chap. 5 Slides from Jean-Claude Latombe at Stanford University (used with permission)

More information

Local Search. Shin Yoo CS492D, Fall 2015, School of Computing, KAIST

Local Search. Shin Yoo CS492D, Fall 2015, School of Computing, KAIST Local Search Shin Yoo CS492D, Fall 2015, School of Computing, KAIST If your problem forms a fitness landscape, what is optimisation? Local Search Loop Local Search Loop Start with a single, random solution

More information

Description Logics: an Introductory Course on a Nice Family of Logics. Day 2: Tableau Algorithms. Uli Sattler

Description Logics: an Introductory Course on a Nice Family of Logics. Day 2: Tableau Algorithms. Uli Sattler Description Logics: an Introductory Course on a Nice Family of Logics Day 2: Tableau Algorithms Uli Sattler 1 Warm up Which of the following subsumptions hold? r some (A and B) is subsumed by r some A

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

Distributed Constraints

Distributed Constraints Distributed Constraints José M Vidal Department of Computer Science and Engineering, University of South Carolina January 15, 2010 Abstract Algorithms for solving distributed constraint problems in multiagent

More information

Exploiting a Theory of Phase Transitions in Three-Satisability. Problems. David M. Pennock and Quentin F. Stout. University ofmichigan

Exploiting a Theory of Phase Transitions in Three-Satisability. Problems. David M. Pennock and Quentin F. Stout. University ofmichigan Exploiting a Theory of Phase Transitions in Three-Satisability Problems David M. Pennock and Quentin F. Stout Electrical Engineering and Computer Science Department University ofmichigan Ann Arbor, MI

More information

Informed Search. Chap. 4. Breadth First. O(Min(N,B L )) BFS. Search. have same cost BIBFS. Bi- Direction. O(Min(N,2B L/2 )) BFS. have same cost UCS

Informed Search. Chap. 4. Breadth First. O(Min(N,B L )) BFS. Search. have same cost BIBFS. Bi- Direction. O(Min(N,2B L/2 )) BFS. have same cost UCS Informed Search Chap. 4 Material in part from http://www.cs.cmu.edu/~awm/tutorials Uninformed Search Complexity N = Total number of states B = Average number of successors (branching factor) L = Length

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 4: Query Optimization Query Optimization Cost estimation Strategies for exploring plans Q min CS 347 Notes 4 2 Cost Estimation Based on

More information

The Interface between P and NP. Toby Walsh Cork Constraint Computation Centre

The Interface between P and NP. Toby Walsh Cork Constraint Computation Centre The Interface between P and NP Toby Walsh Cork Constraint Computation Centre http://4c.ucc.ie/~tw 3-SAT Where are the hard 3-SAT problems? Sample randomly generated 3-SAT Fix number of clauses, l Number

More information

Informed Search. Day 3 of Search. Chap. 4, Russel & Norvig. Material in part from

Informed Search. Day 3 of Search. Chap. 4, Russel & Norvig. Material in part from Informed Search Day 3 of Search Chap. 4, Russel & Norvig Material in part from http://www.cs.cmu.edu/~awm/tutorials Uninformed Search Complexity N = Total number of states B = Average number of successors

More information

Optimisation and Operations Research

Optimisation and Operations Research Optimisation and Operations Research Lecture 15: The Greedy Heuristic Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/OORII/ School of

More information

An instance of SAT is defined as (X, S)

An instance of SAT is defined as (X, S) SAT: Propositional Satisfiability 22c:45 Artificial Intelligence Russell & Norvig, Ch. 7.6 Validity vs. Satisfiability Validity: A sentence is valid if it is true in every interpretation (every interpretation

More information

Ant Colony Optimization: an introduction. Daniel Chivilikhin

Ant Colony Optimization: an introduction. Daniel Chivilikhin Ant Colony Optimization: an introduction Daniel Chivilikhin 03.04.2013 Outline 1. Biological inspiration of ACO 2. Solving NP-hard combinatorial problems 3. The ACO metaheuristic 4. ACO for the Traveling

More information

Optimization. Announcements. Last Time. Searching: So Far. Complete Searching. Optimization

Optimization. Announcements. Last Time. Searching: So Far. Complete Searching. Optimization Optimization urr H. ettles C-540, UW-Madison www.cs.wisc.edu/~cs540-1 ummer 2003 nnouncements Project groups and preliminary topic ideas will be due on 6/30 week from Monday e thinking about what you d

More information

Computers and Mathematics with Applications. Project management for arbitrary random durations and cost attributes by applying network approaches

Computers and Mathematics with Applications. Project management for arbitrary random durations and cost attributes by applying network approaches Computers and Mathematics with Applications 56 (2008) 2650 2655 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Project

More information

Advanced Analysis of Algorithms - Midterm (Solutions)

Advanced Analysis of Algorithms - Midterm (Solutions) Advanced Analysis of Algorithms - Midterm (Solutions) K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu} 1 Problems 1. Solve the following recurrence using substitution:

More information

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 21. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 21 Dr. Ted Ralphs IE406 Lecture 21 1 Reading for This Lecture Bertsimas Sections 10.2, 10.3, 11.1, 11.2 IE406 Lecture 21 2 Branch and Bound Branch

More information

Optimal Planning for Delete-free Tasks with Incremental LM-cut

Optimal Planning for Delete-free Tasks with Incremental LM-cut Theoretical Background Contributions Experiments Conclusion Optimal Planning for Delete-free Tasks with Incremental LM-cut Florian Pommerening and Malte Helmert Universität Basel Departement Informatik

More information

ARTICLE IN PRESS. Artificial Intelligence ( )

ARTICLE IN PRESS. Artificial Intelligence ( ) S0004-3702(01)00174-6/FLA AID:1872 Vol. ( ) P.1 (1-44) ELSGMLTM(ARTINT):m1a2001/12/17 Prn:18/12/2001; 8:37 AIJ1872 by:violetap. 1 Artificial Intelligence ( ) www.elsevier.com/locate/artint 12 Department

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information