Minimax strategies, alpha beta pruning. Lirong Xia

Size: px
Start display at page:

Download "Minimax strategies, alpha beta pruning. Lirong Xia"

Transcription

1 Minimax strategies, alpha beta pruning Lirong Xia

2 Reminder ØProject 1 due tonight Makes sure you DO NOT SEE ERROR: Summation of parsed points does not match ØProject 2 due in two weeks 2

3 How to find good heuristics? ØNo really mechanical way art more than science ØGeneral guideline: relaxing constraints e.g. Pacman can pass through the walls ØMimic what you would do 3

4 Arc Consistency of a CSP Ø A simple form of propagation makes sure all arcs are consistent: X X X Delete Ø If V loses a value, neighbors of V need to be rechecked! from tail! Ø Arc consistency detects failure earlier than forward checking Ø Can be run as a preprocessor or after each assignment Ø Might be time-consuming 4

5 Limitations of Arc Consistency ØAfter running arc consistency: Can have one solution left Can have multiple solutions left Can have no solutions left (and not know it) 5

6 Sum to 2 game Ø Player 1 moves, then player 2, finally player 1 again Ø Move = 0 or 1 Ø Player 1 wins if and only if all moves together sum to 2 Player Player 2 Player Player 1 Player 1 Player 1 Player Player 1 s utility is in the leaves; player 2 s utility is the negative of this

7 Today s schedule ØAdversarial game ØMinimax search ØAlpha-beta pruning algorithm 7

8 Adversarial Games Ø Deterministic, zero-sum games: Tic-tac-toe, chess, checkers The MAX player maximizes result The MIN player minimizes result Ø Minimax search: A search tree Players alternate turns Each node has a minimax value: best achievable utility against a rational adversary 8

9 Computing Minimax Values Ø This is DFS Ø Two recursive functions: max-value maxes the values of successors min-value mins the values of successors Ø Def value (state): If the state is a terminal state: return the state s utility If the agent at the state is MAX: return max-value(state) If the agent at the state is MIN: return min-value(state) Ø Def max-value(state): Initialize max = - For each successor of state: Compute value(successor) Update max accordingly return max Ø Def min-value(state): similar to max-value 9

10 Minimax Example

11 Tic-tac-toe Game Tree 11

12 Renju 15*15 5 horizontal, vertical, or diagonal in a row win no double-3 or double-4 moves for black otherwise black s winning strategy was computed L. Victor Allis 1994 (PhD thesis) 12

13 Ø Time complexity? ( m ) Ob Ø Space complexity? Minimax Properties Obm ( ) Ø For chess, Exact solution is completely infeasible b 35, m 100 But, do we need to explore the whole tree? 13

14 Ø Cannot search to leaves Ø Depth-limited search Resource Limits Instead, search a limited depth of tree Replace terminal utilities with an evaluation function for non-terminal positions Ø Guarantee of optimal play is gone 14

15 Evaluation Functions Ø Functions which scores non-terminals Ø Ideal function: returns the minimax utility of the position Ø In practice: typically weighted linear sum of features: Ø e.g. Evals s ( ) = w 1 f ( 1 s) + w 2 f ( 2 s) + + w n f ( n s) f ( s ) = (# white queens - # black queens) 1, etc. 15

16 Minimax with limited depth ØSuppose you are the MAX player ØGiven a depth d and current state ØCompute value(state, d) that reaches depth d at depth d, use a evaluation function to estimate the value if it is non-terminal 16

17 Improving minimax: pruning 17

18 Pruning in Minimax Search ØAn ancestor is a MAX node already has an option than my current solution my future solution can only be smaller 18

19 Alpha-beta pruning Ø Pruning = cutting off parts of the search tree (because you realize you don t need to look at them) When we considered A* we also pruned large parts of the search tree Ø Maintain α = value of the best option for the MAX player along the path so far β = value of the best option for the MIN player along the path so far Initialized to be α = - and β = + Ø Maintain and update α and β for each node α is updated at MAX player s nodes β is updated at MIN player s nodes

20 Alpha-Beta Pruning Ø General configuration We re computing the MIN-VALUE at n We re looping over n s children n s value estimate is dropping α is the best value that MAX can get at any choice point along the current path If n becomes worse than α, MAX will avoid it, so can stop considering n s other children Define β similarly for MIN α is usually smaller than β Once α >= β, return to the upper layer 20

21 Alpha-Beta Pruning Example α β is MAX s best alternative here or above is MIN s best alternative here or above 21

22 Alpha-Beta Pruning Example starting α/ β α = - β = + raising α α = - β = + α = - β = + α = 3 β = + α = 3 β = + lowering β α = - β = + α = - β = 3 α = - β = 3 α = - β = 3 α = 3 β = + α = 3 β = 2 α = 3 β = + α = 3 β = 14 α = 3 β = 5 α = 3 β = 1 raising α α = - β = 3 α = 8 β = 3 α β is MAX s best alternative here or above is MIN s best alternative here or above 22

23 Alpha-Beta Pseudocode 23

24 Alpha-Beta Pruning Properties Ø This pruning has no effect on final result at the root Ø Values of intermediate nodes might be wrong! Important: children of the root may have the wrong value Ø Good children ordering improves effectiveness of pruning Ø With perfect ordering : Time complexity drops to O(b m/2 ) Doubles solvable depth! Your action looks smarter: more forward-looking with good evaluation function Full search of, e.g. chess, is still hopeless 24

25 Project 2 ØQ1: write an evaluation function for (state,action) pairs the evaluation function is for this question only ØQ2: minimax search with arbitrary depth and multiple MIN players (ghosts) evaluation function on states has been implemented for you ØQ3: alpha-beta pruning with arbitrary depth and multiple MIN players (ghosts) 25

26 Recap ØMinimax search with limited depth evaluation function ØAlpha-beta pruning ØProject 1 due midnight today ØProject 2 due in two weeks 26

Announcements. CS 188: Artificial Intelligence Fall Adversarial Games. Computing Minimax Values. Evaluation Functions. Recap: Resource Limits

Announcements. CS 188: Artificial Intelligence Fall Adversarial Games. Computing Minimax Values. Evaluation Functions. Recap: Resource Limits CS 188: Artificial Intelligence Fall 2009 Lecture 7: Expectimax Search 9/17/2008 Announcements Written 1: Search and CSPs is up Project 2: Multi-agent Search is up Want a partner? Come to the front after

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2009 Lecture 7: Expectimax Search 9/17/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Announcements Written

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search II Instructor: Anca Dragan University of California, Berkeley [These slides adapted from Dan Klein and Pieter Abbeel] Minimax Example 3 12 8 2 4 6 14

More information

Announcements. CS 188: Artificial Intelligence Spring Mini-Contest Winners. Today. GamesCrafters. Adversarial Games

Announcements. CS 188: Artificial Intelligence Spring Mini-Contest Winners. Today. GamesCrafters. Adversarial Games CS 188: Artificial Intelligence Spring 2009 Lecture 7: Expectimax Search 2/10/2009 John DeNero UC Berkeley Slides adapted from Dan Klein, Stuart Russell or Andrew Moore Announcements Written Assignment

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Minimax α β pruning UCT for games Chapter 6 2 Game tree (2-player, deterministic, turns) Chapter 6 3 Minimax Perfect play for deterministic, perfect-information

More information

CSE 573: Artificial Intelligence

CSE 573: Artificial Intelligence CSE 573: Artificial Intelligence Autumn 2010 Lecture 5: Expectimax Search 10/14/2008 Luke Zettlemoyer Most slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

IS-ZC444: ARTIFICIAL INTELLIGENCE

IS-ZC444: ARTIFICIAL INTELLIGENCE IS-ZC444: ARTIFICIAL INTELLIGENCE Lecture-07: Beyond Classical Search Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031,

More information

Algorithms for Playing and Solving games*

Algorithms for Playing and Solving games* Algorithms for Playing and Solving games* Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599 * Two Player Zero-sum Discrete

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

CS221 Practice Midterm

CS221 Practice Midterm CS221 Practice Midterm Autumn 2012 1 ther Midterms The following pages are excerpts from similar classes midterms. The content is similar to what we ve been covering this quarter, so that it should be

More information

Introduction to Fall 2008 Artificial Intelligence Midterm Exam

Introduction to Fall 2008 Artificial Intelligence Midterm Exam CS 188 Introduction to Fall 2008 Artificial Intelligence Midterm Exam INSTRUCTIONS You have 80 minutes. 70 points total. Don t panic! The exam is closed book, closed notes except a one-page crib sheet,

More information

Adversarial Search & Logic and Reasoning

Adversarial Search & Logic and Reasoning CSEP 573 Adversarial Search & Logic and Reasoning CSE AI Faculty Recall from Last Time: Adversarial Games as Search Convention: first player is called MAX, 2nd player is called MIN MAX moves first and

More information

Evaluation for Pacman. CS 188: Artificial Intelligence Fall Iterative Deepening. α-β Pruning Example. α-β Pruning Pseudocode.

Evaluation for Pacman. CS 188: Artificial Intelligence Fall Iterative Deepening. α-β Pruning Example. α-β Pruning Pseudocode. CS 188: Artificial Intelligence Fall 2008 Evaluation for Pacman Lecture 7: Expectimax Search 9/18/2008 [DEMO: thrashing, smart ghosts] Dan Klein UC Berkeley Many slides over the course adapted from either

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 7: Expectimax Search 9/18/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 1 Evaluation for

More information

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes.

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2014 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your two-page crib sheet. Mark your answers

More information

Mock Exam Künstliche Intelligenz-1. Different problems test different skills and knowledge, so do not get stuck on one problem.

Mock Exam Künstliche Intelligenz-1. Different problems test different skills and knowledge, so do not get stuck on one problem. Name: Matriculation Number: Mock Exam Künstliche Intelligenz-1 January 9., 2017 You have one hour(sharp) for the test; Write the solutions to the sheet. The estimated time for solving this exam is 53 minutes,

More information

Introduction to Spring 2009 Artificial Intelligence Midterm Exam

Introduction to Spring 2009 Artificial Intelligence Midterm Exam S 188 Introduction to Spring 009 rtificial Intelligence Midterm Exam INSTRUTINS You have 3 hours. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators

More information

CITS4211 Mid-semester test 2011

CITS4211 Mid-semester test 2011 CITS4211 Mid-semester test 2011 Fifty minutes, answer all four questions, total marks 60 Question 1. (12 marks) Briefly describe the principles, operation, and performance issues of iterative deepening.

More information

Scout, NegaScout and Proof-Number Search

Scout, NegaScout and Proof-Number Search Scout, NegaScout and Proof-Number Search Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction It looks like alpha-beta pruning is the best we can do for a generic searching

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Thursday 17th May 2018 Time: 09:45-11:45. Please answer all Questions.

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Thursday 17th May 2018 Time: 09:45-11:45. Please answer all Questions. COMP 34120 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE AI and Games Date: Thursday 17th May 2018 Time: 09:45-11:45 Please answer all Questions. Use a SEPARATE answerbook for each SECTION

More information

Adversarial Search. Christos Papaloukas, Iosif Angelidis. University of Athens November 2017

Adversarial Search. Christos Papaloukas, Iosif Angelidis. University of Athens November 2017 Adversarial Search Christos Papaloukas, Iosif Angelidis University of Athens November 2017 Christos P., Iosif A. Adversarial Search UoA, 2017 1 / 61 Main Aspects Formulation In order to perform an Adversarial

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure

More information

Finding optimal configurations ( combinatorial optimization)

Finding optimal configurations ( combinatorial optimization) CS 1571 Introduction to AI Lecture 10 Finding optimal configurations ( combinatorial optimization) Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Constraint

More information

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1 Administrativia Assignment 1 due thursday 9/23/2004 BEFORE midnight Midterm eam 10/07/2003 in class CS 460, Sessins 8-9 1 Last time: search strategies Uninfrmed: Use nly infrmatin available in the prblem

More information

Summary. Agenda. Games. Intelligence opponents in game. Expected Value Expected Max Algorithm Minimax Algorithm Alpha-beta Pruning Simultaneous Game

Summary. Agenda. Games. Intelligence opponents in game. Expected Value Expected Max Algorithm Minimax Algorithm Alpha-beta Pruning Simultaneous Game Summary rtificial Intelligence and its applications Lecture 4 Game Playing Search onstraint Satisfaction Problems From start state to goal state onsider constraints Professor Daniel Yeung danyeung@ieee.org

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for solving

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

Scout and NegaScout. Tsan-sheng Hsu.

Scout and NegaScout. Tsan-sheng Hsu. Scout and NegaScout Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract It looks like alpha-beta pruning is the best we can do for an exact generic searching procedure.

More information

Introduction to Spring 2009 Artificial Intelligence Midterm Solutions

Introduction to Spring 2009 Artificial Intelligence Midterm Solutions S 88 Introduction to Spring 009 rtificial Intelligence Midterm Solutions. (6 points) True/False For the following questions, a correct answer is worth points, no answer is worth point, and an incorrect

More information

Introduction to Fall 2011 Artificial Intelligence Final Exam

Introduction to Fall 2011 Artificial Intelligence Final Exam CS 188 Introduction to Fall 2011 rtificial Intelligence Final Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except two pages of crib sheets. Please use non-programmable calculators

More information

Final. CS 188 Fall Introduction to Artificial Intelligence

Final. CS 188 Fall Introduction to Artificial Intelligence CS 188 Fall 2012 Introduction to Artificial Intelligence Final You have approximately 3 hours. The exam is closed book, closed notes except your three one-page crib sheets. Please use non-programmable

More information

CSE 473: Artificial Intelligence Spring 2014

CSE 473: Artificial Intelligence Spring 2014 CSE 473: Artificial Intelligence Spring 2014 Hanna Hajishirzi Problem Spaces and Search slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer Outline Agents that

More information

Summary. Local Search and cycle cut set. Local Search Strategies for CSP. Greedy Local Search. Local Search. and Cycle Cut Set. Strategies for CSP

Summary. Local Search and cycle cut set. Local Search Strategies for CSP. Greedy Local Search. Local Search. and Cycle Cut Set. Strategies for CSP Summary Greedy and cycle cut set Greedy... in short G.B. Shaw A life spent doing mistakes is not only more honorable, but more useful than a life spent doing nothing Reminder: Hill-climbing Algorithm function

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

CSC242: Intro to AI. Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction

CSC242: Intro to AI. Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction CSC242: Intro to AI Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction What is This? 25" 20" 15" 10" 5" 0" Quiz 1 25" B 20" 15" 10" F D C A 5" F 0" Moral Many people cannot learn from lectures

More information

Chapter 6 Constraint Satisfaction Problems

Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline CSP problem definition Backtracking search

More information

CS 188 Fall Introduction to Artificial Intelligence Midterm 1

CS 188 Fall Introduction to Artificial Intelligence Midterm 1 CS 88 Fall 207 Introduction to Artificial Intelligence Midterm You have approximately 0 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark your

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Spring 2017 Introduction to Artificial Intelligence Midterm V2 You have approximately 80 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2018 Introduction to Artificial Intelligence Practice Final You have approximately 2 hours 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Properties of Forward Pruning in Game-Tree Search

Properties of Forward Pruning in Game-Tree Search Properties of Forward Pruning in Game-Tree Search Yew Jin Lim and Wee Sun Lee School of Computing National University of Singapore {limyewji,leews}@comp.nus.edu.sg Abstract Forward pruning, or selectively

More information

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes.

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2013 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except a three-page crib sheet. Please use non-programmable

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

CMSC 474, Game Theory

CMSC 474, Game Theory CMSC 474, Game Theory 4b. Game-Tree Search Dana Nau University of Maryland Nau: Game Theory 1 Finite perfect-information zero-sum games! Finite: Ø finitely many agents, actions, states, histories! Perfect

More information

Final. CS 188 Fall Introduction to Artificial Intelligence

Final. CS 188 Fall Introduction to Artificial Intelligence S 188 Fall 2012 Introduction to rtificial Intelligence Final You have approximately 3 hours. The exam is closed book, closed notes except your three one-page crib sheets. Please use non-programmable calculators

More information

An Analysis of Forward Pruning. to try to understand why programs have been unable to. pruning more eectively. 1

An Analysis of Forward Pruning. to try to understand why programs have been unable to. pruning more eectively. 1 Proc. AAAI-94, to appear. An Analysis of Forward Pruning Stephen J. J. Smith Dana S. Nau Department of Computer Science Department of Computer Science, and University of Maryland Institute for Systems

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Spring 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Spring term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for 2-person

More information

Space and Nondeterminism

Space and Nondeterminism CS 221 Computational Complexity, Lecture 5 Feb 6, 2018 Space and Nondeterminism Instructor: Madhu Sudan 1 Scribe: Yong Wook Kwon Topic Overview Today we ll talk about space and non-determinism. For some

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Spring 2017 Introduction to Artificial Intelligence Midterm V2 You have approximately 80 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark

More information

CS 662 Sample Midterm

CS 662 Sample Midterm Name: 1 True/False, plus corrections CS 662 Sample Midterm 35 pts, 5 pts each Each of the following statements is either true or false. If it is true, mark it true. If it is false, correct the statement

More information

Alpha-Beta Pruning Under Partial Orders

Alpha-Beta Pruning Under Partial Orders More Games of No Chance MSRI Publications Volume 42, 2002 Alpha-Beta Pruning Under Partial Orders MATTHEW L. GINSBERG AND ALAN JAFFRAY Abstract. Alpha-beta pruning is the algorithm of choice for searching

More information

Written examination: Solution suggestions TIN175/DIT411, Introduction to Artificial Intelligence

Written examination: Solution suggestions TIN175/DIT411, Introduction to Artificial Intelligence Written examination: Solution suggestions TIN175/DIT411, Introduction to Artificial Intelligence Question 1 had completely wrong alternatives, and cannot be answered! Therefore, the grade limits was lowered

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. CS 1571 Introduction to AI Lecture 8 Constraint satisfaction search. Combinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Objective:

More information

Introduction to computation. Lirong Xia

Introduction to computation. Lirong Xia Introduction to computation Lirong Xia Fall, 2016 Today s schedule ØComputation (completely different from previous classes)! ØLinear programming: a useful and generic technic to solve optimization problems

More information

Solution Set 4, Fall 12

Solution Set 4, Fall 12 Solution Set 4, 18.06 Fall 12 1. Do Problem 7 from 3.6. Solution. Since the matrix is invertible, we know the nullspace contains only the zero vector, hence there does not exist a basis for this subspace.

More information

Appendix. Mathematical Theorems

Appendix. Mathematical Theorems Appendix Mathematical Theorems This appendix introduces some theorems required in the discussion in Chap. 5 of the asymptotic behavior of minimax values in Pb-game models. Throughout this appendix, b is

More information

This observation leads to the following algorithm.

This observation leads to the following algorithm. 126 Andreas Jakoby A Bounding-Function for the Knapsack Problem Finding a useful bounding-function is for most problems a difficult task. Let us consider the Knapsack Problem: Let us consider the version

More information

algorithms Alpha-Beta Pruning and Althöfer s Pathology-Free Negamax Algorithm Algorithms 2012, 5, ; doi: /a

algorithms Alpha-Beta Pruning and Althöfer s Pathology-Free Negamax Algorithm Algorithms 2012, 5, ; doi: /a Algorithms 01, 5, 51-58; doi:10.3390/a504051 Article OPEN ACCESS algorithms ISSN 1999-4893 www.mdpi.com/journal/algorithms Alpha-Beta Pruning and Althöfer s Pathology-Free Negamax Algorithm Ashraf M. Abdelbar

More information

Scheduling with AND/OR Precedence Constraints

Scheduling with AND/OR Precedence Constraints Scheduling with AND/OR Precedence Constraints Seminar Mathematische Optimierung - SS 2007 23th April 2007 Synthesis synthesis: transfer from the behavioral domain (e. g. system specifications, algorithms)

More information

Learning in State-Space Reinforcement Learning CIS 32

Learning in State-Space Reinforcement Learning CIS 32 Learning in State-Space Reinforcement Learning CIS 32 Functionalia Syllabus Updated: MIDTERM and REVIEW moved up one day. MIDTERM: Everything through Evolutionary Agents. HW 2 Out - DUE Sunday before the

More information

Midterm. Introduction to Artificial Intelligence. CS 188 Summer You have approximately 2 hours and 50 minutes.

Midterm. Introduction to Artificial Intelligence. CS 188 Summer You have approximately 2 hours and 50 minutes. CS 188 Summer 2014 Introduction to Artificial Intelligence Midterm You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your one-page crib sheet. Mark your answers

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 88 Fall 208 Introduction to Artificial Intelligence Practice Final You have approximately 2 hours 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Name: UW CSE 473 Final Exam, Fall 2014

Name: UW CSE 473 Final Exam, Fall 2014 P1 P6 Instructions Please answer clearly and succinctly. If an explanation is requested, think carefully before writing. Points may be removed for rambling answers. If a question is unclear or ambiguous,

More information

CSC304 Lecture 5. Game Theory : Zero-Sum Games, The Minimax Theorem. CSC304 - Nisarg Shah 1

CSC304 Lecture 5. Game Theory : Zero-Sum Games, The Minimax Theorem. CSC304 - Nisarg Shah 1 CSC304 Lecture 5 Game Theory : Zero-Sum Games, The Minimax Theorem CSC304 - Nisarg Shah 1 Recap Last lecture Cost-sharing games o Price of anarchy (PoA) can be n o Price of stability (PoS) is O(log n)

More information

Speculative Parallelism in Cilk++

Speculative Parallelism in Cilk++ Speculative Parallelism in Cilk++ Ruben Perez & Gregory Malecha MIT May 11, 2010 Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 1 / 33 Parallelizing Embarrassingly Parallel

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Recap Network Flow Problems Max-Flow Min Cut Theorem Ford Fulkerson Augmenting Paths Residual Flow Graph Integral Solutions

More information

Andrew/CS ID: Midterm Solutions, Fall 2006

Andrew/CS ID: Midterm Solutions, Fall 2006 Name: Andrew/CS ID: 15-780 Midterm Solutions, Fall 2006 November 15, 2006 Place your name and your andrew/cs email address on the front page. The exam is open-book, open-notes, no electronics other than

More information

Impartial Games. Lemma: In any finite impartial game G, either Player 1 has a winning strategy, or Player 2 has.

Impartial Games. Lemma: In any finite impartial game G, either Player 1 has a winning strategy, or Player 2 has. 1 Impartial Games An impartial game is a two-player game in which players take turns to make moves, and where the moves available from a given position don t depend on whose turn it is. A player loses

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Constraint Satisfaction Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell Constraint Satisfaction Problems The

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

Essentials of the A* Algorithm

Essentials of the A* Algorithm Essentials of the A* Algorithm Keith L. Downing Search problems are ubiquitous in Artificial Intelligence (AI), and they are often so complex that standard brute-force methods (i.e. those that try every

More information

23. Cutting planes and branch & bound

23. Cutting planes and branch & bound CS/ECE/ISyE 524 Introduction to Optimization Spring 207 8 23. Cutting planes and branch & bound ˆ Algorithms for solving MIPs ˆ Cutting plane methods ˆ Branch and bound methods Laurent Lessard (www.laurentlessard.com)

More information

Introduction to Combinatorial Game Theory

Introduction to Combinatorial Game Theory Introduction to Combinatorial Game Theory Tom Plick Drexel MCS Society April 10, 2008 1/40 A combinatorial game is a two-player game with the following properties: alternating play perfect information

More information

Introduction to Spring 2006 Artificial Intelligence Practice Final

Introduction to Spring 2006 Artificial Intelligence Practice Final NAME: SID#: Login: Sec: 1 CS 188 Introduction to Spring 2006 Artificial Intelligence Practice Final You have 180 minutes. The exam is open-book, open-notes, no electronics other than basic calculators.

More information

Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings

Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings Learning in Depth-First Search: A Unified Approach to Heuristic Search in Deterministic, Non-Deterministic, Probabilistic, and Game Tree Settings Blai Bonet and Héctor Geffner Abstract Dynamic Programming

More information

Exam EDAF May 2011, , Vic1. Thore Husfeldt

Exam EDAF May 2011, , Vic1. Thore Husfeldt Exam EDAF05 25 May 2011, 8.00 13.00, Vic1 Thore Husfeldt Instructions What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these two things are

More information

Sampling from Bayes Nets

Sampling from Bayes Nets from Bayes Nets http://www.youtube.com/watch?v=mvrtaljp8dm http://www.youtube.com/watch?v=geqip_0vjec Paper reviews Should be useful feedback for the authors A critique of the paper No paper is perfect!

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

Local search and agents

Local search and agents Artificial Intelligence Local search and agents Instructor: Fabrice Popineau [These slides adapted from Stuart Russell, Dan Klein and Pieter Abbeel @ai.berkeley.edu] Local search algorithms In many optimization

More information

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability Due: Thursday 10/15 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

Deep Reinforcement Learning

Deep Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 50 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Midterm Examination CS540: Introduction to Artificial Intelligence

Midterm Examination CS540: Introduction to Artificial Intelligence Midterm Examination CS540: Introduction to Artificial Intelligence November 1, 2005 Instructor: Jerry Zhu CLOSED BOOK (One letter-size notes allowed. Turn it in with the exam) LAST (FAMILY) NAME: FIRST

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007.

Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007. Fall 2007 / Page 1 Final exam of ECE 457 Applied Artificial Intelligence for the Fall term 2007. Don t panic. Be sure to write your name and student ID number on every page of the exam. The only materials

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

CS221 Practice Midterm #2 Solutions

CS221 Practice Midterm #2 Solutions CS221 Practice Midterm #2 Solutions Summer 2013 Updated 4:00pm, July 24 2 [Deterministic Search] Pacfamily (20 points) Pacman is trying eat all the dots, but he now has the help of his family! There are

More information

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro

CMU Lecture 4: Informed Search. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 4: Informed Search Teacher: Gianni A. Di Caro UNINFORMED VS. INFORMED Uninformed Can only generate successors and distinguish goals from non-goals Informed Strategies that can distinguish

More information

Rollout-based Game-tree Search Outprunes Traditional Alpha-beta

Rollout-based Game-tree Search Outprunes Traditional Alpha-beta Journal of Machine Learning Research vol:1 8, 2012 Submitted 6/2012 Rollout-based Game-tree Search Outprunes Traditional Alpha-beta Ari Weinstein Michael L. Littman Sergiu Goschin aweinst@cs.rutgers.edu

More information

Solving Zero-Sum Extensive-Form Games. Branislav Bošanský AE4M36MAS, Fall 2013, Lecture 6

Solving Zero-Sum Extensive-Form Games. Branislav Bošanský AE4M36MAS, Fall 2013, Lecture 6 Solving Zero-Sum Extensive-Form Games ranislav ošanský E4M36MS, Fall 2013, Lecture 6 Imperfect Information EFGs States Players 1 2 Information Set ctions Utility Solving II Zero-Sum EFG with perfect recall

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 4: Query Optimization Query Optimization Cost estimation Strategies for exploring plans Q min CS 347 Notes 4 2 Cost Estimation Based on

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams

I may not have gone where I intended to go, but I think I have ended up where I needed to be. Douglas Adams Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the topic. They are neither a substitute for attending the lectures nor for reading the assigned material. I may not have

More information

Rutgers Business School, Introduction to Probability, 26:960:575. Homework 1. Prepared by Daniel Pirutinsky. Feburary 1st, 2016

Rutgers Business School, Introduction to Probability, 26:960:575. Homework 1. Prepared by Daniel Pirutinsky. Feburary 1st, 2016 Rutgers usiness School, Introduction to Probability, 6:960:575 Homework Prepared by Daniel Pirutinsky Feburary st, 06 Introduction Suppose we have two boxes, labeled and. Each box contains some amount

More information

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes Name: Roll Number: Please read the following instructions carefully Ø Calculators are allowed. However, laptops or mobile phones are not

More information

FINAL EXAM CHEAT SHEET/STUDY GUIDE. You can use this as a study guide. You will also be able to use it on the Final Exam on

FINAL EXAM CHEAT SHEET/STUDY GUIDE. You can use this as a study guide. You will also be able to use it on the Final Exam on FINAL EXAM CHEAT SHEET/STUDY GUIDE You can use this as a study guide. You will also be able to use it on the Final Exam on Tuesday. If there s anything else you feel should be on this, please send me email

More information

Q-learning Tutorial. CSC411 Geoffrey Roeder. Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava

Q-learning Tutorial. CSC411 Geoffrey Roeder. Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava Q-learning Tutorial CSC411 Geoffrey Roeder Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler, Nitish Srivastava Tutorial Agenda Refresh RL terminology through Tic Tac Toe Deterministic

More information