Local search and agents

Size: px
Start display at page:

Download "Local search and agents"

Transcription

1 Artificial Intelligence Local search and agents Instructor: Fabrice Popineau [These slides adapted from Stuart Russell, Dan Klein and Pieter

2 Local search algorithms In many optimization problems, path is irrelevant; the goal state is the solution Then state space = set of complete configurations; find configuration satisfying constraints, e.g., n-queens problem; or, find optimal configuration, e.g., travelling salesperson problem In such cases, can use iterative improvement algorithms; keep a single current state, try to improve it Constant space, suitable for online as well as offline search

3 Heuristic for n-queens problem Goal: n queens on board with no conflicts, i.e., no queen attacking another States: n queens on board, one per column Heuristic value function: number of conflicts

4 Hill-climbing algorithm function HILL-CLIMBING(problem) returns a state current make-node(problem.initial-state) loop do neighbor a highest-valued successor of current if neighbor.value current.value then return current.state current neighbor Like climbing Everest in thick fog with amnesia

5 Global and local maxima Random restarts find global optimum duh Random sideways moves Escape from shoulders Loop forever on flat local maxima

6 Hill-climbing on the 8-queens problem No sideways moves: Succeeds w/ prob Average number of moves per trial: 4 when succeeding, 3 when getting stuck Expected total number of moves needed: 3(1-p)/p + 4 =~ 22 moves Allowing 100 sideways moves: Succeeds w/ prob Average number of moves per trial: 21 when succeeding, 65 when getting stuck Expected total number of moves needed: 65(1-p)/p + 21 =~ 25 moves Moral: algorithms with knobs to twiddle are irritating

7 Hill Climbing Quiz Starting from X, where do you end up? Starting from Y, where do you end up? Starting from Z, where do you end up?

8 Simulated annealing Resembles the annealing process used to cool metals slowly to reach an ordered (lowenergy) state Basic idea: Allow bad moves occasionally, depending on temperature High temperature => more bad moves allowed, shake the system out of its local minimum Gradually reduce temperature according to some schedule Sounds pretty flaky, doesn t it? Theorem: simulated annealing finds the global optimum with probability 1 for a slow enough cooling schedule

9 Simulated annealing algorithm function SIMULATED-ANNEALING(problem,schedule) returns a state current make-node(problem.initial-state) for t = 1 to do T schedule(t) if T = 0 then return current next a randomly selected successor of current E next.value current.value if E > 0 then current next else current next only with probability e E/T

10 Simulated Annealing Theoretical guarantee: Stationary distribution: If T decreased slowly enough, will converge to optimal state! Is this an interesting guarantee? Sounds like magic, but reality is reality: The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row People think hard about ridge operators which let you jump around the space in better ways

11 Local beam search Basic idea: K copies of a local search algorithm, initialized randomly For each iteration Generate ALL successors from K current states Choose best K of these to be the new current states Why is this different from K local searches in parallel? The searches communicate! Come over here, the grass is greener! What other well-known algorithm does this remind you of? Evolution! Or, K chosen randomly with a bias towards good ones

12 Genetic Algorithms Genetic algorithms use a natural selection metaphor Keep best N hypotheses at each step (selection) based on a fitness function Also have pairwise crossover operators, with optional mutation to give variety Possibly the most misunderstood, misapplied (and even maligned) technique around

13 Example: N-Queens Why does crossover make sense here? When wouldn t it make sense? What would mutation be? What would a good fitness function be?

14 Searching in the real world Nondeterminism: actions have unpredictable effects Modified problem formulation to allow multiple outcomes Solutions are now contingency plans New algorithm to find them: AND-OR search May need plans with loops! Partial observability: percept is not the whole state New concept: belief state = set of states agent could be in Modified formulation for search in belief state space; add observation model Simple and general agent design Nondeterminism and partial observability

15 The erratic vacuum world If square is dirty, Suck sometimes cleans up dirt in adjacent square as well E.g., state 1 could go to 5 or 7 If square is clean, Suck may dump dirt on it by accident E.g., state 4 could go to 4 or 2

16 Problem formulation Results( s,a) returns a set of states Results( 1,Suck) = {5,7} Results( 4,Suck) = {2,4} Results( 1,Right) = {2} Everything else is the same as before

17 Contingent solutions From state 1, does [Suck] solve the problem? Not necessarily! What about [Suck,Right,Suck]? Not necessarily! [Suck; if state=5 then [Right,Suck] else []] This is a contingent solution (a.k.a. a branching or conditional plan) Great! So, how do we find such solutions?

18 AND-OR search trees OR-node: Agent chooses action; At least one branch must be solved AND-node: Nature chooses outcome; All branches must be solved

19 AND-OR search made easy AND-OR search: call OR-Search on the root node OR-search(node): succeeds if AND-search succeeds on the outcome set for any action AND-search(set of nodes): succeeds if OR-search succeeds on ALL nodes in the set

20 AND-OR search function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure OR-SEARCH(problem.initial-state,problem,[]) function OR-SEARCH(state,problem,path) returns a conditional plan, or failure if problem.goal-test(state) then return the empty plan if state is on path then return failure for each action in problem.actions(state) do plan AND-SEARCH(results(state,action),problem,[state path]) if plan failure then return [action plan] return failure

21 AND-OR search contd. function AND-SEARCH(states,problem,path) returns a conditional plan, or failure for each s i in states do plan i OR-SEARCH(s i,problem,path) if plan i = failure then return failure return [if s 1 then plan 1 else if s 2 then plan 2 else... if s n 1 then plan n 1 else plan n ]

22 Slippery vacuum world Sometimes movement fails There is no guaranteed contingent solution! There is a cyclic solution: [Suck, L1 : Right, if State = 5 then L1 else Suck] Here L1 is a label Modify AND-OR-GRAPH-SEARCH to add a label when it finds a repeated state, try adding a branch to the label instead of failure A cyclic plan is a cyclic solution if Every leaf is a goal state From every point in the plan there is a path to a leaf

23 What does nondeterminism really mean? Example: your hotel key card doesn t open the door of your room Explanation 1: you didn t put it in quite right This is nondeterminism; keep trying Explanation 2: something wrong with the key This is partial observability; get a new key Explanation 3: it isn t your room This is embarrassing; get a new brain A nondeterministic model is appropriate when outcomes don t depend deterministically on some hidden state

24 Partial observability

25 Extreme partial observability: Sensorless worlds Vacuum world with known geometry, dirt, but no sensors at all! Belief state: set of all environment states the agent could be in More generally, what the agent knows given all percepts to date Right Suck Suck Left

26 Sensorless problem formulation Underlying physical problem has Actions P, Result P, Cost P. Initial state: a belief state b (set of physical states s) N physical states => 2 N belief states Goal test: every element s in b satisfies Goal-Test P (s) Actions: union of Actions P (s) for each s in b This is OK if doing an illegal action has no effect Transition model: Deterministic: Result(b,a) = union of Result P (s,a) for each s in b Nondeterministic: Result(b,a) = union of Results P (s,a) for each s in b Step-Cost(b,a,b ) = Step-Cost P (s,a,s ) for any s in b Goal-Test P, and Step-

27 Search in sensorless belief state space Everything works exactly as before! Solutions are still action sequences! Some opportunities for improvement: If any s in b is unsolvable, b is unsolvable If b is superset of b and b is in tree, discard b If b is a superset of b and b has a solution, b has same solution

28 What use are sensorless problems? They correspond to many real-world robotic manipulation problems A part orientation conveyor consists of a sequence of slanted guides that orient the part correctly no matter what its initial orientation It s a lot cheaper and more reliable than using a camera and robot arm!

29 Partial observability: formulation Partially observable problem formulation has to say what the agent can observe: Deterministic: Percept(s) is the percept received in physical state s Nondeterministic: Percepts(s) is the set of possible percepts received in s Fully observable: Percept(s) = s Sensorless: Percept(s)=null Local sensing vacuum world Percept(s1) = [A,Dirty] Percept(s3) = [A,Dirty]

30 Partial observability: belief state transition model b = Predict(b,a) updates the belief state just for the action Identical to transition model for sensorless problems Possible-Percepts(b ) is the set of percepts that could come next Union of Percept(s) for every s in b Update(b,p) is the new belief state if percept p is received Just the states s in b for which p = Percept(s) Results(b,a) contains Update(Predict(b,a),p) for each p in Possible-Percepts(Predict(b,a))

31 Example: Results(b 0,Right) b 0 b =Predict(b 0,Right) Update(b,[B,Dirty]) Update(b,[B,Clean]) Possible-Percepts(b )

32 Percept is p given by the environment Repeat after me: b <- Update(Predict(b,a),p) Maintaining belief state in an agent This is the predict-update cycle Also known as monitoring, filtering, state estimation Localization and mapping are two special cases

33 Summary Nondeterminism requires contingent plans AND-OR search finds them Sensorless problems require ordinary plans Search in belief state space to find them General partial observability induces nondeterminism for percepts AND-OR search in belief state space Predict-Update cycle for belief state transitions

34 Next Time: Adversarial Search!

New rubric: AI in the news

New rubric: AI in the news New rubric: AI in the news 3 minutes Headlines this week: Silicon Valley Business Journal: Apple on hiring spreee for AI experts Forbes: Toyota Invests $50 Million In Artificial Intelligence Research For

More information

Pengju

Pengju Introduction to AI Chapter04 Beyond Classical Search Pengju Ren@IAIR Outline Steepest Descent (Hill-climbing) Simulated Annealing Evolutionary Computation Non-deterministic Actions And-OR search Partial

More information

Local and Online search algorithms

Local and Online search algorithms Local and Online search algorithms Chapter 4 Chapter 4 1 Outline Local search algorithms Hill-climbing Simulated annealing Genetic algorithms Searching with non-deterministic actions Searching with partially/no

More information

Planning and search. Lecture 6: Search with non-determinism and partial observability

Planning and search. Lecture 6: Search with non-determinism and partial observability Planning and search Lecture 6: Search with non-determinism and partial observability Lecture 6: Search with non-determinism and partial observability 1 Today s lecture Non-deterministic actions. AND-OR

More information

Chapter 4 Beyond Classical Search 4.1 Local search algorithms and optimization problems

Chapter 4 Beyond Classical Search 4.1 Local search algorithms and optimization problems Chapter 4 Beyond Classical Search 4.1 Local search algorithms and optimization problems CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE PROBLEM SOLVING: LOCAL SEARCH 10/11/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Recall: Problem Solving Idea:

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

A.I.: Beyond Classical Search

A.I.: Beyond Classical Search A.I.: Beyond Classical Search Random Sampling Trivial Algorithms Generate a state randomly Random Walk Randomly pick a neighbor of the current state Both algorithms asymptotically complete. Overview Previously

More information

Beyond Classical Search

Beyond Classical Search Beyond Classical Search Chapter 4 (Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!) 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces

More information

Searching in non-deterministic, partially observable and unknown environments

Searching in non-deterministic, partially observable and unknown environments Searching in non-deterministic, partially observable and unknown environments CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2014 Soleymani Artificial Intelligence:

More information

Searching in non-deterministic, partially observable and unknown environments

Searching in non-deterministic, partially observable and unknown environments Searching in non-deterministic, partially observable and unknown environments CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence:

More information

Iterative improvement algorithms. Beyond Classical Search. Outline. Example: Traveling Salesperson Problem

Iterative improvement algorithms. Beyond Classical Search. Outline. Example: Traveling Salesperson Problem Iterative improvement algorithms In many optimization problems, path is irrelevant; the goal state itself is the solution Beyond Classical earch Chapter 4, ections 4.1-4.2 Then state space = set of complete

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Some

More information

Local Search and Optimization

Local Search and Optimization Local Search and Optimization Outline Local search techniques and optimization Hill-climbing Gradient methods Simulated annealing Genetic algorithms Issues with local search Local search and optimization

More information

Summary. AIMA sections 4.3,4.4. Hill-climbing Simulated annealing Genetic algorithms (briey) Local search in continuous spaces (very briey)

Summary. AIMA sections 4.3,4.4. Hill-climbing Simulated annealing Genetic algorithms (briey) Local search in continuous spaces (very briey) AIMA sections 4.3,4.4 Summary Hill-climbing Simulated annealing Genetic (briey) in continuous spaces (very briey) Iterative improvement In many optimization problems, path is irrelevant; the goal state

More information

22c:145 Artificial Intelligence

22c:145 Artificial Intelligence 22c:145 Artificial Intelligence Fall 2005 Informed Search and Exploration III Cesare Tinelli The University of Iowa Copyright 2001-05 Cesare Tinelli and Hantao Zhang. a a These notes are copyrighted material

More information

Local search algorithms. Chapter 4, Sections 3 4 1

Local search algorithms. Chapter 4, Sections 3 4 1 Local search algorithms Chapter 4, Sections 3 4 Chapter 4, Sections 3 4 1 Outline Hill-climbing Simulated annealing Genetic algorithms (briefly) Local search in continuous spaces (very briefly) Chapter

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Focused on finding a goal state Less focused on solution path or cost } Choose a state and search nearby (local) states Not a systematic

More information

Local Search & Optimization

Local Search & Optimization Local Search & Optimization CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 4 Outline

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems S 331: rtificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines Or

More information

Scaling Up. So far, we have considered methods that systematically explore the full search space, possibly using principled pruning (A* etc.).

Scaling Up. So far, we have considered methods that systematically explore the full search space, possibly using principled pruning (A* etc.). Local Search Scaling Up So far, we have considered methods that systematically explore the full search space, possibly using principled pruning (A* etc.). The current best such algorithms (RBFS / SMA*)

More information

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14

LOCAL SEARCH. Today. Reading AIMA Chapter , Goals Local search algorithms. Introduce adversarial search 1/31/14 LOCAL SEARCH Today Reading AIMA Chapter 4.1-4.2, 5.1-5.2 Goals Local search algorithms n hill-climbing search n simulated annealing n local beam search n genetic algorithms n gradient descent and Newton-Rhapson

More information

IS-ZC444: ARTIFICIAL INTELLIGENCE

IS-ZC444: ARTIFICIAL INTELLIGENCE IS-ZC444: ARTIFICIAL INTELLIGENCE Lecture-07: Beyond Classical Search Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031,

More information

Last time: Summary. Last time: Summary

Last time: Summary. Last time: Summary 1 Last time: Summary Definition of AI? Turing Test? Intelligent Agents: Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors

More information

Local search algorithms

Local search algorithms Local search algorithms CS171, Winter 2018 Introduction to Artificial Intelligence Prof. Richard Lathrop Reading: R&N 4.1-4.2 Local search algorithms In many optimization problems, the path to the goal

More information

Introduction to Simulated Annealing 22c:145

Introduction to Simulated Annealing 22c:145 Introduction to Simulated Annealing 22c:145 Simulated Annealing Motivated by the physical annealing process Material is heated and slowly cooled into a uniform structure Simulated annealing mimics this

More information

Methods for finding optimal configurations

Methods for finding optimal configurations CS 1571 Introduction to AI Lecture 9 Methods for finding optimal configurations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Search for the optimal configuration Optimal configuration search:

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search II Instructor: Anca Dragan University of California, Berkeley [These slides adapted from Dan Klein and Pieter Abbeel] Minimax Example 3 12 8 2 4 6 14

More information

Local and Stochastic Search

Local and Stochastic Search RN, Chapter 4.3 4.4; 7.6 Local and Stochastic Search Some material based on D Lin, B Selman 1 Search Overview Introduction to Search Blind Search Techniques Heuristic Search Techniques Constraint Satisfaction

More information

Finding optimal configurations ( combinatorial optimization)

Finding optimal configurations ( combinatorial optimization) CS 1571 Introduction to AI Lecture 10 Finding optimal configurations ( combinatorial optimization) Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Constraint

More information

CSC242: Artificial Intelligence. Lecture 4 Local Search

CSC242: Artificial Intelligence. Lecture 4 Local Search CSC242: Artificial Intelligence Lecture 4 Local Search Upper Level Writing Topics due to me by next class! First draft due Mar 4 Goal: final paper 15 pages +/- 2 pages 12 pt font, 1.5 line spacing Get

More information

CSE 473: Artificial Intelligence Spring 2014

CSE 473: Artificial Intelligence Spring 2014 CSE 473: Artificial Intelligence Spring 2014 Hanna Hajishirzi Problem Spaces and Search slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer Outline Agents that

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 4 Metaheuristic Algorithms Sarah Gaggl Dresden, 5th May 2017 Agenda 1 Introduction 2 Constraint

More information

CSE 473: Artificial Intelligence Spring 2014

CSE 473: Artificial Intelligence Spring 2014 CSE 473: Artificial Intelligence Spring 2014 Hidden Markov Models Hanna Hajishirzi Many slides adapted from Dan Weld, Pieter Abbeel, Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

The Story So Far... The central problem of this course: Smartness( X ) arg max X. Possibly with some constraints on X.

The Story So Far... The central problem of this course: Smartness( X ) arg max X. Possibly with some constraints on X. Heuristic Search The Story So Far... The central problem of this course: arg max X Smartness( X ) Possibly with some constraints on X. (Alternatively: arg min Stupidness(X ) ) X Properties of Smartness(X)

More information

CSC242: Intro to AI. Lecture 5. Tuesday, February 26, 13

CSC242: Intro to AI. Lecture 5. Tuesday, February 26, 13 CSC242: Intro to AI Lecture 5 CSUG Tutoring: bit.ly/csug-tutoring League of Legends LAN Party: Sat 2/2 @ 2PM in CSB 209 $2 to benefit Big Brothers Big Sisters bit.ly/urlol ULW Topics due to me by tomorrow

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: I I Select a variable to change Select a new value for that variable Until a satisfying assignment

More information

Methods for finding optimal configurations

Methods for finding optimal configurations S 2710 oundations of I Lecture 7 Methods for finding optimal configurations Milos Hauskrecht milos@pitt.edu 5329 Sennott Square S 2710 oundations of I Search for the optimal configuration onstrain satisfaction

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

Deterministic Planning and State-space Search. Erez Karpas

Deterministic Planning and State-space Search. Erez Karpas Planning and Search IE&M Technion to our Problem-solving agents Restricted form of general agent def Simple-Problem-Solving-Agent (problem): state, some description of the current world state seq, an action

More information

Optimization. Announcements. Last Time. Searching: So Far. Complete Searching. Optimization

Optimization. Announcements. Last Time. Searching: So Far. Complete Searching. Optimization Optimization urr H. ettles C-540, UW-Madison www.cs.wisc.edu/~cs540-1 ummer 2003 nnouncements Project groups and preliminary topic ideas will be due on 6/30 week from Monday e thinking about what you d

More information

Optimization Methods via Simulation

Optimization Methods via Simulation Optimization Methods via Simulation Optimization problems are very important in science, engineering, industry,. Examples: Traveling salesman problem Circuit-board design Car-Parrinello ab initio MD Protein

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

CSC 4510 Machine Learning

CSC 4510 Machine Learning 10: Gene(c Algorithms CSC 4510 Machine Learning Dr. Mary Angela Papalaskari Department of CompuBng Sciences Villanova University Course website: www.csc.villanova.edu/~map/4510/ Slides of this presenta(on

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2017 Problem Solving by Search Cesare Tinelli The University of Iowa Copyright 2004 17, Cesare Tinelli and Stuart ussell a a These notes were originally developed

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

Artificial Intelligence Heuristic Search Methods

Artificial Intelligence Heuristic Search Methods Artificial Intelligence Heuristic Search Methods Chung-Ang University, Jaesung Lee The original version of this content is created by School of Mathematics, University of Birmingham professor Sandor Zoltan

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Hidden Markov Models Dieter Fox --- University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 16: Bayes Nets IV Inference 3/28/2011 Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

Problem solving and search. Chapter 3. Chapter 3 1

Problem solving and search. Chapter 3. Chapter 3 1 Problem solving and search Chapter 3 Chapter 3 1 eminders ssignment 0 due 5pm today ssignment 1 posted, due 2/9 Section 105 will move to 9-10am starting next week Chapter 3 2 Problem-solving agents Problem

More information

HILL-CLIMBING JEFFREY L. POPYACK

HILL-CLIMBING JEFFREY L. POPYACK HILL-CLIMBING JEFFREY L. POPYACK IN SEARCH OF INTELLIGENCE I: HILL CLIMBING Covered so far: AI Overview Production Systems Agents AI Programming (LISP + Python) PRODUCTION SYSTEMS AND SEARCH Starting w/

More information

Constraint satisfaction search. Combinatorial optimization search.

Constraint satisfaction search. Combinatorial optimization search. CS 1571 Introduction to AI Lecture 8 Constraint satisfaction search. Combinatorial optimization search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Constraint satisfaction problem (CSP) Objective:

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22.

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22. Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 15: Bayes Nets 3 Midterms graded Assignment 2 graded Announcements Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides

More information

Bayes Nets III: Inference

Bayes Nets III: Inference 1 Hal Daumé III (me@hal3.name) Bayes Nets III: Inference Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 10 Apr 2012 Many slides courtesy

More information

CS 188: Artificial Intelligence Spring 2009

CS 188: Artificial Intelligence Spring 2009 CS 188: Artificial Intelligence Spring 2009 Lecture 21: Hidden Markov Models 4/7/2009 John DeNero UC Berkeley Slides adapted from Dan Klein Announcements Written 3 deadline extended! Posted last Friday

More information

Single Solution-based Metaheuristics

Single Solution-based Metaheuristics Parallel Cooperative Optimization Research Group Single Solution-based Metaheuristics E-G. Talbi Laboratoire d Informatique Fondamentale de Lille Single solution-based metaheuristics Improvement of a solution.

More information

Random Search. Shin Yoo CS454, Autumn 2017, School of Computing, KAIST

Random Search. Shin Yoo CS454, Autumn 2017, School of Computing, KAIST Random Search Shin Yoo CS454, Autumn 2017, School of Computing, KAIST Random Search The polar opposite to the deterministic, examineeverything, search. Within the given budget, repeatedly generate a random

More information

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms

Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms Motivation, Basic Concepts, Basic Methods, Travelling Salesperson Problem (TSP), Algorithms 1 What is Combinatorial Optimization? Combinatorial Optimization deals with problems where we have to search

More information

Local search algorithms

Local search algorithms Local search algorithms CS171, Fall 2016 Introduc

More information

Solving Problems By Searching

Solving Problems By Searching Solving Problems By Searching Instructor: Dr. Wei Ding Fall 2010 1 Problem-Solving Agent Goal-based agents: considering future actions and the desirability of their outcomes. Decide what to do by finding

More information

Announcements. CS 188: Artificial Intelligence Fall Adversarial Games. Computing Minimax Values. Evaluation Functions. Recap: Resource Limits

Announcements. CS 188: Artificial Intelligence Fall Adversarial Games. Computing Minimax Values. Evaluation Functions. Recap: Resource Limits CS 188: Artificial Intelligence Fall 2009 Lecture 7: Expectimax Search 9/17/2008 Announcements Written 1: Search and CSPs is up Project 2: Multi-agent Search is up Want a partner? Come to the front after

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2009 Lecture 7: Expectimax Search 9/17/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Announcements Written

More information

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525 Markov Models and Reinforcement Learning Stephen G. Ware CSCI 4525 / 5525 Camera Vacuum World (CVW) 2 discrete rooms with cameras that detect dirt. A mobile robot with a vacuum. The goal is to ensure both

More information

Mini-project 2 (really) due today! Turn in a printout of your work at the end of the class

Mini-project 2 (really) due today! Turn in a printout of your work at the end of the class Administrivia Mini-project 2 (really) due today Turn in a printout of your work at the end of the class Project presentations April 23 (Thursday next week) and 28 (Tuesday the week after) Order will be

More information

Computational Intelligence in Product-line Optimization

Computational Intelligence in Product-line Optimization Computational Intelligence in Product-line Optimization Simulations and Applications Peter Kurz peter.kurz@tns-global.com June 2017 Restricted use Restricted use Computational Intelligence in Product-line

More information

Metaheuristics. 2.3 Local Search 2.4 Simulated annealing. Adrian Horga

Metaheuristics. 2.3 Local Search 2.4 Simulated annealing. Adrian Horga Metaheuristics 2.3 Local Search 2.4 Simulated annealing Adrian Horga 1 2.3 Local Search 2 Local Search Other names: Hill climbing Descent Iterative improvement General S-Metaheuristics Old and simple method

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 AIMA2e Slides, Stuart Russell and Peter Norvig, Completed by Kazim Fouladi, Fall 2008 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure

More information

CS188 Outline. We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning. Part III: Machine Learning

CS188 Outline. We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning. Part III: Machine Learning CS188 Outline We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning Diagnosis Speech recognition Tracking objects Robot mapping Genetics Error correcting codes lots more! Part III:

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

Learning in State-Space Reinforcement Learning CIS 32

Learning in State-Space Reinforcement Learning CIS 32 Learning in State-Space Reinforcement Learning CIS 32 Functionalia Syllabus Updated: MIDTERM and REVIEW moved up one day. MIDTERM: Everything through Evolutionary Agents. HW 2 Out - DUE Sunday before the

More information

Artificial Intelligence (Künstliche Intelligenz 1) Part II: Problem Solving

Artificial Intelligence (Künstliche Intelligenz 1) Part II: Problem Solving Kohlhase: Künstliche Intelligenz 1 76 July 12, 2018 Artificial Intelligence (Künstliche Intelligenz 1) Part II: Problem Solving Michael Kohlhase Professur für Wissensrepräsentation und -verarbeitung Informatik,

More information

CS188 Outline. CS 188: Artificial Intelligence. Today. Inference in Ghostbusters. Probability. We re done with Part I: Search and Planning!

CS188 Outline. CS 188: Artificial Intelligence. Today. Inference in Ghostbusters. Probability. We re done with Part I: Search and Planning! CS188 Outline We re done with art I: Search and lanning! CS 188: Artificial Intelligence robability art II: robabilistic Reasoning Diagnosis Speech recognition Tracking objects Robot mapping Genetics Error

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING 11/11/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary so far: Rational Agents Problem

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Hidden Markov Models Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell, Andrew Moore, Ali Farhadi, or Dan Weld 1 Outline Probabilistic

More information

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008 CS 88: Artificial Intelligence Fall 28 Lecture 9: HMMs /4/28 Announcements Midterm solutions up, submit regrade requests within a week Midterm course evaluation up on web, please fill out! Dan Klein UC

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

22c:145 Artificial Intelligence

22c:145 Artificial Intelligence 22c:145 Artificial Intelligence Fall 2005 Problem Solving by Search Cesare Tinelli The University of Iowa Copyright 2001-05 Cesare Tinelli and Hantao Zhang. a a These notes are copyrighted material and

More information

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes.

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2014 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your two-page crib sheet. Mark your answers

More information

Local Beam Search. CS 331: Artificial Intelligence Local Search II. Local Beam Search Example. Local Beam Search Example. Local Beam Search Example

Local Beam Search. CS 331: Artificial Intelligence Local Search II. Local Beam Search Example. Local Beam Search Example. Local Beam Search Example 1 S 331: rtificial Intelligence Local Search II 1 Local eam Search Travelling Salesman Problem 2 Keeps track of k states rather than just 1. k=2 in this example. Start with k randomly generated states.

More information

Announcements. CS 188: Artificial Intelligence Spring Mini-Contest Winners. Today. GamesCrafters. Adversarial Games

Announcements. CS 188: Artificial Intelligence Spring Mini-Contest Winners. Today. GamesCrafters. Adversarial Games CS 188: Artificial Intelligence Spring 2009 Lecture 7: Expectimax Search 2/10/2009 John DeNero UC Berkeley Slides adapted from Dan Klein, Stuart Russell or Andrew Moore Announcements Written Assignment

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Reinforcement Learning Instructor: Fabrice Popineau [These slides adapted from Stuart Russell, Dan Klein and Pieter Abbeel @ai.berkeley.edu] Reinforcement Learning Double

More information

Introduction to Spring 2006 Artificial Intelligence Practice Final

Introduction to Spring 2006 Artificial Intelligence Practice Final NAME: SID#: Login: Sec: 1 CS 188 Introduction to Spring 2006 Artificial Intelligence Practice Final You have 180 minutes. The exam is open-book, open-notes, no electronics other than basic calculators.

More information

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 9: Search 8 Victor R. Lesser CMPSCI 683 Fall 2010 ANNOUNCEMENTS REMEMBER LECTURE ON TUESDAY! EXAM ON OCTOBER 18 OPEN BOOK ALL MATERIAL COVERED IN LECTURES REQUIRED READINGS WILL MOST PROBABLY NOT

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Models Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to

More information

Factored State Spaces 3/2/178

Factored State Spaces 3/2/178 Factored State Spaces 3/2/178 Converting POMDPs to MDPs In a POMDP: Action + observation updates beliefs Value is a function of beliefs. Instead we can view this as an MDP where: There is a state for every

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

5.3 Conditional Probability and Independence

5.3 Conditional Probability and Independence 28 CHAPTER 5. PROBABILITY 5. Conditional Probability and Independence 5.. Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Algorithms for Playing and Solving games*

Algorithms for Playing and Solving games* Algorithms for Playing and Solving games* Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599 * Two Player Zero-sum Discrete

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Hidden Markov Models Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Constraint Satisfaction Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell Constraint Satisfaction Problems The

More information

Simulated Annealing. Local Search. Cost function. Solution space

Simulated Annealing. Local Search. Cost function. Solution space Simulated Annealing Hill climbing Simulated Annealing Local Search Cost function? Solution space Annealing Annealing is a thermal process for obtaining low energy states of a solid in a heat bath. The

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Hidden Markov Models Instructor: Anca Dragan --- University of California, Berkeley [These slides were created by Dan Klein, Pieter Abbeel, and Anca. http://ai.berkeley.edu.]

More information

Announcements. CS 188: Artificial Intelligence Spring Bayes Net Semantics. Probabilities in BNs. All Conditional Independences

Announcements. CS 188: Artificial Intelligence Spring Bayes Net Semantics. Probabilities in BNs. All Conditional Independences CS 188: Artificial Intelligence Spring 2011 Announcements Assignments W4 out today --- this is your last written!! Any assignments you have not picked up yet In bin in 283 Soda [same room as for submission

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

CS 188: Artificial Intelligence Fall Recap: Inference Example

CS 188: Artificial Intelligence Fall Recap: Inference Example CS 188: Artificial Intelligence Fall 2007 Lecture 19: Decision Diagrams 11/01/2007 Dan Klein UC Berkeley Recap: Inference Example Find P( F=bad) Restrict all factors P() P(F=bad ) P() 0.7 0.3 eather 0.7

More information

Markov Chains and Hidden Markov Models

Markov Chains and Hidden Markov Models Markov Chains and Hidden Markov Models CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Slides are based on Klein and Abdeel, CS188, UC Berkeley. Reasoning

More information