Points to Learn. τ C. τ R. conservative substance reactive substance. τ W V Q. out. out

Size: px
Start display at page:

Download "Points to Learn. τ C. τ R. conservative substance reactive substance. τ W V Q. out. out"

Transcription

1 Pots to Learn Steady State: defition Assimilation capacity - Concept - Mathematical defition: Transfer Coefficient, β =C /C Residence time: hydraulic conservative substance reactive substance τ R = a = τ W τ C W Q+ va+ kv = = V Q V Q out V Q + v A+ k V out

2 Mass Balance Change mass = Inputs - Outputs + ternal changes Rate of change of mass = Rate of put - Rate of output + rate of ternal change Inputs Reaction Outputs

3 dmass ( ) puts outputs transformations = ± Δt Δt Δt b dv C g = W Q C± k C V Constant volume = W Q C± kcv River puts domant Changg volume + C dv = W Q C± kcv River, atmospheric, groundwater puts = Q C Q C ± kcv = Q C + PC A ± Q C QC ± kcv ra GW GW First-order reaction = Q C Q C± kcv First-order transformation, settlg = Q C Q C± kcv v CA s

4 dmass ( ) puts outputs transformations = ± Δt Δt Δt b dv C g = W Q C± k C V Constant volume = W Q C± kcv River puts domant Changg volume + C dv = W Q C± kcv River, atmospheric, groundwater puts = Q C Q C ± kcv = Q C + PC A ± Q C QC ± kcv ra GW GW First-order reaction = Q C Q C± kcv First-order transformation, settlg = Q C Q C± kcv v CA s

5 dmass ( ) puts outputs transformations = ± Δt Δt Δt b dv C g = W Q C± k C V Constant volume = W Q C± kcv River puts domant Changg volume + C dv = W Q C± kcv River, atmospheric, groundwater puts = Q C Q C ± kcv = Q C + PC A ± Q C QC ± kcv ra GW GW First-order reaction = Q C Q C± kcv First-order transformation, settlg = Q C Q C± kcv v CA s

6 dmass ( ) puts outputs transformations = ± Δt Δt Δt b dv C g = W Q C± k C V Constant volume = W Q C± kcv River puts domant Changg volume + C dv = W Q C± kcv River, atmospheric, groundwater puts = Q C Q C ± kcv = Q C + PC A ± Q C QC ± kcv ra GW GW First-order reaction = Q C Q C± kcv First-order transformation, settlg = Q C Q C± kcv v CA s

7 River puts domant = Q C Q C kcv vsca

8 Changg gvolume with atmospheric,,groundwater puts + C dv = PCra A ± QGWCGW QGWC kcv vsca

9 C = STEADY STATE MODEL (or SOLUTION) = W QC kcv = 0 W Q+ kv Assumptions? W a = a = Assimilation il i capacity Can compare different compounds or sgle compound different lakes.

10 Lake Superior Assimilation Capacity Cl - 7x10 10 m 3 /yr NO 3-3x10 14 m 3 /yr P 1x m 3 /yr

11 Transfer Coefficient or (1- Removal Efficiency) C = QC Q + kv + v A C Q β = = C Q+ kv + v A s s Assumptions?

12 Residence Time Water Residence Time: V τ = Q Hydrologic or Conservative Chemical: V τ = V Q out Chemical Residence Time V Mass system τ = = Q + kv + v A effluxes out s

13 Lake Superior Residence Times Water Residence Time Hydrologic Residence Time TN Residence Time TP Residence Time 75 yr 175 yr yr yr 10 yr 50 d Longer chemical residence times ignore ternal recyclg.

14 Role of ketics dmass ( ) puts outputs transformations = ± Δt Δt Δt Possible transformations: Burial l adsorption, settlg Biological uptake growth ketics Biodegradation growth or enzyme ketics Volatilization mass transfer Photolysis Adsorption mass transfer Hydrolysis Dissolution/Precipitation

15 KINETICS: Pots to Learn Rate Laws: Zero Order: First Order: dc dc Second Order: Monod: dc/ dc dc = V Max C = k = kc = kc 2 C ln(c) 1/C C K + C Differential Analysis of Rates: FdC log log( k ) n log( C ) M I HG K J = + Reversible: Zero order: dc First order: dc Vmax = K C C k C app + = M t t t =V Max R = kcc * Ch Temperature Corrections: k = A k Q F H E RT K A exp H G I K J = k Θ T T 1 2 kt + = Θ = k k T

16 Reversible Reactions - Slow mass * Flux = J = v C C area time ( ) aw w w mass dc * Rate = = k ( C w C w ) vol time v = mass transfer coefficient (units of velocity, length/t) aw k = rate constant t (units of 1/time) * C = concentration at equilibrium Example processes: Air-water exchange (volatilization) Dissolution/precipitation

17 Reversible Reaction Example Air-water exchange: Henry s Law Constant - K = H C air C water C C * = air w K H

18 Reversible Reaction fast (equilibrium) Fast reactions: Acid-base Sorption HA H + A K a f HA + + { H }{ A } = { HA} 1 1 [ HA ] [ A ] Ka = = 1+ = 1+ + [ HA] + [ A ] [ HA] [ H ]

19 Equilibrium Processes Inputs Gas Exchange (only dissolved phase) Outflow PCB Dissol ved PCB Particul ate Settlg Outflow ONLY SORBED PCBs SETTLE C Total = C dissolved + C particulate = f particulate C Total + f dissolved C Total K K f D ow OC [ C particulate] [ C ] dissolved

20 Fraction each phase f f f sorbed sorbed dissolved M sorbed Csorbed SS Csorbed SS = = = M C Total Csorbed SS + Cdissolved C sorbed SS + K = KD SS K SS + 1 D 1 = 1 fsorbed = 1 + K SS D sorbed D SETTLING FLUX = v s C Total f PARTICULATE A

21 Equilibrium partitiong Air-water exchange = (PCB * -PCB Total f dissolved )v aw A Inputs PCB Total Outflow Settlg = f partpcb Totalv sa

22 SS Example: Greifensee

23 Lake Characteristics: Greifensee Parameters Value Volume (m 3 ) 1.51x10 8 Surface Area (m 2 ) 8.49x10 6 Mean Depth (m) 17.8 Q 3 (m /d) 3.7x10 5 Q out (m 3 /d) 3.7x10 5 Temperature ( o C) 20 Residence Time (yr) 1.12 Suspended Solids (mg/l) 5 f OC 0.4 Particle settlg velocity (m/d)

24 Chemical Properties Henry s Law Constant K ow, K OC or K D Diffusion coefficient Reaction rate constants (biodegradation, photolysis, hydrolysis, gas transfer, settlg)

25 Chemical Properties Henry s Law Constant K ow, K OC or K D Diffusion coefficient Reaction rate constants (biodegradation, photolysis, hydrolysis, gas transfer, settlg)

26 Chemicals: General properties PCBs: moderately volatile, low solubility, high tendency to sorb, very slow biodegration PHOSPHATE: nonvolatile, high solubility, moderate tendency to sorb, highly bioreactivee SULFATE: nonvolatile, high solubility, no tendency to sorb, moderately bioreactive

27 Chemicals: General properties ATRAZINE: pesticide, low volatility, high solubility, low tendency towards sorption, slow biodegradation water TETRACHLORO- ETHYLENE: highly volatile, low solubility, low tendency towards sorption, slow biodegradation

28 Mass Balance Model dc V = W Q C V C k rxn

29 GREIFENSEE Chemical fate comparison. Atraze PCE PCB PO 4 SO 4 K h unitless 1.0E K ow unitless ,200, K oc unitless ,200, K d L/kg ,260, k sed 1/d 5.6x x x x x10-5 k gas 1/d 2.8x x x k chem 1/d 2.8x x10-5 k photo 1/d 84x10 8.4x x10 5.6x A m3/d 5.5x x x x x10 5 β C/C τ r d

Important points from previous lecture. What are the major hydrologic fluxes to

Important points from previous lecture. What are the major hydrologic fluxes to Important points from previous lecture What are the major hydrologic fluxes to and from lakes? How can flow from one gaged river be extrapolated to an ungaged river? How does one convert flow in cm to

More information

CHAPTER 4 ENVIRONMENTAL FATE

CHAPTER 4 ENVIRONMENTAL FATE CHAPTER 4 ENVIRONMENTAL FATE Introduction This chapter serves as a basis to identify the hazards associated with different substances used and produced in the chemical process, including raw materials,

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Contaminant Fate and Transport Process - Xi Yang and Gang Yu

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Contaminant Fate and Transport Process - Xi Yang and Gang Yu CONTAMINANT FATE AND TRANSPORT PROCESS Xi Yang and Gang Yu Department of Environmental Sciences and Engineering, Tsinghua University, Beijing, P. R. China Keywords: chemical fate, physical transport, chemical

More information

Microorganisms. Dissolved inorganics. Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia

Microorganisms. Dissolved inorganics. Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia 1 Microorganisms Native vs. Introduced; Oligotrophic vs. Eutrophic Millions to billions per ml or g Complex consortia Species makeup: f(t, O 2, ph, nutrients, etc.) Indicators & pathogens Dissolved inorganics

More information

What we learn from Chap. 15

What we learn from Chap. 15 Chemical Kinetics Chapter 15 What we learn from Chap. 15 15. The focus of this chapter is the rates and mechanisms of chemical reactions. The applications center around pesticides, beginning with the opening

More information

Air-Water Gas Exchange of Chemicals

Air-Water Gas Exchange of Chemicals Air-Water Gas Exchange of Chemicals terry.bidleman@ec.gc.ca Centre for Atmospheric Research Experiments Science & Technology Branch, Environment Canada Photo: Thule Bay, Alaska Jim Milne, DRDC Why? Air-Water

More information

Chemical Hydrogeology

Chemical Hydrogeology Physical hydrogeology: study of movement and occurrence of groundwater Chemical hydrogeology: study of chemical constituents in groundwater Chemical Hydrogeology Relevant courses General geochemistry [Donahoe]

More information

5. Boundary Exchange: Air-Water and Sediment-Water Interfaces

5. Boundary Exchange: Air-Water and Sediment-Water Interfaces 5. Boundary Exchange: Air-Water and Sediment-Water Interfaces In the previous chapter we introduced transformation and described both homogeneous and heterogeneous reactions. Now, we would like to look

More information

1. Explain the changes in the predicted Cu concentration in Torch L. that result from using different time steps in the numerical model.

1. Explain the changes in the predicted Cu concentration in Torch L. that result from using different time steps in the numerical model. 1. Explain the changes in the predicted Cu concentration in Torch L. that result from using different time steps in the numerical model. ANSER: Time steps longer than 2 years cause the model to overpredict

More information

Natural U-Th series radio-nuclides reveal important estuarine biogeochemical processes in the Delaware and Chesapeake Bays, USA

Natural U-Th series radio-nuclides reveal important estuarine biogeochemical processes in the Delaware and Chesapeake Bays, USA Presentation to the 10th IEBC Meeting Xiamen, CHINA, 21 May 2008 Natural U-Th series radio-nuclides reveal important estuarine biogeochemical processes in the Delaware and Chesapeake Bays, USA Thomas M.

More information

3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd

3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd 3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd Definitions, Nomenclature Organic Compound Solubility Octanol-Water Partition Coefficient Organic Compound Sorption

More information

AOS 104 Fundamentals of Air and Water Pollution

AOS 104 Fundamentals of Air and Water Pollution AOS 104 Fundamentals of Air and Water Pollution Dr. Jeffrey Lew lew@atmos.ucla.edu AIM: jklew888 TuTh 1:00-3:05 MS 7124A MS1961 310-825-3023 1 Grades Homework 160 pts 2 Midterms 290 pts Final Exam Total

More information

Block 6 Heat transport in rivers

Block 6 Heat transport in rivers Numerical Hydraulics Block 6 Heat transport in rivers Markus Holzner Contents of the course Block 1 The equations Block 2 Computation of pressure surges Block 3 Open channel flow (flow in rivers) Block

More information

Definitions. ES/RP 532 Applied Environmental Toxicology. Reaction Mechanisms. Definitions. Abiotic vs. Biotic Reactions.

Definitions. ES/RP 532 Applied Environmental Toxicology. Reaction Mechanisms. Definitions. Abiotic vs. Biotic Reactions. ES/R 532 Applied Environmental Toxicology Lecture 5 Kinetics & Reactivity (Environmental Attenuation of Contaminants Degradation Definitions Decrease in concentration of a contaminant due to nonreversible

More information

CHAPTER 2. Fate and Transport of Contaminants. Dik van de Meent 1,2,*, Anne Hollander 2, Willie Peijnenburg 1,3 and Ton Breure 1,2

CHAPTER 2. Fate and Transport of Contaminants. Dik van de Meent 1,2,*, Anne Hollander 2, Willie Peijnenburg 1,3 and Ton Breure 1,2 Fate and Transport of Contaminants Ecological Impacts of Toxic Chemicals, 2011, 13-42 13 Dik van de eent 1,2,*, Anne Hollander 2, Willie Peijnenburg 1,3 and Ton Breure 1,2 CHAPTER 2 1 National Institute

More information

Material Balance (Nazaroff & Alvarez-Cohen, Section 1.C.2 + lots more here)

Material Balance (Nazaroff & Alvarez-Cohen, Section 1.C.2 + lots more here) Material Balance (Nazaroff & Alvarez-ohen, Section 1..2 + lots more here) In the environment, we are not dealg only with local processes, such as chemical reactions; we are mostly dealg with terconnected

More information

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24

Print version. Sorption of PPCPs. Organic compounds in water and wastewater. Soonmi Kim. CEE 697z - Lecture #24 Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs Introduction Sorption? Sorption is a physical and chemical process by

More information

Introduction Studies; sorption of PPCPs

Introduction Studies; sorption of PPCPs Print version Sorption of PPCPs Organic compounds in water and wastewater Soonmi Kim Outline Introduction Studies; sorption of PPCPs 1 Introduction Sorption? Sorption is a physical and chemical process

More information

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes OCN 401-10 Nov. 16, 2010 KCR Global Carbon Cycle - I Systematics: Reservoirs and Fluxes The Global carbon cycle Reservoirs: biomass on land in the oceans, atmosphere, soil and rocks, waters Processes:

More information

210 Pb xs (mbq/g) ± 31-2 ± ± 12 3 ± ± 5 3 ± ± 11 4 ± 1

210 Pb xs (mbq/g) ± 31-2 ± ± 12 3 ± ± 5 3 ± ± 11 4 ± 1 Depth (cmbsf) Sample Depth Core 1 21 Pb xs (mbq/g) 137 Cs (mbq/g).5 11 ± 31-2 ± 3 Core 2 Core 3 1.5 131 ± 12 3 ± 1 21.5 88 ± 5 3 ± 3.5 58 ± 11 4 ± 1 1.5 9 ± 6 3 ± 1.5 8 ± 7 2 ± 1 2.5 58 ± 4 3 ± 35.5 32

More information

Chapter 1. Introduction

Chapter 1. Introduction Introduction 1 Introduction Scope Numerous organic chemicals are introduced into the environment by natural (e.g. forest fires, volcanic activity, biological processes) and human activities (e.g. industrial

More information

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) Ocean 421 Your Name Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) 1. Due to the water molecule's (H 2 O) great abundance in

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 22 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #23 Drinking Water Treatment: Ion Exchange, Adsorption & Arsenic Reading: Chapter 7, pp.262-266 David Reckhow CEE 371

More information

Are we about to upgrade wastewater treatment for removing organic micropollutants?

Are we about to upgrade wastewater treatment for removing organic micropollutants? Are we about to upgrade wastewater treatment for removing organic micropollutants? Adriano Joss, Hansruedi Siegrist, Eawag, Switzerland Arne Wick, Michael Schlüsener, Thomas Ternes, BfG, Germany Neptune

More information

Surface Complexation.

Surface Complexation. Surface Complexation. Jean-François Gaillard, Notes for CE-367 OBJECTIVES To show how the presence of particles in natural and engineered systems controls the fate of many trace elements. The concepts

More information

Interphase Mass Transfer see Handout. At equilibrium a species will distribute (or partition ) between two phases.

Interphase Mass Transfer see Handout. At equilibrium a species will distribute (or partition ) between two phases. Interphase Mass Transfer see Handout At equilibrium a species will distribute (or partition ) between two phases. Examples: 1. oxygen (species) will partition between air (gas phase) and water (liquid

More information

Redox, ph, pe OUTLINE 9/12/17. Equilibrium? Finish last lecture Mineral stability Aquatic chemistry oxidation and reduction: redox

Redox, ph, pe OUTLINE 9/12/17. Equilibrium? Finish last lecture Mineral stability Aquatic chemistry oxidation and reduction: redox Redox, ph, pe Equilibrium? OUTLINE Finish last lecture Mineral stability Aquatic chemistry oxidation and reduction: redox Reading: White p555-563 1 Question of the day? So what about the CO 2 system? CO

More information

or more general example: aa + bb cc + dd r = -1/a da/dt = -1/b db/dt = 1/c dc/dt = 1/d dd/dt

or more general example: aa + bb cc + dd r = -1/a da/dt = -1/b db/dt = 1/c dc/dt = 1/d dd/dt Chem 344--Physical Chemistry for Biochemists II --F'12 I. Introduction see syllabus II. Experimental Chemical kinetics (Atkins, Ch.6) How fast is reaction? Rate of formation of product or loss of reactant

More information

FRONT PAGE FORMULA SHEET - TEAR OFF

FRONT PAGE FORMULA SHEET - TEAR OFF FRONT PAGE FORMULA SHEET - TEAR OFF N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013

More information

Chemistry 1AA3 2000/01

Chemistry 1AA3 2000/01 Chemistry 1AA3 2000/01 Tutorial #5 Answers Week of February 12-16, 2001 Dr. M.A. Brook Dr. B. E. McCarry Dr. A. Perrott 1. The equation for the reaction of NO(g) with O2(g) at 660K is: 2 NO(g) + O2(g)

More information

12. Lead, Pb (atomic no. 82)

12. Lead, Pb (atomic no. 82) 12. Lead, Pb (atomic no. 82) - Sources of Pb contamination include mining, metal processing, lead battery manufacturing, chemical and paint manufacturing, and lead wastes. -USEPA drinking water action

More information

Global phosphorus cycle

Global phosphorus cycle Global phosphorus cycle OCN 623 Chemical Oceanography 11 April 2013 2013 Arisa Okazaki and Kathleen Ruttenberg Outline 1. Introduction on global phosphorus (P) cycle 2. Terrestrial environment 3. Atmospheric

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Exchange of Volatiles between Air and Water, Lecture 5b, Contaminant Fate and Transport in the Environment (Chapter 2)

Exchange of Volatiles between Air and Water, Lecture 5b, Contaminant Fate and Transport in the Environment (Chapter 2) Exchange of Volatiles between Air and Water, Lecture 5b, Contaminant Fate and Transport in the Environment (Chapter 2) Conrad (Dan) Volz, DrPH, MPH Bridgeside Point 100 Technology Drive Suite 564, BRIDG

More information

Salinity. foot = 0.305m yard = 0.91m. Length. Area m 2 square feet ~0.09m2. Volume m 3 US pint ~ 0.47 L fl. oz. ~0.02 L.

Salinity. foot = 0.305m yard = 0.91m. Length. Area m 2 square feet ~0.09m2. Volume m 3 US pint ~ 0.47 L fl. oz. ~0.02 L. Length m foot = 0.305m yard = 0.91m Area m 2 square feet ~0.09m2 Volume m 3 US pint ~ 0.47 L, L (liters) fl. oz. ~0.02 L Speed m/s mph Acceleration m/s 2 mph/s Weight kg, gram pound ~0.45kg Temperature

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Reaction Kinetics. An Introduction

Reaction Kinetics. An Introduction Reaction Kinetics An Introduction A condition of equilibrium is reached in a system when opposing changes occur simultaneously at the same rate. The rate of a chemical reaction may be defined as the #

More information

A simple QSPR model for predicting soil sorption coefficients of polar and non-polar organic compounds from molecular formula

A simple QSPR model for predicting soil sorption coefficients of polar and non-polar organic compounds from molecular formula A simple QSPR model for predicting soil sorption coefficients of polar and non-polar organic compounds from molecular formula J. Chem. Inf. Comput. Sci. Eduardo J. Delgado, Joel B. Alderete, and Gonzalo

More information

Department of Ocean Engineering, Indian Institute of Technology-Madras, Chennai , India. *Corresponding author.

Department of Ocean Engineering, Indian Institute of Technology-Madras, Chennai , India. *Corresponding author. J. Earth Syst. Sci. (2018) 127:53 c Indian Academy of Sciences https://doi.org/10.1007/s12040-018-0950-3 Interaction of dissolution, sorption and biodegradation on transport of BTEX in a saturated groundwater

More information

Attenuation Processes. Definitions. Definitions. Attenuation. The degradation process results in changed molecular structure

Attenuation Processes. Definitions. Definitions. Attenuation. The degradation process results in changed molecular structure ES/R 531 Fundamentals of Environmental Toxicology Lecture 22 Instructor: Allan Felsot afelsot@tricity.wsu.edu Fall 2005 Abiotic/iotic Degradation & Transformation (Environmental Attenuation of Contaminants)

More information

The Geochemistry of Natural Waters

The Geochemistry of Natural Waters The Geochemistry of Natural Waters Surface and Groundwater Environments Third Edition James I. Drever University of Wyoming Prentice Hall Upper Saddle River. NJ 07458 Contents 3 Preface xi 1 The Hydrologie

More information

Emerging Contaminant Soil Fate Model Subroutine Development for SWAT

Emerging Contaminant Soil Fate Model Subroutine Development for SWAT Emerging Contaminant Soil Fate Model Subroutine Development for SWAT Louis J. Thibodeaux and Eileen M. Canfield Louisiana State University Cain Department of Chemical Engineering Jesse Coates Hall, South

More information

CH Practice Exam #3 -

CH Practice Exam #3 - CH1810 - Practice Exam # - Name: Score: Part I (~ points each) Multiple Choice - Choose the best answer and place the letter corresponding to the answer in the space provided AND on the Scantron form.

More information

Thermochemistry and Thermodynamics. What is the standard heat of formation of methane, H f CH 4 (g), as calculated from the data above?

Thermochemistry and Thermodynamics. What is the standard heat of formation of methane, H f CH 4 (g), as calculated from the data above? Thermochemistry and Thermodynamics 38% 1. H 4 (g) + 2 O 2 (g) O 2 (g) + 2 H 2 O(l); = - 889.1 kj H f H 2 O(l) = - 285.8 kj / mole H f O 2 (g) = - 393.3 kj / mole What is the standard heat of formation

More information

Lecture 7. Environmental Organic Chemistry

Lecture 7. Environmental Organic Chemistry Lecture 7 Environmental Organic Chemistry 1. Organic Chemistry Intro 2. dissolved and particulate organic carbon, Humic substances 3. DOC/POC distribution 4. Reactivity of simple organic molecules 5. Organic

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

CEE 370 Environmental Engineering Principles. Equilibrium Chemistry

CEE 370 Environmental Engineering Principles. Equilibrium Chemistry Updated: 9 September 015 Print version CEE 370 Environmental Engineering Principles Lecture #6 Environmental Chemistry IV: Thermodynamics, Equilibria, Acids-bases I Reading: Mihelcic & Zimmerman, Chapter

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

Salinity. See Appendix 1 of textbook x10 3 = See Appendix 1 of textbook

Salinity. See Appendix 1 of textbook x10 3 = See Appendix 1 of textbook Length Area Volume m m m foot = 0.305m yard = 0.91m square feet ~0.09m2 US pint ~ 0.47 L fl. oz. ~0.02 L Speed m/s mph Acceleration m/s mph/s Weight kg, gram pound ~0.45kg Temperature o o See Appendix

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number of moles

More information

Activity and Concentration

Activity and Concentration Activity and Concentration Activity effective concentration Ion-ion and ion-h 2 O interactions (hydration shell) cause number of ions available to react chemically ("free" ions) to be less than the number

More information

Physics of Aquatic Systems

Physics of Aquatic Systems Physics of Aquatic Systems. Turbulent Transport in Surface Waters Contents of Session : Transport 4.1 Turbulent (eddy) fusion 4. Measurement of eddy fusivity in lakes Tracer methods (artificial tracer)

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008 Data Analysis and Modeling with Stable Isotope Ratios Chun-Ta Lai San Diego State University June 2008 Leaf water is 18 O-enriched via transpiration δ 18 O vapor : -12 H 2 16 O H 2 18 O δ 18 O leaf : +8

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow.

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow. CHAPTER 13: RATES OF REACTION Part One: Reaction Rates A. Chemical Kinetics deals with: 1. 2. B. Importance: 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically

More information

Redox reactions.

Redox reactions. Redox reactions http://eps.mcgill.ca/~courses/c220/ Redox reactions In a similar way that acids and bases have been defined as proton donors and proton acceptors, reductants and oxidants are defined as

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Chem 102--Exam #2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When water is measured in a plastic graduated cylinder, a reverse meniscus

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

1D Verification Examples

1D Verification Examples 1 Introduction 1D Verification Examples Software verification involves comparing the numerical solution with an analytical solution. The objective of this example is to compare the results from CTRAN/W

More information

BIOO211. Session 3 Introduction To Reaction Rates and States of Matter Department of Biosciences.

BIOO211. Session 3 Introduction To Reaction Rates and States of Matter Department of Biosciences. BIOO211 Session 3 Introduction To Reaction Rates and States of Matter Department of Biosciences www.endeavour.edu.au Chemistry & Biochemistry Reaction Rates and States of Matter, Gases and Solutions This

More information

THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS

THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS THE USE OF ORGANOCLAY IN MANAGING DISSOLVED ORGANIC CONTAMINANTS RELEVANT TO CONTAMINATED SEDIMENTS Organoclay has great potential as a permeable adsorptive barrier in treating contaminated groundwater

More information

Sorption of Water Pollutants

Sorption of Water Pollutants Sorption of Water Pollutants Prepared by Kimberly Hetrick and Ljiljana Rajic Objective The overall goal of this session is to learn about sustainable ways to deal with water contamination while specific

More information

Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg. Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama

Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg. Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama Site Stormwater Characteristics and Permit Limits Analytes on Permit 90 th percentile

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Overview of global C cycle 2. Global C reservoirs Outline 3. The contemporary global C cycle 4. Fluxes and residence

More information

Chapter 16: Applications of Aqueous Equilibrium Part 3. Solubilities of Ionic Compounds and K sp

Chapter 16: Applications of Aqueous Equilibrium Part 3. Solubilities of Ionic Compounds and K sp Chapter 16: Applications of Aqueous Equilibrium Part 3 Solubilities of Ionic Compounds and K sp You ve already learned that not all ionic compounds are water soluble. You memorized the solubility rules

More information

Chapter 2: Equilibrium Thermodynamics and Kinetics

Chapter 2: Equilibrium Thermodynamics and Kinetics Chapter 2: Equilibrium Thermodynamics and Kinetics Equilibrium Thermodynamics: predicts the concentrations (or more precisely, activities) of various species and phases if a reaction reaches equilibrium.

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 19 November 2015 Print version CEE 370 Environmental Engineering Principles Lecture #32 Wastewater Treatment III: Process Modeling & Residuals Reading M&Z: Chapter 9 Reading: Davis & Cornwall,

More information

CHEM 316/318. Molecule(s) of the day

CHEM 316/318. Molecule(s) of the day Molecule(s) of the day Creative minds have been known to survive any sort of bad training. - Anna Freud Your theory is crazy, but it's not crazy enough to be true. Niels Bohr Never express yourself more

More information

OCN 201. Chemistry & Physics of the Ocean. (but no need to panic) foot = 0.305m yard = 0.91m. Length. Area m 2 square feet ~0.09m2

OCN 201. Chemistry & Physics of the Ocean. (but no need to panic) foot = 0.305m yard = 0.91m. Length. Area m 2 square feet ~0.09m2 Chemistry & Physics of the Ocean OCN 201 (but no need to panic) Length m foot = 0.305m yard = 0.91m Area m 2 square feet ~0.09m2 Volume m 3 US pint ~ 0.47 L, L (liters) fl. oz. ~0.02 L Speed m/s mph Acceleration

More information

Classifica,on of Solu,ons

Classifica,on of Solu,ons SOLUTIONS Solu,on Homogeneous mixture in which one substance is dissolved in another SOLUTE: substance that is dissolved SOLVENT: substance doing the dissolving INSOLUBLE: does NOT dissolve SOLUBLE: does

More information

ph = pk a + log 10{[base]/[acid]}

ph = pk a + log 10{[base]/[acid]} FRONT PAGE FORMULA SHEET - TEAR OFF N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar

More information

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption Nutrients; Aerobic Carbon Production and Consumption OCN 623 Chemical Oceanography Reading: Libes, Chapters 8 and 9 Formation and respiration of organic matter DINutrients POM Primary Producers Autotrophs

More information

CT4471 Drinking Water 1

CT4471 Drinking Water 1 CT4471 Drinking Water 1 Coagulation & flocculation Dr.ir. J.Q.J.C. Verberk Room 2.98 25 September, 2007 1 Contents 1. Introduction 2. Coagulation: theory 3. Coagulation: practice 4. Flocculation: theory

More information

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3.

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3. 12.742 - Marine Chemistry Fall 2004 Lecture 6 - Determinants of Seawater Composition Prof. Scott Doney What is seawater? Water Dissolved inorganic salts (major ions) Trace species, organics, colloids,

More information

Experiment Initial [A] Initial [B] Initial Rate

Experiment Initial [A] Initial [B] Initial Rate Chem 120 Practice Final Winter 2014 1 of 14 1. The following are initial rate data for: A + 2 B C + 2 D Experiment Initial [A] Initial [B] Initial Rate 1 0.10 0.10 0.300 2 0.20 0.10 0.600 3 0.10 0.20 1.200

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

CHEM 116 Colligative Properties and Intro to Rates of Reaction

CHEM 116 Colligative Properties and Intro to Rates of Reaction CHEM 116 Colligative Properties and Intro to Rates of Reaction Note: Some of the slides here were in Lecture 10 but we didn t get to them, so we will begin with those. They are repeated here, but if you

More information

Intermolecular Forces 2 nd Semester Review Questions and Problems

Intermolecular Forces 2 nd Semester Review Questions and Problems Intermolecular Forces 2 nd Semester Review Questions and Problems 1. Complete the following table: Molecule Lewis Structure Molecule Shape Polar/Nonpolar CS 2 H 3 O + CdBr 2 CHI 3 2. What makes the dipole

More information

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption Nutrients; Aerobic Carbon Production and Consumption OCN 623 Chemical Oceanography Reading: Libes, Chapters 8 and 9 Formation and respiration of organic matter DINutrients POM Primary Producers Autotrophs

More information

Measurements of In Situ Pick-up Rate of Nutrients on Riverbed

Measurements of In Situ Pick-up Rate of Nutrients on Riverbed 1th International Conference on Integrated Diffuse Pollution Management (IWA DIPCON 8). Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Thailand; 5-9

More information

Chemical Processes. Transport Processes in the Environment. Transport Processes. Advection. Advection. t 1 t 2

Chemical Processes. Transport Processes in the Environment. Transport Processes. Advection. Advection. t 1 t 2 hemical Processes by Stefan Trapp (taken from course 4) Transport Processes in the Environment a definition of our nomenklatura Transport Processes Only 3 types of transport processes exist ) by advection

More information

Model manual (INRA-CREED)

Model manual (INRA-CREED) Model manual (INRA-CREED) Charlotte N. Legind (November 2010), revised by Stefan Trapp, February 2011 Introduction Color code A color code was used to structure the models and to make programming and data

More information

CHAPTER 8 CHEMICAL EQUILIBRIUM SHORT QUESTION WITH ANSWERS Q.1 What is weak electrolyte? A compound which is only partially ionized in aqueous solution is called as weak electrolyte.e.g CH 3 COOH(Acetic

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 7 October 2015 Print version EE 70 Environmental Engineering Principles Lecture #11 Ecosystems I: Water & Element ycling, Ecological Principles Reading: Mihelcic & Zimmerman, hapter 4 Davis &

More information

Safety assessment for disposal of hazardous waste in abandoned underground mines

Safety assessment for disposal of hazardous waste in abandoned underground mines Safety assessment for disposal of hazardous waste in abandoned underground mines A. Peratta & V. Popov Wessex Institute of Technology, Southampton, UK Abstract Disposal of hazardous chemical waste in abandoned

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

Chapter 7: Anion and molecular retention

Chapter 7: Anion and molecular retention I. Anions and molecules of importance in soils Anions of major importance to agricultural soils and soil chemistry are: H 2 PO - 4, HPO 2-4, SO 2-4, HCO - 3, NO - 3, Cl -, F - and OH -. Also, micronutrients

More information

Trace metals transfer in rivers: a semi-empirical formulation to describe a complex sorption desorption process to be implemented in SWAT model.

Trace metals transfer in rivers: a semi-empirical formulation to describe a complex sorption desorption process to be implemented in SWAT model. Trace metals transfer in rivers: a semi-empirical formulation to describe a complex sorption desorption process to be implemented in SWAT model. Cyril Garneau 1, Sauvage S. 1, Probst A. 1, Lofts S. 2,

More information

Chem GENERAL CHEMISTRY II

Chem GENERAL CHEMISTRY II GENERAL CHEMISTRY II CHEM 206 /2 51 Final Examination December 19, 2006 1900-2200 Dr. Cerrie ROGERS x x programmable calculators must be reset Chem 206 --- GENERAL CHEMISTRY II LAST NAME: STUDENT NUMBER:

More information

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25 High Performance Liquid Chromatography (HPLC) Harris Chapter 25 12/1/2005 Chem 253 - Chapter 25 1 HPLC Separation of nonvolatile or thermally unstable compounds. If the analyte/sample can be found to be

More information

DATA REPOSITORY ITEM APPENDIX: MODEL SET-UP. The model, the Biogeochemical Reaction Network Simulator (BRNS, Regnier et al.

DATA REPOSITORY ITEM APPENDIX: MODEL SET-UP. The model, the Biogeochemical Reaction Network Simulator (BRNS, Regnier et al. DATA REPOSITORY ITEM 2009063 APPENDIX: MODEL SET-UP The model, the Biogeochemical Reaction Network Simulator (BRNS, Regnier et al., 2003; Aguilera et al., 2005), is a simplified version of the one developed

More information

Classification of Solutions. Classification of Solutions. Aqueous Solution Solution in which H2O is the solvent

Classification of Solutions. Classification of Solutions. Aqueous Solution Solution in which H2O is the solvent SOLUTIONS Solution Homogeneous mixture in which one substance is dissolved in another SOLUTE: substance that is dissolved SOLVENT: substance doing the dissolving INSOLUBLE: does NOT dissolve SOLUBLE: does

More information

Application of the TRT LB model to simulate pesticide transport in cultivated soils

Application of the TRT LB model to simulate pesticide transport in cultivated soils Application of the TRT LB model to simulate pesticide transport in cultivated soils V. POT, N. ELYEZNASNI EGC INRA AgroParisTech,Thiverval-Grignon, France I. GINZBURG HBAN Cemagref, Antony, France H. HAMMOU

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions 1) Combination (Synthesis) Reaction 2) Decomposition 3) Single Replacement 4) Double Replacement 5) Combustion 6) Oxidation-Reduction (Redox) Combination (Synthesis) Reactions

More information

The general concept of pharmacokinetics

The general concept of pharmacokinetics The general concept of pharmacokinetics Hartmut Derendorf, PhD University of Florida Pharmacokinetics the time course of drug and metabolite concentrations in the body Pharmacokinetics helps to optimize

More information