CHAPTER 4 ENVIRONMENTAL FATE

Size: px
Start display at page:

Download "CHAPTER 4 ENVIRONMENTAL FATE"

Transcription

1 CHAPTER 4 ENVIRONMENTAL FATE

2 Introduction This chapter serves as a basis to identify the hazards associated with different substances used and produced in the chemical process, including raw materials, products and or byproducts. It would then be possible to do follow up with an exposure assessment and a dose-response assessment which are needed to perform risk characterization

3 Substance Classification Tree What Substances? Physical + Chemical Properties Estimating Exposure And Environmental Effects Old Analyses Classifying the Substances based on risk Performing P2 on the substances...

4 Chemical Properties Used to Perform Environmental Risk Screenings Environmental Process Dispersion and Fate Persistence in the Environment Relevant Properties Volatility, density, melting point, water solubility, effectiveness of waste, water treatment. Atmospheric oxidation rate, aqueous hydrolysis rate, photolysis rate, rate of microbial degradation, and adsorption. Continued on the following slide

5 Chemical Properties Used to Perform Environmental Risk Screenings Environmental Process Uptake by Organisms Human Uptake Toxicity and other Health Effects Relevant Properties Volatility, Lipophilicity, Molecular Size, Degradation Rate in Organism. Transport Across Dermal Layers, Transport Rates Across Lung Membrane, Degradation Rates within the Human Body. Dose-Response Relationships.

6 Boiling Point Distinguishes gas and liquid partitioning Using the substance s structure, it can be estimated by : T b = Σ n i g i (4.1) Where: T b : normal boiling point (at 1 atm) (K) n i : number of groups of type i in the molecule, g i : contribution of each functional group to the boiling point Corrected using : T b (corrected) = T b *T b *(T b ) 2 (T b 700K) (4.2) T b (corrected) = T b *T b (T b > 700K) (4.3)

7 Example : Boiling Point Estimation Estimate the Normal Boiling Point for diethyl ether. Diethyl ether has the molecular structure CH 3 -CH 2 -O-CH 2 -CH 3 Solving : Group -O- 2(-CH 3 ) 2(-CH 2 ) g i contribution (21.98) 2(24.22) The actual boiling point for diethyl ether is K

8 a) Using equation 4.1 : T b (K)= Σ n i g i Example : Boiling Point Estimation (Continued) T b (K)= (21.98) + 2(24.22) T b = b) Using equation 4.2 : T b (corrected) = T b *T b *(T b ) 2 T b (corr) = (315.76) (315.76) 2 T b (corrected) = K

9 Melting Point Distinguishes solid and liquid partitioning. Can be estimated using the substance s boiling point : T m (K) = * T b (K) (4.4) Where : T m : Melting Point in Kelvins. T b : Boiling Point in Kelvins.

10 Example : Melting Point Estimation Estimate the Melting Point for diethyl ether. Solving : Using equation 4.4 to calculate the T m : T m (K) = * T b (K) T m (K) = * K T m = K

11 Vapor Pressure Higher Vapor Pressure = Higher Air Concentrations Can be estimated using the following equations : ln P vp = A + B/(T - C) (4.5) Where : T = T b at 1 atm ln(1 atm) = 0 = A + B/(T b C) (4.6) ln P vp (atm) ={[A(T b C) 2 ] / [0.97*R*T b ]}*{1/(T b C)-1/(T C)} (4.7) the parameters A and C can be estimated using : C = T b (4.7a) A = K F *(8.75+ R ln T b ) (4.7b)

12 For solids : Vapor Pressure (continued) ln P = -(4.4 + lnt b ) * {1.803*[(T b /T)- 1)] - [0.803*ln (T b /T)]} - 6.8(T m /T-1) (4.8) Where : P vp : vaporization pressure (atm). T : absolute temperature and T b is the boiling point at 1 atm. A and C are empirical constants. B : a parameter related to the heat of vaporization. K F : a correction factor. R : gas constant ; L-atm K -1 mol -1 T m : melting point (K).

13 Example : Vapor Pressure Estimation Estimate the Vapor Pressure for diethyl ether Using the predicted value of K: C = T b = (320.2) = A = K f ( R ln T b ) = 1.06 [ ln(320.2)] = (4.7.a) (4.7.b) ln P vp = {[A(T b C) 2 ] / [0.97*R*T b ]}*{1/(T b C) -1/(T C)} = {[21.39( ) 2 ] / [0.97(1.987)(315.76)]}*{1/(273.76) 1/(256)} Ln P vp = ; P vp = atm = mm Hg. (4.7) Repeating the calculation for the experimental boiling point leads to a vapor pressure estimated of P vp = atm = mm Hg.

14 Octanol-Water Partition Coefficient Describes partition between an aqueous phase and it s suspended organic phases. Can be estimated using the substance s structure : log K ow = Σ n i f i (4.9) log K ow (corrected) = Σ n i f i + Σ n j c j (4.10) Where: K ow : Octanol-Water Partition Coefficient. n i : number of groups i in the compound. f i : factor associated with the group i n j : number of groups j in the compound that have correction factors. c j : correction factor for each group j

15 Example : Octanol-Water Partition Coefficient Estimation Estimate the Octanol-Water Partition Coefficient for diethyl ether. Solving : Group -O- 2(-CH 3 ) 2(-CH 2 ) f i contribution (0.5473) 2(0.4911) Using equation 4.9 : log K ow = Σ n i f i log K ow = (0.5473) + 2(0.4911) + (1.2566) log K ow = therefore K ow = 11.2

16 Bioconcentration Factor Describes partitioning between aqueous and lipid phases in living organisms. Higher bioconcentration factors = higher quantity of bioaccumulation in living organisms Can be calculated using : log BCF = 0.79*(log K ow ) 0.40 (4.11) log BCF = 0.77*(log K ow ) Σ j j (4.12) Where : BCF : Bioconcentration Factor. K ow : octanol-water partition coefficient. j j : correction factor for each group.

17 Example : Bioconcentration Factor (BCF) Estimation Estimate the Bioconcentration Factor for diethyl ether. Solving : Using equation 4.9 we obtain log K ow : log K ow = Σ n i f i log K ow = Using equation 4.11 we can calculate BCF : log BCF = 0.79*(log K ow ) 0.40 log BCF = 0.79* (1.05) 0.40 log BCF = therfore BCF =

18 Water Solubility Used to assess concentrations in water Can be calculated using : Log S = logk ow (T m 25) + Σh j (4.13) Log S = logk ow (MW) + Σh j (4.14) Log S = los K ow (T m 25) (MW) + Σh j (4.15) Where : S : water solubility (mol/l). K ow : octanol-water partition coefficient. T m : melting point (ªC). MW :s the molecular weight of the substance. h j is the correction factor for each functional group j.

19 Example : Water Solubility Estimation Solving : Estimate the Water Solubility for diethyl ether. Equation 4.9 gives the log K ow 1.05 Using equation 4.14 we can calculate the S : Log S = logkow (MW) + Σhj Log S = (1.05) (74.12) Log S = Therfore : S = mol/l. = g/l = 16, mg/ L

20 Henry s Law Constant Describes the affinity for air over water. Can be determined using : -log H = log (air-water partition coeff) = Σ n i h i + Σ n j c j (4.19) Where : H : dimensionless Henry s Law Constant. n i : number of bonds of type i in the compound. h i : bond contribution to the air-water partition coefficient. n j : number of groups of type j in the molecule. c j : correction factor for each group.

21 Example : Henry s Law Constant Estimation Estimate the Henry s Law Constant for diethyl ether. H H H H H-C-C-O-C-C-H H H H H Expressed as a collection of bonds, diethyl ether consists of 10 C-H, 2 C-C bonds, and 2 C-O bonds. The uncorrected value of log (air to water partition constant) is given by : -log H = log (air-water partition coefficient) = log H -1 = ( ) + 2(0.1163) + 2(1.0855) =

22 Soil Sorption Coefficient Used to describe the Soil-Water Partitioning. Can be estimated by : log K oc = (log K ow ) (4.16) log K oc = (log S) (4.17) log K oc = χ Σ n j P j (4.18) Where : K oc : Soil Sorption Coefficient (μg/g of organic carbon (to μg/ml of liquid)). K ow : Octanol-Water Partition Coefficient. S : Water Solubility. 1 χ : first order Molecular Connectivity Index (from literature-appendix ). n j : number of groups of type j in the compound. P j : correction factor for each group j.

23 Molecular Connectivity Index Calculations The first step in calculating 1 χ is to draw the bond structure of the molecule. For example, isopentane would be drawn as: CH 3 H 3 C-CH-CH 2 -CH 3 The second step is to count the number of carbon atoms to which each carbon is attached. Each C-C bond is given a value of 1 and δ i, is the parameter that defines the quantity of carbon atoms connected to a carbon atom i. The diagram below gives the δ i, values for the different carbon atoms. (1) CH 3 H 3 C-CH-CH 2 -CH 3 (1) (3) (2) (1)

24 Molecular Connectivity Index Calculations (continued) The third step is to identify the connectedness of the carbons connected by the bond (δ i, δ j ). For isopentane, these pairs are: (1,3) CH 3 (2,1) H 3 C-CH-CH 2 -CH 3 (1,3) (3,2) The value of 1 χ can then be calculated using the equation : 1 χ = Σ(δ i * δ j ) -0.5 (4.19) For isopentane, 1 χ = (1/ 3) + (1/ 3) + (1/ 6) + (1/ 2) = 2.68

25 Example : Soil Sorption Coefficient Estimation Estimate the Soil Sorption Coefficient for diethyl ether. Solution : The molecular structure for diethyl ether is : CH 3 -CH 2 -O-CH 2 -CH 3 Using previously calculated values for log K ow (estimated at ) and log S (estimated at ) we can estimate the soil sorption coefficients using equations 4.16 and 4.17 : log K oc = (log K ow ) = log K oc = (log S) = 3.99

26 Example : Soil Sorption Coefficient Estimation Using the molecular connectivity we can also estimate the soil sorption coefficient : First the molecular connectivity index is calculated using eq : CH 3 -CH 2 -O-CH 2 -CH 3 (molecular structure) 2(C-C), 2(C-O), 2(1, 2), 2(2, 2) (connection pairs) therefore : 1 χ = 2(1/ 2) + 2(1/ 4) = Using equation 4.18 to calculate the soil sorption coefficient : log K oc = χ Σ n j P j log K oc = χ Σ n j P j = 0.53(2.414) (-1.264) log K oc = therefore : K oc = 4.32

27 Where to look up this information

28 What do the different Properties mean? Adapted from the Green Engineering Textbook

29 Estimating Environmental Persistence and Ecosystem Risks To be discussed : Atmospheric Lifetimes Aquatic Lifetimes Overall Biodegradability Ecosystems

30 Estimating Atmospheric Lifetimes One way to estimate the atmospheric lifetime of a compound is to analyze the rate of oxidation of the substance, specifically the hydroxyl radical reaction rate. Group contributions is again one of the approaches that can be taken to estimate this property. Using examples, we will show how to estimate reaction rates and half lives while using the appropriate correction factors.

31 Example : Atmospheric Lifetime Estimation Dimethylsulfide (DMS, CH 3 SCH 3 ) produced by phytoplankton degredation is thought to be the major source of the sulfate and methanesulfonate aerosol found in the marine boundary layer. The primary objective of this research effort is to determine the detailed mechanism of, and final product yields from, the OH initiated gas phase oxidation of DMS. At the low NOx levels that are characteristic of the remote marine boundary layer, reaction with OH is the initial step in DMS oxidation. OH + CH 3 SCH 3 Products (1)

32 The OH initiated oxidation of DMS proceeds via a complex, two channel, mechanism involving abstraction (1a) and reversible addition (1b, -1b). This can be described by the reaction sequence: CH 3 SCH 3 + OH CH 3 SCH 2 + H 2 O (1a) CH 3 SCH 3 + OH + M CH 3 S(OH)CH 3 + M (1b, -1b) CH 3 S(OH)CH 3 + O 2 Products (3) Because of this complex mechanism the effective rate coefficients for reaction (1) and its deuterated analog, reaction (2) depend on the partial pressure of O 2 at any total pressure. OH + CD 3 SCD 3 Products (2) The two channel reaction mechanism implies that in the absence of O 2 we measure k 1a, the abstraction rate. As we add O 2 the effective rate increases until we measure a limiting rate (k 1a + k 1b ).

33

34 Estimating Aquatic Lifetimes One way to estimate the aquatic lifetime of a compound is to analyze the rate of hydrolysis of the substance. The rate of hydrolysis can be estimated by : log (hydrolysis rate) = log (hydrolysis rate of a reference compound) + Constant * σ Therefore log (hydrolysis rate) = A + Bσ (4.20) Where : A is rxn and compound class specific(depends on the reference rxn chosen) B is rxn and compound class specific (depends on type of rxn considered) σ is a structural parameter commonly used in linear free energy relationship.

35 Estimating Overall Biodegradability It is difficult to do an overall biodegradability analysis. It can be estimated using : I = a 1 f 1 + a 2 f 2 + a 3 f a n f n + a m MW (4.21) Where : a n is the contribution of the functional group (see table ). f n is the number of different functional group. MW is the molecular weight. I is an indicator of aerobic biodegradation rate. Different Values (of I) represent different life times : I value Expected degradation rate Hours Days Weeks Months Years

36 Example : Overall Biodegradability Estimation Estimate the Biodegradation Index for diethyl ether. Solution : Molecular weight of diethyl ether : MW = g/mol Using equation 4.21, the index can be calculated : I = a 1 f 1 + a 2 f 2 + a 3 f a n f n + a m MW I = ( ) (74.12) = Therefor a lifetime of WEEKS

37 Estimating Ecosystem Risks Compare the Fish, Guppy and Daphnids mortalities for an acrylate with log K ow = 1.22 (e.g. ethyl acrylate). Guppies Daphnids log (1/LC 50 ) = log K ow 4.87 (4.22) log (1/LC 50 ) = 0.871(1.22) 4.87 = LC 50 = µmol/l. log LC 50 = log K ow (4.23) log LC 50 = (1.22) = LC 50 = millimoles/l = 242 µmol/l.

38 Fish Estimating Ecosystem Risks Continued log LC 50 = log K ow (4.24) log LC 50 = (1.22) = LC 50 = millimoles/l = 21 µmol/l. The concentrations yielding 50% mortality are: Guppies (14 day): µmol/l. Daphnids (48 hour): millimoles/l = 242 µmol/l. Fish (96 hour): millimoles/l = 21 µmol/l.

39 Environmental Fate and Exposures Example : If chemicals are released into a river upstream of a water treament plant, what factors need to be taken into account to estimate the potential danger to the community. What fraction of the chemicals are: - Absorbed by river sediments. - Volatilized into the air. - Taken up by living organisms. - Biodegraded. - Reacted with other compounds. - Removed in the treatment process.

40 Classification of Substances Based on Risk By examining the table XX, we can use the calculated properties to qualitatively quantify the risk associated with the different substances Three main criteria are normally considered in the classification of the substances : persistence, bioaccumultion and toxicity. There do not exist a given set of regulations or guidelines on quantifying risk, but the above parameters are used in the process.

41 Available Ressources EPA (persistent, bioaccumulating and toxic substances) : Pollution Prevention, Waste Minimization and PBT Chemical Reduction : bec99/6ad9c10eb8a06bc def78?opendocument Environment canada (existing substances evaluation) :

Lecture 5, Chemical Partitioning to Solids and Fugacity

Lecture 5, Chemical Partitioning to Solids and Fugacity Lecture 5, Chemical Partitioning to Solids and Fugacity Conrad (Dan) Volz, DrPH, MPH Bridgeside Point 100 Technology Drive Suite 564, BRIDG Pittsburgh, PA 15219-3130 office 412-648-8541: cell 724-316-5408:

More information

OFB Chapter 6 Condensed Phases and Phase Transitions

OFB Chapter 6 Condensed Phases and Phase Transitions OFB Chapter 6 Condensed Phases and Phase Transitions 6-1 Intermolecular Forces: Why Condensed Phases Exist 6- The Kinetic Theory of Liquids and Solids 6-3 Phase Equilibrium 6-4 Phase Transitions 6-5 Phase

More information

Reaction mass of dimethyl adipate and dimethyl glutarate and dimethyl succinate

Reaction mass of dimethyl adipate and dimethyl glutarate and dimethyl succinate GPS Safety Summary This Product Safety Summary is intended to provide a general overview of the chemical substance in the context of ICCA Global Product Strategy. The information on the Summary is basic

More information

Product Stewardship Summary

Product Stewardship Summary Product Stewardship Summary Methyldiethanolamine General Statement Methyldiethanolamine is an alkyl alkanolamine that is used in gas treatment applications and serves as an intermediate in the synthesis

More information

UNIT TEST PRACTICE. South Pasadena AP Chemistry 10 States of Matter Period Date 3 R T MM. v A v B

UNIT TEST PRACTICE. South Pasadena AP Chemistry 10 States of Matter Period Date 3 R T MM. v A v B South Pasadena AP Chemistry Name 10 States of Matter Period Date UNIT TEST PRACTICE The following formulas may be helpful. v rms = 3 R T MM v A v B = MM B MM A Part 1 Multiple Choice You should allocate

More information

3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd

3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd 3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd Definitions, Nomenclature Organic Compound Solubility Octanol-Water Partition Coefficient Organic Compound Sorption

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Product Stewardship Summary

Product Stewardship Summary Product Stewardship Summary Parachlorobenzotrifluoride General Statement Parachlorobenzotrifluoride (PCBTF) is a volatile organic compound (VOC)-exempt solvent that serves as an alternative to traditional

More information

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C).

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C). 1. Using your knowledge of the types of intermolecular forces present in CO 2, CH 3 CN, Ne, and CH 4 gases, assign each gas to its van der Waals a parameter. a ( ) 17.58 3.392 2.253 0.2107 gas 2. Match

More information

DETECTION AND FATE OF PHARMACEUTICAL COMPOUNDS AND PERSONAL CARE PRODUCTS IN THE ENVIROMENT

DETECTION AND FATE OF PHARMACEUTICAL COMPOUNDS AND PERSONAL CARE PRODUCTS IN THE ENVIROMENT DETECTION AND FATE OF PHARMACEUTICAL COMPOUNDS AND PERSONAL CARE PRODUCTS IN THE ENVIROMENT Tsourounaki Kostoula B.Sc Chemistry, MSc Environmental Engineering SCHOOL OF ENVIROMENTAL ENGINEERING PGP «Environmental

More information

WYSE Academic Challenge 2004 Sectional Chemistry Solution Set

WYSE Academic Challenge 2004 Sectional Chemistry Solution Set WYSE Academic Challenge 2004 Sectional Chemistry Solution Set 1. Answer: d. Assume 100.0 g of the compound. Thus, we have 40.00 g of carbon, or 40.00/12.01 = 3.33 mol C. We have 6.71 g of hydrogen, or

More information

Chapter 11 Review Packet

Chapter 11 Review Packet Chapter 11 Review Packet Name Multiple Choice Portion: 1. Which of the following terms is not a quantitative description of a solution? a. molarity b. molality c. mole fraction d. supersaturation 2. Which

More information

QMRF# Title. number and title in JRC QSAR Model Data base 2.0 (new) number and title in JRC QSAR Model Data base 1.0

QMRF# Title. number and title in JRC QSAR Model Data base 2.0 (new) number and title in JRC QSAR Model Data base 1.0 Q15-410-0003 ACD/Percepta model for genotoxicity (Ames test) Q31-47-42-424 ACD/Percepta model for genotoxicity (Ames test) Q15-42-0005 ACD/Percepta model for mouse acute oral toxicity Q32-48-43-426 ACD/Percepta

More information

CHEMISTRY 110 EXAM 3 April 2, 2012 FORM A 1. Which plot depicts the correct relationship between the volume and number of moles of an ideal gas at constant pressure and temperature? 2. The height of the

More information

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1 MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, 2009 6:30PM 8:30PM VERSION NUMBER: 1 Instructions: BEFORE YOU BEGIN: Enter your student number and name on the computer

More information

Lecture 7. Environmental Organic Chemistry

Lecture 7. Environmental Organic Chemistry Lecture 7 Environmental Organic Chemistry 1. Organic Chemistry Intro 2. dissolved and particulate organic carbon, Humic substances 3. DOC/POC distribution 4. Reactivity of simple organic molecules 5. Organic

More information

CH 222 Chapter Eleven Concept Guide

CH 222 Chapter Eleven Concept Guide CH 222 Chapter Eleven Concept Guide 1. Molality A 4.5 M nitric acid solution contains 65.0 g of HNO 3 in 288 g of solution. What is the molality of this solution? Molality is calculated by dividing the

More information

How to decide whether a substance is a polymer or not and how to proceed with the relevant registration

How to decide whether a substance is a polymer or not and how to proceed with the relevant registration 1 (17) Document Title How to decide whether a and how to proceed with the Contents 1. Introduction... 2 2. Substance identification polymer or not... 4 2.1. Introduction manufacture of a (potential) polymer...

More information

Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, August 29, 2001.

Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, August 29, 2001. Chem 1515 Problem Set #1 Fall 2001 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, August 29, 2001. PS1.1. Using the Pre-Lecture

More information

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005

Chemistry 122 (Tyvoll) ANSWERS TO PRACTICE EXAMINATION I Fall 2005 hemistry 122 (Tyvoll) ANSWERS T PRATIE EXAMINATIN I Fall 2005 1. Which statement is not correct? 1) A volatile liquid has a high boiling point. 2. Which of the following compounds is predicted to have

More information

Name AP CHEM / / Chapter 11 Outline Properties of Solutions

Name AP CHEM / / Chapter 11 Outline Properties of Solutions Name AP CHEM / / Chapter 11 Outline Properties of Solutions Solution Composition Because a mixture, unlike a chemical compound, has a variable composition, the relative amounts of substances in a solution

More information

3. Which of the following compounds is soluble? The solubility rules are listed on page 8.

3. Which of the following compounds is soluble? The solubility rules are listed on page 8. 1. Classify the following reaction. Sb 2 O 3 + 3 Fe 2 Sb + 3 FeO a) Combination reaction b) Decomposition reaction c) Neutralization reaction d) Single-replacement reaction e) Double-replacement reaction

More information

PCBs and the Great Lakes

PCBs and the Great Lakes Note to students: This presentation received a 50/50 as graded by me and their fellow students. Keep in mind, the grade also reflects things you didn t see (delivery, presentation, participation, etc.).

More information

CHEMISTRY 110 EXAM 3 Nov. 11, 2013 ORM A!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" 1. The cylinder shown below is filled with enough N 2 gas at 25 o C to reach a

More information

Chemistry. Student Number. Mark / 64. Final Examination Preliminary Course General Instructions. Total Marks 64

Chemistry. Student Number. Mark / 64. Final Examination Preliminary Course General Instructions. Total Marks 64 Student Number Mark / 64 Chemistry Final Examination Preliminary Course 2003 General Instructions Reading time 5 minutes Working time 120 minutes Write using black or blue pen Draw diagrams using pencil

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Sample Exercise 11.1 (p. 450) In which of the following substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH 4 ), hydrazine (H 2 NNH 2 ), methyl

More information

Environmental and IH Considerations in Nanomaterial Production and Use

Environmental and IH Considerations in Nanomaterial Production and Use Environmental and IH Considerations in Nanomaterial Production and Use Elizabeth McMeekin, PE PPG Industries, Inc. emcmeekin@ppg.com Commercialization of NanoMaterials Conference Nov. 12, 2007 NanoMaterials

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions Solutions Homogeneous mixtures of two or more substances Composition is uniform throughout the sample No chemical reaction between the components of the mixture Solvents

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

A modelling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.

A modelling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Supplementary data A modelling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Melissa Ines Gomis 1, Zhanyun Wang 2, Martin

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Substance name: 2,4 - Dinitrotoluene EC number: CAS number: MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR IDENTIFICATION OF

Substance name: 2,4 - Dinitrotoluene EC number: CAS number: MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR IDENTIFICATION OF Substance name: 2,4 - Dinitrotoluene EC number: 204-450-0 CAS number: 121-14-2 MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR IDENTIFICATION OF 2,4 - DINITROTOLUENE AS A SUBSTANCE OF VERY HIGH CONCERN BECAUSE

More information

1 Which of the following compounds has the lowest solubility in water? (4 pts)

1 Which of the following compounds has the lowest solubility in water? (4 pts) version: 516 Exam 1 - Sparks This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your score is

More information

: : Use simple structure and bonding models to account for the following. The bond lengths in CO 3

: : Use simple structure and bonding models to account for the following. The bond lengths in CO 3 Chem 55 Problem Set #2 Spring 200 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Friday, February 2, 200. PS2.. Draw two resonance structures

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Chemistry 201. Working with K. NC State University. Lecture 11

Chemistry 201. Working with K. NC State University. Lecture 11 Chemistry 201 Lecture 11 Working with K NC State University Working With K What is the relationship between pressure and concentration in K? How does one calculate K or components of K? How does one calculate

More information

Bases = Anti-Acids. The process is called neutralization (neither acidic nor basic) O H 3 2H 2

Bases = Anti-Acids. The process is called neutralization (neither acidic nor basic) O H 3 2H 2 Bases = Anti-Acids Example: HCl(aq) + H 2 (l) à H 3 + (aq) + Cl - (aq) NaH(aq) à Na + (aq) + H - (aq) H 3 + (aq) + H - (aq) à 2H 2 (l) Net: HCl(aq) + NaH(aq) à Na + (aq) + Cl - (aq) + H 2 (l) The process

More information

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Contaminant Fate and Transport Process - Xi Yang and Gang Yu

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. II - Contaminant Fate and Transport Process - Xi Yang and Gang Yu CONTAMINANT FATE AND TRANSPORT PROCESS Xi Yang and Gang Yu Department of Environmental Sciences and Engineering, Tsinghua University, Beijing, P. R. China Keywords: chemical fate, physical transport, chemical

More information

Points to Learn. τ C. τ R. conservative substance reactive substance. τ W V Q. out. out

Points to Learn. τ C. τ R. conservative substance reactive substance. τ W V Q. out. out Pots to Learn Steady State: defition Assimilation capacity - Concept - Mathematical defition: Transfer Coefficient, β =C /C Residence time: hydraulic conservative substance reactive substance τ R = a =

More information

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A

CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A CHEMISTRY 110 EXAM 3 NOVEMER 12, 2012 FORM A 1. Consider a balloon filled with 5 L of an ideal gas at 20 C. If the temperature of the balloon is increased by 70 C and the external pressure acting on the

More information

Chapter 1. Introduction

Chapter 1. Introduction Introduction 1 Introduction Scope Numerous organic chemicals are introduced into the environment by natural (e.g. forest fires, volcanic activity, biological processes) and human activities (e.g. industrial

More information

Environmental Risk Assessment of Nanomedicines

Environmental Risk Assessment of Nanomedicines Environmental Risk Assessment of Nanomedicines Specific methodological issues and implications for risk assessment Silvia Berkner, Petra Apel Umweltbundesamt, Germany Outline Regulatory background Current

More information

Name CHM 1051 Spring 2018 February 4 EXAMINATION ONE TENTATIVE SOLUTIONS I II III IV V

Name CHM 1051 Spring 2018 February 4 EXAMINATION ONE TENTATIVE SOLUTIONS I II III IV V Name CHM 1051 Spring 2018 February 4 EXAMINATION ONE TENTATIVE SOLUTIONS I II III IV V Total Glance over the entire exam, and then attempt the problems in the order of your choice. Rough point values are

More information

Chapter 11. Properties of Solutions

Chapter 11. Properties of Solutions Chapter 11 Properties of Solutions Section 11.1 Solution Composition Various Types of Solutions Copyright Cengage Learning. All rights reserved 2 Section 11.1 Solution Composition Solution Composition

More information

Fall Possibly Useful Information: 1 atm = lb/in 2 = kpa. 1 atm = 101,325 N/m 2 = 760 mmhg. 1 atm = 101,325 Pa = 1.

Fall Possibly Useful Information: 1 atm = lb/in 2 = kpa. 1 atm = 101,325 N/m 2 = 760 mmhg. 1 atm = 101,325 Pa = 1. Chemistry 122 (Tyvoll) Fall 2005 PRACTICE EXAMINATION I Possibly Useful Information: 1 atm = 14.70 lb/in 2 = 101.325 kpa 1 atm = 101,325 N/m 2 = 760 mmg 1 atm = 101,325 Pa = 1.01325 bar 1 atm = 1013.25

More information

Characterization Methods of Manufactured Nanomaterials for EHS Studies

Characterization Methods of Manufactured Nanomaterials for EHS Studies Characterization Methods of Manufactured Nanomaterials for EHS Studies Steven W Brown, MS, CIH International Standards Organization Technical Committee #229 on Nanotechnologies Convener Work Group #3 Environmental

More information

Prof. Dr. Biljana Škrbić, Jelena Živančev

Prof. Dr. Biljana Škrbić, Jelena Živančev 5 th CEFSER Training Course Analysis of chemical contaminants in food and the environment Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia 7-11 May 2012 Analysis of heavy elements

More information

HEMISTRY 110 EXAM 3 April 6, 2011 FORM A When the path is blocked, back up and see more of the way. 1. A 250 L vessel is evacuated and then connected to a 50.0 L bulb with compressed nitrogen. The pressure

More information

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH

More information

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2 EXAM 2 PRACTICE QUESTIONS NOTE- THIS IS ONLY A SELECTION OF POSSIBLE TYPES OF QUESTIONS: REFER TO THE EXAM 2 REVIEW GUIDELINES FOR THE LIST OF LEARNING TARGETS. There will likely be other questions on

More information

Chapter 11. Properties of Solutions Solutions

Chapter 11. Properties of Solutions Solutions Chapter 11. Properties of Solutions Solutions Homogeneous Mixture 1 Solution Composition Equivalent moles of solute (mol) Acid-Base reaction Molarity (M) = liter of solution (L) 1 eq: the quantity of acid

More information

FRONT PAGE FORMULA SHEET - TEAR OFF

FRONT PAGE FORMULA SHEET - TEAR OFF FRONT PAGE FORMULA SHEET - TEAR OFF N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013

More information

Upon successful completion of this unit, the students should be able to:

Upon successful completion of this unit, the students should be able to: Unit 9. Liquids and Solids - ANSWERS Upon successful completion of this unit, the students should be able to: 9.1 List the various intermolecular attractions in liquids and solids (dipole-dipole, London

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions

CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions CH1810 Lecture #2 Vapor Pressure of Liquids and Solutions Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion Types of motion: vibrational, and limited

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY Chemistry 112 Spring 27 Prof. Metz Exam 1 KEY 1. Ammonia, NH 3, has a much higher boiling point than phosphine, PH 3. This is because: (A) NH 3 has a lower molecular weight than PH 3. (B) NH 3 is extensively

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY Chemistry 112 Spring 27 Prof. Metz Exam 1 KEY 1. The predominant intermolecular attractive force in solid sodium is: (A) ionic (B) covalent (C) metallic (D) dipole-dipole (E) induced dipole-induced dipole

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY

Chemistry 112 Spring 2007 Prof. Metz Exam 1 KEY Chemistry 112 Spring 27 Prof. Metz Exam 1 KEY 1. The predominant intermolecular attractive force in solid sodium is: (A) covalent (B) metallic (C) ionic (D) dipole-dipole (E) induced dipole-induced dipole

More information

New Product and Aerosol Studies On The Photooxidation Of Dimethylsulfide

New Product and Aerosol Studies On The Photooxidation Of Dimethylsulfide New Product and Aerosol Studies On The Photooxidation Of Dimethylsulfide C. Arsene, I. Barnes and K.H. Becker Physikalische Chemie / Fachbereich 9, Bergische Universität-GH Wuppertal Gaußstraße, 97 Wuppertal,

More information

Heat and Temperature Cut from Jan 2007 Jan 2008 Exams

Heat and Temperature Cut from Jan 2007 Jan 2008 Exams Heat and Temperature Cut from Jan 2007 Jan 2008 Exams 1. Given the balanced equation: I + I I2 Which statement describes the process represented by this equation? (1) A bond is formed as energy is absorbed.

More information

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93

Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Problems: 11, 15, 18, 20-23, 30, 32-35, 39, 41, 43, 45, 47, 49-51, 53, 55-57, 59-61, 63, 65, 67, 70, 71, 74, 75, 78, 81, 85, 86, 93 Chapter 11 Properties of Solutions Types of mixtures: homogenous

More information

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 107 T. Hughbanks Le Châtelier's Principle When a change is imposed on a system at equilibrium, the system will

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Chapter 11: Properties of Solutions

Chapter 11: Properties of Solutions Chapter 11: Properties of Solutions Apr 1 11:01 AM 11.1 Solution Composition Solve problems relating to the mass percent, mole fraction and molality. Mar 26 1:09 PM 1 Molarity (M) is defined as moles of

More information

DEGRADATION OF CHLOROETHENES IN AQUEOUS SOLUTION BY ULTRASOUND

DEGRADATION OF CHLOROETHENES IN AQUEOUS SOLUTION BY ULTRASOUND DEGRADATION OF CLOROETENES IN AQUEOUS SOLUTION BY ULTRASOUND V. Sáez,, M. D. Esclapez,, P. Bonete,, E. Marchante, J. González-García García,, D. Walton, O. Louisnard SONOCEMICAL DEGRADATION OF ALOCOMPOUNDS

More information

/15. Chem 202 Name KEY Exam 1 January 30, (3 pts total, 15 pts each) circle the best answer

/15. Chem 202 Name KEY Exam 1 January 30, (3 pts total, 15 pts each) circle the best answer Chem 202 KEY Exam 1 January 30, 2006 1. (3 pts total, 15 pts each) circle the best answer Which of the following is (are) true? a. Charles Law assume V and T are constant b. Boyles law assumes P and V

More information

Chemistry 1AA3 2000/01

Chemistry 1AA3 2000/01 Chemistry 1AA3 2000/01 Tutorial #5 Answers Week of February 12-16, 2001 Dr. M.A. Brook Dr. B. E. McCarry Dr. A. Perrott 1. The equation for the reaction of NO(g) with O2(g) at 660K is: 2 NO(g) + O2(g)

More information

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces Nestor S. Valera Ateneo de Manila Chapter 12 - Intermolecular Forces 1 A phase is a region that differs in structure and/or composition from another region. 2 Phases Solid phase - ice Liquid phase - water

More information

Big Idea Three Topics

Big Idea Three Topics Big Idea Three Topics 1. Molecular, Ionic, Net Ionic Equations 2. Stoichiometry 3. Synthesis, Decomposition Reactions 6. Chemical Change Evidence 7. Endothermic & Exothermic Reactions 8. Electrochemistry

More information

CHEM 1412 SAMPLE FINAL EXAM

CHEM 1412 SAMPLE FINAL EXAM CHEM 1412 SAMPLE FINAL EXAM PART I - Multiple Choice (2 points each) 1. In which colligative property(ies) does the value decrease as more solute is added? A. boiling point B. freezing point and osmotic

More information

Solids, liquids and gases

Solids, liquids and gases Solids, liquids and gases Solids, liquids, and gases are held together by intermolecular forces. Intermolecular forces occur between molecules, not within molecules (as in bonding). When a molecule changes

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

4. CHEMICAL AND PHYSICAL INFORMATION

4. CHEMICAL AND PHYSICAL INFORMATION DICHLOROPROPENES 185 4.1 CHEMICAL IDENTITY Data pertaining to the chemical identity of 1,1-, 1,2-, cis-1,3-, trans-1,3-, 2,3-, and 3,3-dichloropropene are listed in Table 4-1. 4.2 PHYSICAL AND CHEMICAL

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Chemistry. ANSWERS and MARKING SCHEME. Final Examination Preliminary Course General Instructions. Total Marks 64

Chemistry. ANSWERS and MARKING SCHEME. Final Examination Preliminary Course General Instructions. Total Marks 64 ANSWERS and MARKING SCHEME Chemistry Final Examination Preliminary Course 2003 General Instructions Reading time 5 minutes Working time 120 minutes Write using black or blue pen Draw diagrams using pencil

More information

Section II Assessing Polymers

Section II Assessing Polymers 26 Clean Production Action GreenScreen v1.4 (January 2018) Section II Assessing Polymers 13. Purpose Section II outlines the procedure to be used to assess and classify hazards of polymers. Follow the

More information

Ch 13 The Properties of Mixtures: Solutions and Colloids

Ch 13 The Properties of Mixtures: Solutions and Colloids Ch 13 The Properties of Mixtures: Solutions and Colloids Key equations: Concentration Unit - Quantitative Ways of Expressing Concentration Principles of Solubility Colligative Properties of Solutions nonelectrolyte

More information

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Polarity of Water In a water molecule two hydrogen atoms form single polar

More information

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4

3.Which of the following has the highest melting temperature? A) H 2 O B) CO 2 C) S 8 D) MgF 2 E) P 4 2. Which if the following is the correct order of boiling points for KNO 3, CH 3 OH, C 2 H 6, Ne? A) Ne < CH 3 OH < C 2 H 6 < KNO 3 B) KNO 3 < CH 3 OH < C 2 H 6 < Ne C) Ne < C 2 H 6 < KNO 3 < CH 3 OH D)

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Groundwater chemistry

Groundwater chemistry Read: Ch. 3, sections 1, 2, 3, 5, 7, 9; Ch. 7, sections 2, 3 PART 14 Groundwater chemistry Introduction Matter present in water can be divided into three categories: (1) Suspended solids (finest among

More information

Nano-Ecotoxicology Assessment of Potential Effects of Engineered Nanomaterials in the Environment

Nano-Ecotoxicology Assessment of Potential Effects of Engineered Nanomaterials in the Environment Source: Armin Springer Source: Clemson University Nano-Ecotoxicology Assessment of Potential Effects of Engineered Nanomaterials in the Environment Dana Kühnel Department Bioanalytical Ecotoxicology Toxicology

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75. 1 2004 B 2 Fe(s) + 3 2 O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O 2 (g) at 2.66

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Reference pg and in Textbook

Reference pg and in Textbook Reference pg. 154-164 and 188-202 in Textbook Combustion Reactions During combustion (burning) of fossil fuels, collisions between the molecules of the fuel and oxygen result in the formation of new molecules.

More information

GPS Safety Summary Acetic Acid

GPS Safety Summary Acetic Acid GPS Safety Summary Acetic Acid Chemical Identity Name: Acetic acid CAS number: 64 19 7 Molecular formula: C 2 H 4 O 2 IUPAC name: Acetic acid BASF brand names: Acetic acid Structure For synonyms see end

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES 2009 SCORING GUIDELINES Question 1 (10 points) Answer the following questions that relate to the chemistry of halogen oxoacids. (a) Use the information in the table below to answer part (a)(i). Acid HOCl

More information

Ch 12 and 13 Practice Problems

Ch 12 and 13 Practice Problems Ch 12 and 13 Practice Problems The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon 97403 USA Closed system vs Open

More information

Week 14/Tu: Lecture Units 33 & 34

Week 14/Tu: Lecture Units 33 & 34 Week 14/Tu: Lecture Units 33 & 34 Exam 3 Unit 33: Colligative Properties -- Vapor pressure of solutions -- Freezing, boiling of solutions -- Osmotic pressure Unit 34: Introduction to Equilibria -- Rate

More information

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic.

1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. Problems - Chapter 13 (with solutions) 1) Define the following terms: a) solution, b) miscible, c) hydration, d) percent by mass (solute), e) colligative property, f) hypotonic. a) solution - A homogeneous

More information

Chapter 13. Properties of Solutions

Chapter 13. Properties of Solutions Chapter 13 Properties of Solutions Warm - Up Why doesn t salt dissolve in nonpolar solvents such as hexane? How does the orientation of water around Na + differ from the orientation of water around Cl

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

Midterm II Material/Topics Autumn 2010

Midterm II Material/Topics Autumn 2010 1 Midterm II Material/Topics Autumn 2010 Supplemental Material: Resonance Structures Ch 5.8 Molecular Geometry Ch 5.9 Electronegativity Ch 5.10 Bond Polarity Ch 5.11 Molecular Polarity Ch 5.12 Naming Binary

More information

Spanish Fork High School Unit Topics and I Can Statements Honors Chemistry

Spanish Fork High School Unit Topics and I Can Statements Honors Chemistry Spanish Fork High School 2014-15 Unit Topics and I Can Statements Honors Chemistry Module 1 I Can: Module 2 I Can: Distinguish between elements, compounds, and mixtures Summarize the major experimental

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information