2.29 Numerical Fluid Mechanics Fall 2011 Lecture 23

Size: px
Start display at page:

Download "2.29 Numerical Fluid Mechanics Fall 2011 Lecture 23"

Transcription

1 2.29 Numrcal Flud Mchacs Fall 2011 Lctur 23 REVIEW Lcturs 22: Compl Gomtrs Grd Grato Basc cocpts ad structurd grds trtchd grds Algbrac mthods Gral coordat trasformato Dffrtal quato mthods Coformal mappg mthods Ustructurd grd grato Dlauay Tragulato Advacg Frot mthod Ft Volum o Compl gomtrs Computato of covctv flus Computato of dffusv flus Commts o 3D 2.29 Numrcal Flud Mchacs FJL Lctur 23, 1

2 TODAY (Lctur 23): Grd Grato (d), FV o Compl Gomtrs ad oluto to th Navr-toks Equatos Grd Grato Basc cocpts ad structurd grds Algbrac mthods (strtchd grds), Gral coordat trasformato, Dffrtal quato mthods, Coformal mappg mthods Ustructurd grd grato Dlauay Tragulato Advacg Frot mthod Ft Volum o Compl gomtrs Computato of covctv flus Computato of dffusv flus Commts o 3D oluto of th Navr-toks Equatos Dscrtzato of th covctv ad vscous trms Dscrtzato of th prssur trm Cosrvato prcpls 2.29 Numrcal Flud Mchacs FJL Lctur 23, 2

3 Rfrcs ad Radg Assgmts Chaptr 8 o Compl Gomtrs ad Chaptr 7 o Icomprssbl Navr-toks quatos of J. H. Frzgr ad M. rc, Computatoal Mthods for Flud Dyamcs. prgr, NY, 3 rd dto, 2002 Chaptr 9 o Grd Grato ad Chaptr 11 o Icomprssbl Navr-toks Equatos of T. Cbc, J.. hao, F. Kafyk ad E. Laurdau, Computatoal Flud Dyamcs for Egrs. prgr, Chaptr 13 o Grd Grato ad Chaptr 17 o Icomprssbl Vscous Flows of Fltchr, Computatoal Tchqus for Flud Dyamcs. prgr, Rf o Grd Grato oly: Thompso, J.F., Wars Z.U.A. ad C.W. Mast, Numrcal Grd Grato, Foudatos ad Applcatos, North Hollad, Numrcal Flud Mchacs FJL Lctur 23, 3

4 2.29 Grd Grato: Ustructurd Grds Gratg ustructurd grd s complcatd but ow rlatvly automatd classc cass Ivolvs succsso of smoothg tchqus that attmpt to alg lmts wth boudars of physcal doma Dcompos doma to blocks to dcoupl th problms Nd to df pot postos ad coctos Most popular algorthms: Dlauay Tragulato Mthod Advacg Frot Mthod Two schools of thought: structurd vs. ustructurd, what s bst for CFD? prgr. All rghts rsrvd. Ths cott s cludd from our Cratv Commos lcs. For mor formato, s tructurd grds: smplr grd ad straghtforward tratmt of algbrac systm, but msh grato costrats o compl gomtrs Ustructurd grds: gratd fastr o compl domas, asr msh rfmts, but data storag ad soluto of algbrac systm mor compl Numrcal Flud Mchacs FJL Lctur 23, 4

5 Dlauay Tragulato (DT) Grd Grato: Ustructurd Grds Us a smpl crtro to coct pots to form coformg, o-trsctg lmts Mamzs mmum agl ach tragl Not uqu Task of pot grato s do dpdtly of cocto grato Basd o Drchlt s doma dcomposto to a st of packd cov rgos: For a gv st of pots, th spac s subdvdd to rgos such a way that ach rgo s th spac closr to tha to ay othr pot = Drchlt tssllato Ths gomtrcal costructo s kow as th Drchlt tssllato Th tssllato of a closd doma rsults a st of o-ovrlappg cov rgos calld Voroo rgos/polygos Th sds of th polygo aroud s mad of sgmts bsctors of ls og to ts ghbors: f all par of pots wth a commo sgmt ar od by straght ls, th rsult s a Dlauay Tragulato Each vort of a Voroo dagram s th crcumctr of th tragl formd by th thr pots of a Dlauay tragl Crtro: th crcumcrcl ca ot cota ay othr pot tha ths thr pots Not: at th d, pots ar at summts of tragls (a) atsfs th crtro (b) Dos ot Imag by MIT OpCoursWar Imag by MIT OpCoursWar. Numrcal Flud Mchacs FJL Lctur 23, 5

6 Grd Grato: Ustructurd Grds Advacg Frot Mthod I ths mthod, th ttrahdras ar bult progrssvly, ward from th boudary A actv frot s matad whr w ttrahdra ar formd For ach tragl o th dg of th frot, a dal locato for a w thrd od s computd Rqurs trscto chcks to sur tragls do t ovrlap 2.29 prgr. All rghts rsrvd. Ths cott s cludd from our Cratv Commos lcs. For mor formato, s I 3D, th Dlauay Tragulato s prfrrd (fastr) Numrcal Flud Mchacs FJL Lctur 23, 6

7 Ft Volums o Compl gomtrs FD mthod (classc): Us structurd-grd trasformato (thr algbrac-trasft, gral, dffrtal or coformal mappg) olv trasformd quatos o smpl orthogoal computatoal doma FV mthod: tarts from cosrvato qs. tgral form o CV d dt CV C C CV dv ( v. )da q. da s dv Advctv (covctv) flus Othr trasports (dffuso, tc) W hav s prcpls of FV dscrtzato Covctv/dffusv flus, from 1 st - 2 d ordr to hghr ordr dscrtzatos Ths prcpls ar dpdt of grd spcfcs, but, um of sourcs ad sks trms (ractos, tc) vral w faturs ars wth o-orthogoal or arbtrary ustructurd grds 2.29 Numrcal Flud Mchacs FJL Lctur 23, 7

8 Eprssg flus at th surfac basd o cll-avragd (odal) valus: ummary of Two Approachs ad Boudary Codtos t-up of surfac/volum tgrals: 2 approachs (do thgs oppost ordr) 1. () Evaluat tgrals usg classc ruls (symbolc valuato); () Th, to obta th ukow symbolc valus, trpolat basd o cll-avragd (odal) valus ( ) F f da F ( ) G F F ( ) H ( ' s) H ( ' s) mlar for othr tgrals: 1 ( s dv, dv, tc) V V V 2. () lct shap of soluto wth CV (pcws appromato); () mpos volum costrats to prss coffcts trms of odal valus; ad () th tgrat. (ths approach was usd th ampls). ( ) a ( ) J ( ) a ( ) ( ) a ( ) ( ) a F V F ( ) F f da Boudary codtos: Drctly mposd for covctv flus O-sd dffrcs for dffusv flus ( ' s) ( ' s) mlar for hghr dmsos: (, y) J (, y); tc (, y ) ; tc a a (From lctur 19) 2.29 Numrcal Flud Mchacs FJL Lctur 23, 8

9 2.29 Appro. of urfac/volum Itgrals: Classc symbolc formulas urfac Itgrals 2D problms (1D surfac tgrals) Mdpot rul (2 d ordr): Trapzod rul (2 d ordr): mpso s rul (4 th ordr): 3D problms (2D surfac tgrals) Mdpot rul (2 d ordr): Hghr ordr mor complcatd to mplmt 3D Volum Itgrals: 2D/3D problms, Mdpot rul (2 d ordr): 2D, b-quadratc (4 th ordr, Cartsa): F f da 1 s dv, dv V V V Notato usd for a Cartsa 2D ad 3D grd. Imag by MIT OpCoursWar. 2 ( ) F f da f f O y f ( f fs) 2 F f da O( y ) 2 ( f 4 f fs) 4 F f da O( y ) 6 F f da f O y z 2 2 (, ) s dv s V s V V (summary from Lctur 18) y 16s 4ss 4s 4sw 4s ss ssw s sw 36 Numrcal Flud Mchacs FJL Lctur 23, 9 y y +1 y y -1 WW NW W W w w sw N s s NE E y E EE

10 FV: Appromato of covctv flus ( v. )d ) C Advctv (covctv) flus For compl gomtrs, o oft uss th mdpot rul for th appromato of surfac ad volum tgrals Cosdr frst th mass flu: =1: f 1 v. Aga, w cosdr o fac oly: ast sd of a 2D CV (sam approach appls to othr facs ad to ay CV shaps). Md-pot rul for mass flu: m f m f1 d f f O( 2 ) ( v v.. ) y NW w w W sw N η η ξ E s E ξ Th ut ormal vctor to fac ad ts surfac ar dfd as: y s ) (y y s ) ( whr ( ) ( y ) 2 2 Hc, mass flu s: y y ( m v.( ( v v.. ) ) ( u v ) Imag by MIT OpCoursWar Numrcal Flud Mchacs FJL Lctur 23, 10

11 FV: Appromato of covctv flus, Cot d Mass Flu Th mass flu for th md-pot rul: m y ( u v) What s th dffrc btw th Cartsa ad oorthogoal grd cass? I o-orthogoal cas, ormal to surfac has compots all drctos All vlocty compots thus cotrbut to th flu (ach compot s multpld by th procto of oto th corrspodg as) η NW N y η ξ w ξ E w W s sw E Imag by MIT OpCoursWar Numrcal Flud Mchacs FJL Lctur 23, 11

12 FV: Appromato of covctv flus, Cot d Mass flu for md-pot rul: Covctv flu for ay trasportd Is usually computd aftr th mass flu. Usg th md-pot rul: F ( v. ) d f ( ( v. ) m whr How to obta?, us thr: = valu at ctr of cll fac A lar trpolato btw two ods o thr sd of fac (also 2 d ordr) bcoms trapzodal rul Ft to a polyomal th vcty of th fac (pcws shap fucto) Cosdratos for ustructurd grd: y m ( u v ) m ( Bst comproms amog accuracy, gralty ad smplcty s usually: Lar trpolato ad md-pot rul Idd: facltats us of local grd rfmt, whch ca b usd to achv hghr accuracy at lowr cost tha hghr-ordr schms. Howvr, hghrordr FE or compact FD ar ow bg usd/dvlopd 2.29 Numrcal Flud Mchacs FJL Lctur 23, 12

13 FV: Appromato of dffusv flus C k. d Dffusv Flus For compl gomtrs, w ca stll us th mdpot rul Md-pot rul gvs: F d ( 2 k.d f f O( ) (k.. ) Hr, gradt ca b prssd trms of global Cartsa coordats (, y) or local orthogoal coordats (, t) y W NW w w sw η N η ξ s E Imag by MIT OpCoursWar. E ξ I 2D: t y t Thr ar may ways to appromat th drvatv ormal to th cll fac or th gradt vctor at th cll ctr As always, two ma approachs: Appromat surfac tgral, th trpolat pcfy shap fucto, costrats, th tgrat 2.29 Numrcal Flud Mchacs FJL Lctur 23, 13

14 FV: Appromato of dffusv flus, Cot d 1) If shap fucto (, y) s usd, wth md-pot rul, ths gvs: (k. ) ) k k k y F d y Ca b valuatd ad rlatvly asy to mplmt plctly Implctly ca b hardr for hgh-ordr shap fct (, y) (mor cll volvd) 2) Aothr way s to comput drvatvs at CV ctrs frst, th trpolat to cll facs (2 stps as for computg from ) y W NW w w sw η N η ξ s E Imag by MIT OpCoursWar. E ξ ) O ca us avrags + Gauss Thorm locally Drvatv at ctr avrag drvatv ovr cll CV dv dv Gauss thorm for / (smlar for y drvatv): dv.d c c CV C 4facs c 2.29 Numrcal Flud Mchacs FJL Lctur 23, 14

15 FV: Appromato of dffusv flus, Cot d y 2.29 Hc, th gradt at th CV ctr wth rspct to s obtad by summg th products of ach c wth th procto of ts cll surfac oto a pla ormal to, ad th dvdg th sum by th CV volum For w ca us th appromato for th covctv flus c W ca th trpolat to obta th gradt at th ctrs of cll facs For Cartsa grds ad lar trpolato, o rtrvs ctrd FD W NW w w sw η N η ξ s E Imag by MIT OpCoursWar. E ξ CV dv dv dv 4 c facs ) Cll-ctr gradts ca also b appromatd to 2 d ordr assumg a lar varato of locally: E. (r r ) E Thr ar as may such quatos as thr ar ghbors to th cll ctrd at d for last-squar vrsos (oly drvatvs D) Issus wth ths appromato ar oscllatory solutos ad larg computatoal stcls for mplct schms us dfrrd-corrcto approach Numrcal Flud Mchacs c c FJL Lctur 23, 15

16 FV: Appromato of dffusv flus, Cot d ) Dfrrd-Corrcto Approach: Ida bhd dfrrd-corrcto s to dtfy possbl optos ad comb thm to rduc costs ad lmat u-dsrd bhavor. om optos: If w work local coordats (, t): (k. ) ) k F d re r (1) 1 2 r E rw 2 r EE r (2) E If grd was clos to orthogoal Cartsa, usg CD: E W 1 tr: EE If trpolat th gradt at th cll c y 2.29 W NW w w sw η N η ξ s E Imag by MIT OpCoursWar. E ξ Oscllatory solutos do ot cotrbut to ths thrd hghrordr choc, but gradts at cll facs would stll b larg => oscllatos do occur: Th obvous soluto: Numrcal Flud Mchacs mplct r1 plct mplct (1) (2) (1) wll oscllat Nd to fd othr optos/soluto WW φ W W W φ E φ φ EE E EE Imag by MIT OpCoursWar. FJL Lctur 23, 16 r

17 FV: Appromato of dffusv flus, Cot d ) Dfrrd-Corrcto Approach, Cot d (Muzafra, 1994): y If l coctg ods ad E s arly orthogoal to cll fac, drvatv w.r.t ca b appromatd wth drvatv w.r.t ξ (as bfor): appromato clos to 2 d ordr F k k k d E r E r If grd s ot orthogoal, th dfrrd corrcto trm should cota th dffrc btw th gradts th ad ξ drctos W NW w w sw η N η ξ s E Imag by MIT OpCoursWar. E ξ d F k k E whr th frst trm s computd as: k k re r Brackt trm trpolatd from cll ctr gradts (thmslvs obtad from Gauss thorm) Hc:. ad. F d old k k old E r E r 2.29 Numrcal Flud Mchacs FJL Lctur 23, 17

18 FV: Appromato of dffusv flus, Cot d ) Dfrrd-Corrcto Approach, Cot d (Muzafra, 1994): I th formula: old F k k d E r E r Th dfrrd corrcto trm s (clos to) zro wh grd (clos to) orthogoal,.. ad ξ drctos ar th sam (clos to ach othr). y It maks th computato of drvatvs smpl (amouts to sums of ghbor valus), rcall that: old old trpolatd from, η N NW η w ξ ξ E th lattr gv by.g. c 4 c facs c dv w W s sw E Imag by MIT OpCoursWar. rvts oscllatos sc basd o sums of c, wth postv coffcts W rmad Cartsa coordats (o d to trasform coordats, w ust d to kow th ormals & surfacs), whch s hady for compl turbult modls 2.29 Numrcal Flud Mchacs FJL Lctur 23, 18

19 om commts o FV o compl gomtrs L -E dos ot always pass through th cll ctr d som updats that cas othrws, schm s of lowr ordr (.g. appromato s ot scod ordr aymor) chms ca b tdd to 3D grds but som updats ca also b dd For ampl, cll facs ar ot always plaar 3D Block B w N V 4 R R s R ' 1 ' V 3 Block-Itrfac l+1 l Cll-fac ctr L Block A Cll vrt Cll ctr l-1 Th trfac btw two blocks wth o-matchg grds. Collocatd arragmt of vlocty compots ad prssur o FD ad FV grds. NE E' E V 5 V Block-structurd grds ad std grds also d spcal tratmt For ampl, matchg at boudars (usually trpolato ad avragg) Numrcal Flud Mchacs 4 C 4 C 1 V 1 3 C 3 C 2 2 Cll volum ad surfac vctors for arbtrary cotrol volums. Imag by MIT OpCoursWar. FJL Lctur 23, 19

20 Itgral Cosrvato Law for a scalar (from Lctur 6) d dt d dv dv. s dv dt ( v. )da fd C q da C CVfC fd CM CV C C CV Advctv flus Othr trasports (dffuso, tc) ("covctv" flus) um of sourcs ad sks trms (ractos, tc) CV, fd ρ,φ s Φ v Applyg th Gauss Thorm, for ay arbtrary CV gvs:.( v) ). q s t q For a commo dffusv flu modl (Fck s law, Fourr s law): q k Cosrvatv form of th DE.( v ).( k ) s t 2.29 Numrcal Flud Mchacs FJL Lctur 23, 20

21 Cos. of Momtum: trog-cosrvatv form of th Navr-toks Equatos ( v) d dt Applyg th Gauss Thorm gvs: vdv v( ( v. ) da p da. gdv C da C CV F CV C C C CV p. g dv CV (from Lctur 6) ρ,φ v For ay arbtrary CV gvs: v.( vv v ) p.. g t Wth Nwtoa flud + comprssbl + costat μ: CV, fd s Φ q Momtum: Mass: t. v 0 v.( vv v) ) p 2 v gg Equatos ar sad to b strog cosrvatv form f all trms hav th form of th dvrgc of a vctor or a tsor. For th th Cartsa compot, th gral Nwtoa flud cas: Wth Nwtoa flud oly: v u u u 2 u u g t u.( v v ). p Numrcal Flud Mchacs FJL Lctur 23, 21

22 oluto of th Navr-toks Equatos I th FD ad FV schms, w dalt wth th dscrtzato of th grc cosrvato quato.( v) ). q s t Ths rsults apply to th momtum ad cotuty quatos (th N quatos),.g. for comprssbl flows, costat vscosty t. v 0 v.( vv v) ) p 2 v gg Trms that ar dscrtzd smlarly Ustady ad advcto trms: thy hav th sam form for scalar tha for = v Trms that ar dscrtzd dffrtly Momtum (vctor) dffusv flus d to b tratd a bt mor dtals rssur trm has o aalog th grc cosrvato quato => ds spcal attto. It ca b rgardd thr as a sourc trm (tratd o-cosrvatvly as a body forc), or as, surfac forc (cosrvatv tratmt) Fally, ma varabl v s a vctor gvs mor frdom to th choc of grds 2.29 Numrcal Flud Mchacs FJL Lctur 23, 22

23 Dscrtzato of th Covctv ad Vscous Trms Covctv trm: Us ay of th schms (FD or FV) that w hav s (cludg compl gomtrs). ad.da C ad. d u u If μ s costat, th vscous trm s as th gral cosrvato q. for Vscous trm: For a Nwtoa Flud ad comprssbl flows: If μ vars, ts drvatv ds to b valuatd For a Nwtoa flud ad comprssbl flow: Addtoal trms d to b tratd,.g. Not that o-cartsa coordat systms, w trms also ars that bhav as a body forc, ad ca thus b tratd plctly or mplctly.g u r r 2 2 ( uu.( v v( ( v. )d u ) v ) ad ad u ( v. )d 2 u Numrcal Flud Mchacs FJL Lctur 23, 23

24 Dscrtzato of th rssur trm For cosrvatv N schms, gravty/body-forc trms oft cludd th prssur trm, gvg: 2 2 u.. ( p u p p ggr u g ) 3 3 rssur th part of th strss tsor (shows up as dvrgc N qs.) Last trm s ull for comprssbl flows I o-cosrvatv N forms, th prssur gradt s dscrtzd FD schms FD schms s arlr ar drctly applcabl, but prssur ca b dscrtzd o a dffrt grd tha th vlocty grd (staggrd grd) FV schms rssur usually tratd a surfac forc (cosrvatv form): For th u quato: p. d Aga, schms s prvous lcturs ar applcabl, but prssur ods ca b o a dffrt CV grd rssur ca also b tratd o-cosrvatvly: Dscrtzato th troducs a global o-cosrvatv rror 2.29 Numrcal Flud Mchacs FJL Lctur 23, 24 V. p dv

25 2.29 Cosrvato rcpls for N Momtum ad Mass Cosrvato Momtum s cosrvd ay cotrol volum th ss that t ca oly chag bcaus of flow through th CV surfacs, forcs actg o ths surfacs or volumtrc body forcs Ths proprty s hrtd th CV formulato (f surfac flus ar dtcal o both sds) mlar statmts for Mass cosrvato Cosrvato of mportat scodary quatts,.g. rgy Mor compl ssus I hat trasfr, thrmal rgy quato ca b solvd aftr momtum quato has b solvd f proprts do t vary much wth tmpratur T T s th a passv scalar, wth o way couplg I comprssbl, sothrmal flows: ktc rgy s th sgfcat rgy I comprssbl flows: rgy cluds comprssbl trms two quatos ca b wrtt, o for ktc or tral rgy ad o for th total rgy Numrcal Flud Mchacs FJL Lctur 23, 25

26 Cosrvato rcpls for N: Cot d Ktc Ergy Cosrvato Drvato of Ktc rgy quato Tak dot product of momtum quato wth vlocty Itgrat ovr a cotrol volum CV or full volum of doma of trst Ths gvs t whr 2 2 v v dv ( v g g.. v dv 2 2. ) da p v. da (. v ). da : v p. v CV C C C CV p s th vscous compot of th strss tsor Hr, th thr RH trms th volum tgral ar zro f th flow s vscd (trm 1 = dsspato), comprssbl (trm 2) ad thr ar o body forcs (trm 3) Othr trms ar surfac trms ad ktc rgy s cosrvd ths ss: dscrtzato o CV should dally lad to o cotrbuto ovr th volum om obsrvatos Guaratg global cosrvato of th dscrt ktc rgy s ot automatc sc th ktc rgy quato s a cosquc of th momtum quato. Dscrt momtum ad ktc rgy cosrvatos caot b forcd sparatly Numrcal Flud Mchacs FJL Lctur 23, 26

27 MIT OpCoursWar Numrcal Flud Mchacs Fall 2011 For formato about ctg ths matrals or our Trms of Us, vst:

Complete the Online Evaluation of 2.29

Complete the Online Evaluation of 2.29 Complt th Ol Evaluato of Th sprg 2015 d-of-trm subjct valuatos opd o Tusday, May 5 at 9 am. tudts hav utl Moday, May 18 at 9 am to complt thr survys. Emal TA to gt two bous pots (survys ar aoymous Numrcal

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

EQUATION SHEET Quiz 2

EQUATION SHEET Quiz 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 039.9 NUMERICAL FLUID MECHANICS SPRING 05 EQUATION SHEET Quz Nubr Rrstato - Floatg Nubr Rrstato: = b,

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS Chaptr 4 NUMERICL METHODS FOR SOLVING BOUNDRY-VLUE PROBLEMS 00 4. Varatoal formulato two-msoal magtostatcs Lt th followg magtostatc bouar-valu problm b cosr ( ) J (4..) 0 alog ΓD (4..) 0 alog ΓN (4..)

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Entropy Equation for a Control Volume

Entropy Equation for a Control Volume Fudamtals of Thrmodyamcs Chaptr 7 Etropy Equato for a Cotrol Volum Prof. Syoug Jog Thrmodyamcs I MEE2022-02 Thrmal Egrg Lab. 2 Q ds Srr T Q S2 S1 1 Q S S2 S1 Srr T t t T t S S s m 1 2 t S S s m tt S S

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 -

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 - Statstcal Thrmodyamcs sstal Cocpts (Boltzma Populato, Partto Fuctos, tropy, thalpy, Fr rgy) - lctur 5 - uatum mchacs of atoms ad molculs STATISTICAL MCHANICS ulbrum Proprts: Thrmodyamcs MACROSCOPIC Proprts

More information

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4. Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

REVIEW Lecture 16: Finite Volume Methods

REVIEW Lecture 16: Finite Volume Methods 2.29 Numrcal Flud Mchancs prng 2015 Lctur 17 REVIEW Lctur 16: Fnt Volum Mthods Rvw: Basc lmnts of a FV schm and stps to stp-up a FV schm On Dmnsonal xampls d x j x j1/2 Gnrc quaton: Lnar Convcton (ommrfld

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 St Ssts o Ordar Drtal Equatos Novbr 7 St Ssts o Ordar Drtal Equatos Larr Cartto Mcacal Er 5A Sar Er Aalss Novbr 7 Outl Mr Rsults Rvw last class Stablt o urcal solutos Stp sz varato or rror cotrol Multstp

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

Lecture 14. P-N Junction Diodes: Part 3 Quantitative Analysis (Math, math and more math) Reading: Pierret 6.1

Lecture 14. P-N Junction Diodes: Part 3 Quantitative Analysis (Math, math and more math) Reading: Pierret 6.1 Lctur 4 - ucto ods art 3 Quattatv alyss Math, math ad mor math Radg rrt 6. Gorga Tch ECE 3040 - r. la oolttl Quattatv - od Soluto ssumtos stady stat codtos o- dgrat dog 3 o- dmsoal aalyss 4 low- lvl jcto

More information

On the Possible Coding Principles of DNA & I Ching

On the Possible Coding Principles of DNA & I Ching Sctfc GOD Joural May 015 Volum 6 Issu 4 pp. 161-166 Hu, H. & Wu, M., O th Possbl Codg Prcpls of DNA & I Chg 161 O th Possbl Codg Prcpls of DNA & I Chg Hupg Hu * & Maox Wu Rvw Artcl ABSTRACT I ths rvw artcl,

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 9 4. Matrx tgrals Lt h N b th spac of Hrmta matrcs of sz N. Th r product o h N s gv by (A, B) = Tr(AB). I ths scto w wll cosdr tgrals of th form Z

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations Appld Mathmatcal Sccs ol. 9 5 o. 43 75-73 HKAR Ltd www.m-hkar.com http://dx.do.org/.988/ams.5.567 Thr-Dmsoal Thory of Nolar-Elastc Bods Stablty udr Ft Dformatos Yu.. Dmtrko Computatoal Mathmatcs ad Mathmatcal

More information

Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach

Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach Po Producto va Proto Sychrotro Radato Strog Magtc Flds Rlatvstc Quatum Approach Partcl Productos TV Ergy Rgo Collaborators Toshtaka Kajo Myog-K Chou Grad. J. MATHEWS Tomoyuk Maruyama BRS. Nho Uvrsty NaO,

More information

T and V be the total kinetic energy and potential energy stored in the dynamic system. The Lagrangian L, can be defined by

T and V be the total kinetic energy and potential energy stored in the dynamic system. The Lagrangian L, can be defined by From MEC '05 Itrgratg Prosthtcs ad Mdc, Procdgs of th 005 MyoElctrc Cotrols/Powrd Prosthtcs Symposum, hld Frdrcto, Nw Bruswc, Caada, ugust 7-9, 005. EECROMECHNIC NYSIS OF COMPEE RM PROSHESIS (EMS) Prmary

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

Ordinary Least Squares at advanced level

Ordinary Least Squares at advanced level Ordary Last Squars at advacd lvl. Rvw of th two-varat cas wth algbra OLS s th fudamtal tchqu for lar rgrssos. You should by ow b awar of th two-varat cas ad th usual drvatos. I ths txt w ar gog to rvw

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Design of Functionally Graded Structures in Topology Optimization

Design of Functionally Graded Structures in Topology Optimization EgOpt 2008 - Itratoal Cofrc o Egrg Optmzato Ro d Jaro, Brazl, 0-05 Ju 2008. Dsg of Fuctoally Gradd Structurs Topology Optmzato Sylva R. M. d Almda, Glauco H. Paulo 2, Emlo C. N. Slva 3 Uvrsdad Fdral d

More information

Chapter Discrete Fourier Transform

Chapter Discrete Fourier Transform haptr.4 Dscrt Fourr Trasform Itroducto Rcad th xpota form of Fourr srs s Equatos 8 ad from haptr., wt f t 8, h.. T w t f t dt T Wh th abov tgra ca b usd to comput, h.., t s mor prfrab to hav a dscrtzd

More information

On Approximation Lower Bounds for TSP with Bounded Metrics

On Approximation Lower Bounds for TSP with Bounded Metrics O Approxmato Lowr Bouds for TSP wth Boudd Mtrcs Mark Karpsk Rchard Schmd Abstract W dvlop a w mthod for provg xplct approxmato lowr bouds for TSP problms wth boudd mtrcs mprovg o th bst up to ow kow bouds.

More information

Note on the Computation of Sample Size for Ratio Sampling

Note on the Computation of Sample Size for Ratio Sampling Not o th Computato of Sampl Sz for ato Samplg alr LMa, Ph.D., PF Forst sourcs Maagmt Uvrst of B.C. acouvr, BC, CANADA Sptmbr, 999 Backgroud ato samplg s commol usd to rduc cofdc trvals for a varabl of

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black Stf-Boltzm lw stts tht th powr mttd pr ut r of th surfc of blck body s proportol to th fourth powr of th bsolut tmprtur: 4 S T whr T s th bsolut tmprtur d th Stf-Boltzm costt= 5 4 k B 3 5c h ( Clcult 5

More information

On adjoint variables for discontinuous flow

On adjoint variables for discontinuous flow O adot varabls for dscotuous flow A.K. Alsv Dpt. of Arodyamcs ad Hat Trasfr RSC ``ENERGIA'' Korolv, Moscow Rgo 47 RSSIA ad I. Mcal Navo Dpartmt of Matmatcs ad C.S.I.T. Florda Stat vrsty Tallaass, FL 336-4

More information

FINITE ELEMENT METHOD: AN INTRODUCTION Uday S. Dixit Department of Mechanical Engineering, Indian Institute of Technology Guwahati , India

FINITE ELEMENT METHOD: AN INTRODUCTION Uday S. Dixit Department of Mechanical Engineering, Indian Institute of Technology Guwahati , India FIITE ELEMET METHOD: A ITRODUCTIO Uda S. Dt Dpartmt of Mchacal Egrg, Ida Isttt of Tcholog Gwahat-78 39, Ida. Itrodcto Ft lmt mthod (FEM s a mrcal mthod for solg a dffrtal or tgral qato. It has b appld

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution Itratoal Joural of Statstcs ad Applcatos, (3): 35-3 DOI:.593/j.statstcs.3. Baysa Shrkag Estmator for th Scal Paramtr of Expotal Dstrbuto udr Impropr Pror Dstrbuto Abbas Najm Salma *, Rada Al Sharf Dpartmt

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Lecture #11. A Note of Caution

Lecture #11. A Note of Caution ctur #11 OUTE uctos rvrs brakdow dal dod aalyss» currt flow (qualtatv)» morty carrr dstrbutos Radg: Chatr 6 Srg 003 EE130 ctur 11, Sld 1 ot of Cauto Tycally, juctos C dvcs ar formd by coutr-dog. Th quatos

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Phase diagram and frustration of decoherence in Y-shaped Josephson junction networks. D.Giuliano(Cosenza), P. Sodano(Perugia)

Phase diagram and frustration of decoherence in Y-shaped Josephson junction networks. D.Giuliano(Cosenza), P. Sodano(Perugia) Phas dagram ad frustrato of dcohrc Y-shapd Josphso jucto tworks D.GulaoCosza, P. SodaoPruga Frz, Frz, Octobr Octobr 008 008 Ma da Y-Shapd twork of Josphso jucto chas YJJN wth a magtc frustrato Ft-couplg

More information

A Measure of Inaccuracy between Two Fuzzy Sets

A Measure of Inaccuracy between Two Fuzzy Sets LGRN DEMY OF SENES YERNETS ND NFORMTON TEHNOLOGES Volum No 2 Sofa 20 Masur of accuracy btw Two Fuzzy Sts Rajkumar Vrma hu Dv Sharma Dpartmt of Mathmatcs Jayp sttut of formato Tchoy (Dmd vrsty) Noda (.P.)

More information

Graphs of q-exponentials and q-trigonometric functions

Graphs of q-exponentials and q-trigonometric functions Grahs of -otals ad -trgoomtrc fuctos Amla Carola Saravga To ct ths vrso: Amla Carola Saravga. Grahs of -otals ad -trgoomtrc fuctos. 26. HAL Id: hal-377262 htts://hal.archvs-ouvrts.fr/hal-377262

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

Superbosonization meets Free Probability

Superbosonization meets Free Probability Suprbosoato mts Fr Probablty M Zrbaur jot wor wth S Madt Eulr Symposum St Ptrsburg Ju 3 009 Itroducto From momts to cumulats Larg- charactrstc fucto by fr probablty Suprbosoato Applcato to dsordrd scattrg

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

MB DISTRIBUTION AND ITS APPLICATION USING MAXIMUM ENTROPY APPROACH

MB DISTRIBUTION AND ITS APPLICATION USING MAXIMUM ENTROPY APPROACH Yugoslav Joural of Opratos Rsarch 6 (06), Numbr, 89-98 DOI: 0.98/YJOR405906B MB DISTRIBUTION AND ITS APPLICATION USING MAXIMUM ENTROPY APPROACH Suma BHADRA Rsarch Scholar Dpartmt of Mathmatcs IIEST, Shbpur

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

Line Matching Algorithm for Localization of Mobile Robot Using Distance Data from Structured-light Image 1

Line Matching Algorithm for Localization of Mobile Robot Using Distance Data from Structured-light Image 1 Advacd Scc ad Tchoogy Lttrs Vo.86 (Ubqutous Scc ad Egrg 015), pp.37-4 http://dx.do.org/10.1457/ast.015.86.08 L Matchg Agorthm for Locazato of Mob Robot Usg Dstac Data from Structurd-ght Imag 1 Soocho Km

More information

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek Etatg th Varac a Sulato Study of Balacd Two Stag Prdctor of Ralzd Rado Clutr Ma Ed Stak Itroducto W dcrb a pla to tat th varac copot a ulato tudy N ( µ µ W df th varac of th clutr paratr a ug th N ulatd

More information

Estimation of Population Variance Using a Generalized Double Sampling Estimator

Estimation of Population Variance Using a Generalized Double Sampling Estimator r Laka Joural o Appl tatstcs Vol 5-3 stmato o Populato Varac Us a Gralz Doubl ampl stmator Push Msra * a R. Kara h Dpartmt o tatstcs D.A.V.P.G. Coll Dhrau- 8 Uttarakha Ia. Dpartmt o tatstcs Luckow Uvrst

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Learning from Data with Information Theoretic Criteria II

Learning from Data with Information Theoretic Criteria II Larg from Data th Iformato Thortc Crtra II Jos C. Prcp, Ph.D. Dstgushd Profssor of Elctrcal ad Bomdcal Egrg ad BllSouth Profssor Computatoal uroegrg Laborator Uvrst of Florda http://.cl.ufl.du prcp@cl.ufl.du

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

A Stochastic Approximation Iterative Least Squares Estimation Procedure

A Stochastic Approximation Iterative Least Squares Estimation Procedure Joural of Al Azhar Uvrst-Gaza Natural Sccs, 00, : 35-54 A Stochastc Appromato Itratv Last Squars Estmato Procdur Shahaz Ezald Abu- Qamar Dpartmt of Appld Statstcs Facult of Ecoomcs ad Admstrato Sccs Al-Azhar

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

pn Junction Under Reverse-Bias Conditions 3.3 Physical Operation of Diodes

pn Junction Under Reverse-Bias Conditions 3.3 Physical Operation of Diodes 3.3 Physcal Orato of os Jucto Ur vrs-bas Cotos rft Currt S : ato to th ffuso Currt comot u to majorty carrr ffuso, caus by thrmally grat morty carrrs, thr ar two currt comots lctros mov by rft from to

More information

Development of a coupling strategy between Smoothed Particle Hydrodynamics and Finite Element Method for violent fluid-structure interaction problems

Development of a coupling strategy between Smoothed Particle Hydrodynamics and Finite Element Method for violent fluid-structure interaction problems Dvlopmt of a couplg stratgy btw Smoothd Partcl Hydrodyamcs ad Ft Elmt Mthod for volt flud-structur tracto problms C. Hrmag, Davd L Touzé, G. Ogr To ct ths vrso: C. Hrmag, Davd L Touzé, G. Ogr. Dvlopmt

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM OPERTIONS RESERH o.287/opr.8.559c pp. c c8 -copao ONLY VILLE IN ELETRONI FORM fors 28 INFORMS Elctroc opao Optzato Mols of scrt-evt Syst yacs by Wa K (Vctor ha a L Schrub, Opratos Rsarch, o.287/opr.8.559.

More information

GALERKIN FINITE ELEMENT METHOD AND FINITE DIFFERENCE METHOD FOR SOLVING CONVECTIVE NON-LINEAR EQUATION

GALERKIN FINITE ELEMENT METHOD AND FINITE DIFFERENCE METHOD FOR SOLVING CONVECTIVE NON-LINEAR EQUATION Cêca/Scc GALERKI FIITE ELEMET METHOD AD FIITE DIFFERECE METHOD FOR SOLVIG COVECTIVE O-LIEAR EQUATIO E. C. Romão a, M. D. d Campos b, ad L. F. M. d Mora b a Uvrsdad Fdral d Itabá Camps Avaçado d Itabra

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

The R Package PK for Basic Pharmacokinetics

The R Package PK for Basic Pharmacokinetics Wolfsggr, h R Pacag PK St 6 h R Pacag PK for Basc Pharmacotcs Mart J. Wolfsggr Dpartmt of Bostatstcs, Baxtr AG, Va, Austra Addrss of th author: Mart J. Wolfsggr Dpartmt of Bostatstcs Baxtr AG Wagramr Straß

More information

Why Linear? 4. Linear Discriminant Functions. Linear Discriminant Analysis. Theorem. Distance to a nonlinear function

Why Linear? 4. Linear Discriminant Functions. Linear Discriminant Analysis. Theorem. Distance to a nonlinear function 4. Lar Dscrmat Fuctos Alx M. Martz alx@c.osu.du Hadouts Hadoutsfor forece ECE874, 007. 007. Why Lar? It s smpl ad tutv. Mmzg a crtro rror;.g. sampl rsk, trag rror, marg, tc. Ca b gralzd to fd o-lar dscrmat

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information