On Approximation Lower Bounds for TSP with Bounded Metrics

Size: px
Start display at page:

Download "On Approximation Lower Bounds for TSP with Bounded Metrics"

Transcription

1 O Approxmato Lowr Bouds for TSP wth Boudd Mtrcs Mark Karpsk Rchard Schmd Abstract W dvlop a w mthod for provg xplct approxmato lowr bouds for TSP problms wth boudd mtrcs mprovg o th bst up to ow kow bouds. Thy almost match th bst kow bouds for uboudd mtrc TSP problms. I partcular, w prov th bst kow lowr boud for TSP wth boudd mtrcs for th mtrc boud qual to. Itroducto W gv frst th basc dftos ad a ovrvw of th kow rsults. Travlg Salsprso (TSP) Problm W ar gv a mtrc spac (V, d) ad th task cossts of costructg a shortst tour vstg ach vrtx xactly oc. Th TSP problm mtrc spacs s o of th most fudamtal NP-hard optmzato problms. Th dcso vrso of ths problm was show arly to b NP-complt by Karp [K7]. Chrstofds [C76] gav a algorthm approxmatg th TSP problm wth 3/,.., a algorthm that producs a tour wth lgth bg at most a factor 3/ from th optmum. As for lowr bouds, a rducto du to Papadmtrou ad Yaakaks [PY93] ad th PCP Thorm [ALM + 98] togthr mply that thr xsts som costat, ot bttr tha + 0 6, such that t s NP-hard to approxmat th TSP problm wth dstacs thr o or two. For dscusso of boudd mtrcs TSP, s also [T00]. Ths hardss rsult was mprovd by Egbrts [E03], who provd that t s NP-hard to approxmat th TSP problm rstrctd to dstacs o ad two wth a approxmato factor bttr tha 538/5380 (.0008). Böckhaur ad Sbrt [BS00] studd th TSP problm wth dstacs o, two ad thr, ad obtad a approxmato lowr boud of 383/38 (.0006). Th bst Dpt. of Computr Scc ad th Hausdorff Ctr for Mathmatcs, Uvrsty of Bo. Supportd part by DFG grats ad th Hausdorff Ctr grat EXC59-. Emal: mark@cs.u-bo.d Dpt. of Computr Scc, Uvrsty of Bo. Work supportd by Hausdorff Doctoral Fllowshp. Emal: schmd@cs.u-bo.d

2 kow approxmato lowr boud for th gral vrso of ths problm s du to Papadmtrou ad Vmpala [PV06]. Thy provd that th TSP problm s NPhard to approxmat wth a approxmato factor lss tha 0/9 (.0056). Th rstrctd vrso of th TSP problm, whch th dstac fucto taks valus {,..., B}, s rfrrd to as th (, B) TSP problm. Th (, ) TSP problm ca b approxmatd polyomal tm wth a approxmato factor 8/7 du to Brma ad Karpsk [BK06]. O th othr had, Egbrts ad Karpsk [EK06] provd that t s NPhard to approxmat th (, B) TSP problm wth a approxmato factor lss tha 7/70 (.0035) for B = ad 389/388 (.0057) for B = 8. I ths papr, w prov that th (, ) TSP ad th (, ) TSP problm ar NPhard to approxmat wth a approxmato factor lss tha 535/53 ad 337/336, rspctvly. Asymmtrc Travlg Salsprso (ATSP) Problm W ar gv a asymmtrc mtrc spac (V, d),.., d s ot cssarly symmtrc, ad w would lk to costruct a shortst tour vstg vry vrtx xactly oc. Th bst kow algorthm for th ATSP problm approxmats th soluto wth O( log / log log ), whr s th umbr of vrtcs th mtrc spac [AGM + 0]. O th othr had, Papadmtrou ad Vmpala [PV06] provd that th ATSP problm s NP-hard to approxmat wth a approxmato factor lss tha 7/6 (.0086). It s cocvabl that th spcal cass wth boudd mtrc ar asr to approxmat tha th cass wh th dstac btw two pots grows wth th sz of th stac. Clarly, th (, B) ATSP problm, whch th dstac fucto s takg valus th st {,..., B}, ca b approxmatd wth B by ust pckg ay tour as th soluto. Wh w rstrct th problm to dstacs o ad two, t ca b approxmatd wth 5/ du to Bläsr [B0]. Furthrmor, t s NP-hard to approxmat ths problm wth a approxmato factor bttr tha 3/30 [BK06]. For th cas B = 8, Egbrts ad Karpsk [EK06] costructd a rducto yldg th approxmato lowr boud 35/3 for th (, 8) ATSP problm. I ths papr, w prov that t s NP-hard to approxmat th (, ) ATSP ad th (, ) ATSP problm wth a approxmato factor lss tha 07/06 ad /0, rspctvly. Maxmum Asymmtrc Travlg Salsprso (MAX-ATSP) Problm W ar gv a complt drctd graph G ad a wght fucto w assgg ach dg of G a ogatv wght. Th task s to fd a tour of maxmum wght vstg vry vrtx of G xactly oc. Ths problm s wll-kow ad motvatd by svral applcatos (cf. [BGS0]). A good approxmato algorthm for th MAX ATSP problm ylds a good approxmato algorthm for may othr optmzato problms such as

3 th Shortst Suprstrg problm, th Maxmum Comprsso problm ad th (, ) ATSP problm. Th MAX (0, ) ATSP problm s th rstrctd vrso of th MAX-ATSP problm, whch th wght fucto w taks valus th st {0, }. Vshwaatha [V9] costructd a approxmato prsrvg rducto provg that ay (/α) approxmato algorthm for th MAX (0, ) ATSP problm problm trasforms a ( α) approxmato algorthm for th (, ) ATSP problm. Du to ths rducto, all gatv rsults cocrg th approxmato of th (, ) ATSP problm mply hardss rsults for th MAX (0, ) ATSP problm. Sc th (, ) ATSP problm s APX-hard [PY93], thr s lttl hop for polyomal tm approxmato algorthms wth arbtrary good prcso for th MAX (0, ) ATSP problm. Du to th xplct approxmato lowr boud for th (, ) ATSP problm gv [EK06], t s NP-hard to approxmat th MAX (0, ) ATSP problm wth a approxmato factor lss tha 30/39. Th bst kow approxmato algorthm for th rstrctd vrso of ths problm s du to Bläsr [B0] ad achvs a approxmato rato 5/. For th gral problm, Kapla t al. [KLS + 05] dsgd a algorthm for th MAX ATSP problm yldg th bst kow approxmato uppr boud of 3/. O th approxmato hardss sd, Karpsk ad Schmd [KS] costructd a rducto yldg th approxmato lowr boud 07/06 for th MAX ATSP problm. I ths papr, w prov that approxmatg th MAX (0, ) ATSP problm wth a approxmato rato lss tha 06/05 s NP-hard. Ovrvw of Kow Explct Approxmato Lowr Bouds ad Our Rsults (, B) ATSP problm B = B = B = 8 uboudd Prvously kow 3/30 3/30 35/3 7/6 rsults (.003) (.003) (.0076) (.0086) [EK06] [EK06] [EK06] [PV06] Our rsults 07/06 /0 (.0085) (.007) (, B) TSP problm B = B = B = 8 uboudd Prvously kow 7/70 7/70 389/388 0/9 rsults (.0035) (.0035) (.0057) (.0056) [EK06] [EK06] [EK06] [PV06] Our rsults 535/53 337/ /336 (.0087) (.0097) (.0097) Fgur : Kow xplct approxmato lowr bouds ad th w rsults. 3

4 MAX (0, ) ATSP problm MAX ATSP problm Prvously kow 30/39 07/06 rsults (.003) (.0085) [EK06] [KS] Our rsults 06/05 06/05 (.0087) (.0087) Fgur : Kow xplct approxmato lowr bouds ad th w rsults. Prlmars I ths scto, w df th abbrvatos ad otatos usd ths papr. Gv a atural umbr k ad a ft st V, w us th abbrvato [k] for {,..., k} ad ( ) V for th st { S V S = }. Gv a asymmtrc mtrc spac (V, d) wth V = {v,..., v } ad d : V V R 0, a Hamltoa cycl V or a tour V s a cycl vstg ach vrtx v V xactly oc. I th rmadr, w spcfy a tour σ V by σ = {(v, v ),..., (v, v )} V V or xplctly by σ = v v v v. Gv a tour σ (V, d), th lgth of a tour l(σ) s dfd by l(σ) = a σ d. Aalogously, gv a mtrc spac (V, d) wth V = {v,..., v } ad d : ( ) V R >0, w spcfy a tour σ V by σ = { {v, v },..., {v, v } } ( ) V or xplctly by σ = v v v v. I ordr to spcfy, a stac (V, d) of th (, ) ATSP problm, t suffcs to dtfy th arcs a V V wth wght o. Th sam stac s spcfd by a drctd graph D = (V, A), whr a A f ad oly f d =. Aalogously, th (, ) TSP problm, a stac s compltly spcfd by a graph G = (V, E). I th rmadr, w rfr to a arc ad a dg wth wght x N as a x-arc ad x-dg, rspctvly. 3 Rlatd Work 3. Hybrd Problm Brma ad Karpsk [BK99], s also [BK0] ad [BK03] troducd th followg Hybrd problm ad provd that ths problm s NP-hard to approxmat wth som costat. Dfto (Hybrd problm). Gv a systm of lar quatos mod cotag varabls, m quatos wth xactly two varabls, ad m 3 quatos wth xactly

5 thr varabls, fd a assgmt to th varabls that satsfs as may quatos as possbl. I [BK99], Brma ad Karpsk costructd spcal stacs of th Hybrd problm wth boudd occurrcs of varabls, for whch thy provd th followg hardss rsult. y 9 y 8 y 0 y 7 y 6 y 5 y y 3 y y y y y y3 y y 5 y 6 y 7 y 0 y 9 y 8 x 9 x 8 x 7 x 6 x 5 x x 3 x x x 0 x x x 3 x 9 x x 0 x x 5 x 6 x 7 x 8 hyprdg z 9 z 7 z 8 z 6 z 5 z z 3 z z z 0 z z z z 3 z z 5 z 6 z 7 z 0 z 9 z 8 Fgur 3: A xampl of a Hybrd stac wth crcls C x, C y, C z, ad hyprdg = {z 7, y, x }. Thorm ([BK99]). For ay costat ɛ > 0, thr xsts stacs of th Hybrd problm wth ν varabls, 60ν quatos wth xactly two varabls, ad ν quatos wth xactly thr varabls such that: () Each varabl occurs xactly thr tms. () Ethr thr s a assgmt to th varabls that lavs at most ɛν quatos usatsfd, or ls vry assgmt to th varabls lavs at last ( ɛ)ν quatos usatsfd. () It s NP-hard to dcd whch of th two cass tm () abov holds. Th stacs of th Hybrd problm producd Thorm hav a v mor spcal structur, whch w ar gog to dscrb. Th quatos cotag thr varabls ar of th form x y z = {0, }. Ths quatos stm from th Thorm of Håstad [H0] dalg wth th hardss of approxmatg quatos wth xactly thr varabls. W rfr to t as 5

6 th MAX E3 LIN problm, whch ca b s as a spcal stac of th Hybrd problm. Thorm (Håstad [H0]). For ay costat δ (0, ), thr xsts systms of lar quatos mod wth m quatos ad xactly thr ukows ach quato such that: () Each varabl th stac occurs a costat umbr of tms, half of thm gatd ad half of thm ugatd. Ths costat grows as Ω( /δ ). () Ethr thr s a assgmt satsfyg all but at most δ m quatos, or vry assgmt lavs at last ( δ)m quatos usatsfd. () It s NP-hard to dstgush btw ths two cass. For vry varabl x of th orgal stac E 3 of th MAX-E3-LIN problm, Brma ad Karpsk troducd a corrspodg st of varabls V x. If th varabl x occurs t x tms E 3, th, V x cotas 7t x varabls x,..., x 7tx. Th varabls cotad Co(V x ) = {x {7ν ν [t x ]}} ar calld cotact varabls, whras th varabls C(V x ) = V x \Co(V x ) ar calld chckr varabls. All varabls V x ar coctd by quatos of th form x x + = 0 wth [7t x ] ad x x 7tx = 0. I addto to t, thr xsts quatos of th form x x = 0 wth {, } M x, whrby th st M x ( ) C(V x) dfs a prfct matchg o th st of chckr varabls. I th rmadr, w rfr to ths costructo as th crcl C x cotag th varabls x V x. Lt E 3 b a stac of th MAX E3 LIN problm ad H b ts corrspodg stac of th Hybrd problm. W dot by V (E 3 ) th st of varabls whch occur th stac E 3. Th, H ca b rprstd graphcally by V (E 3 ) crcls C x wth x V (E 3 ) cotag th varabls V (C x ) = {x,..., x tx } as vrtcs. Th dgs ar dtfd by th quatos cludd H. Th quatos wth xactly thr varabls ar rprstd by hyprdgs wth cardalty = 3. Th quatos x x + = 0 duc a cycl cotag th vrtcs {x,..., x tx } ad th matchg quatos x x = 0 wth {, } M x duc a prfct matchg o th st of chckr varabls. A xampl of a stac of th Hybrd problm s dpctd Fgur 3. I summary, w otc that thr ar four typ of quatos th Hybrd problm () th crcl quatos x x + = 0 wth [7t x ], () crcl bordr quatos x x 7tx, () matchg quatos x x = 0 wth {, } M x, ad (v) quatos wth thr varabls of th form x y z = {0, }. I th rmadr, w may assum that quatos wth thr varabls ar of th form x y z = 0 or x y z = 0 du to th trasformato x y z = 0 x y z =. 3. Approxmato Hardss of TSP Problms Rducg th Hybrd Problm to th (, ) (A)TSP Problm Egbrts ad Karpsk [EK06] costructd a approxmato prsrvg rducto from th Hybrd problm to th (, ) ATSP problm to prov xplct ap- 6

7 v 3 c s c v c s c+ v c Graph for quatos wth thr varabls. Varabl graph. Fgur : Gadgts usd [EK06]. proxmato lowr bouds for th lattr problm. Thy troducd graphs (gadgts), whch smulat varabls, quatos wth two varabls ad quatos wth thr varabls. I partcular, th graphs corrspodg to varabls ad to quatos of th form x y z = 0 ar dpctd Fgur ad, rspctvly. For th graph corrspodg to a quato wth thr varabls, thy provd th followg statmt. Proposto ([EK06]). Thr s a Hamltoa path from s c to s c+ Fgur f ad oly f a v umbr of tckd dgs s travrsd. A smlar rducto was costructd ordr to prov xplct approxmato lowr bouds for th (, ) TSP problm. Th corrspodg graphs ar dpctd Fgur 5. Th graph cotad th dashd box Fgur 5 wll play a crucal rol our rducto ad w rfr to t as party graph. I partcular, our varabl gadgt cossts of a party graph. I th rducto of th (, ) TSP problm, th followg statmt was provd for th graph corrspodg to quatos of th form x y z = 0. Proposto ([EK06]). Thr s a smpl path from s c to s c+ Fgur 5 cotag th vrtcs v {v c, v c } f ad oly f a v umbr of party graphs s travrsd. Ths rductos combd wth Thorm yld th followg xplct approxmato lowr bouds. Thorm 3 ([EK06]). It s NP-hard to approxmat th (, ) ATSP ad th (, ) TSP problm wth a approxmato rato lss tha 3/30 (.003) ad 7/70 (.0035), rspctvly. 7

8 v c s c sc+ v c Graph corrspodg to x y z = 0. Varabl graph. Fgur 5: Gadgts usd [EK06] to prov approxmato hardss of th (, ) TSP problm. Explct Approxmato Lowr Bouds for th MAX ATSP problm By rplacg all dgs wth wght two of a stac of th (, ) ATSP problm by dgs of wght zro, w obta a stac of th MAX (0, ) ATSP problm, whch rlats th (, ) ATSP problm to th MAX ATSP problm th followg ss. Thorm ([V9]). A (/α) approxmato algorthm for th MAX (0, ) ATSP problm mpls a ( α) approxmato algorthm for th (, ) ATSP problm. Ths rducto trasforms vry hardss rsult addrssg th (, ) ATSP problm to a hardss rsult for th MAX (0, ) ATSP problm. I partcular, Thorm 3 mpls th bst kow xplct approxmato lowr boud for th MAX (0, ) ATSP problm. Corollary. It s NP-hard to approxmat th MAX (0, ) ATSP problm wth ay bttr tha 30/39 (.003). Our Cotrbuto W ow formulat our ma rsults. Thorm 5. Suppos w ar gv a stac H of th Hybrd problm wth crcls, m quatos wth two varabls ad m 3 quatos wth xactly thr varabls wth th proprts dscrbd Thorm. () Th, t s possbl to costruct polyomal tm a stac D H of th (, ) ATSP problm wth th followg proprts: 8

9 If thr xsts a assgmt φ to th varabls of H whch lavs at most u quatos usatsfd, th, thr xst a tour σ φ D H wth lgth at most l(σ φ ) = 3m + 3m u. From vry tour σ D H wth lgth l(σ) = 3m + 3m u, w ca costruct polyomal tm a assgmt ψ σ to th varabls of H that lavs at most u quatos H usatsfd. () Furthrmor, t s possbl to costruct polyomal tm a stac (V H, d H ) of th (, ) ATSP problm wth th followg proprts: If thr xsts a assgmt φ to th varabls of H whch lavs at most u quatos usatsfd, th, thr xst a tour σ φ (V H, d H ) wth lgth at most l(σ φ ) = m + 0m u +. From vry tour σ (V H, d H ) wth lgth l(σ) = m +0m 3 ++u+, w ca costruct polyomal tm a assgmt ψ σ to th varabls of H that lavs at most u quatos H usatsfd. Th formr thorm ca b usd to drv a xplct approxmato lowr boud for th (, ) ATSP problm by rducg stacs of th Hybrd problm of th form dscrbd Thorm to th (, ) ATSP problm. Corollary. It s NP-hard to approxmat th (, ) ATSP problm wth a approxmato factor lss tha 07/06 (.0085). Proof. Lt E 3 b a stac of th MAX E3 LIN problm. W df k to b th mmum umbr of occurcs of a varabl E 3. Accordg to Thorm, w 07 δ may choos δ > 0 such that 07 ɛ holds. Gv a stac E 06+δ of th k MAX E3 LIN problm wth δ (0, δ), w grat th corrspodg stac H of th Hybrd problm. Th, w costruct th corrspodg stac D H of th (, )-ATSP problm wth th proprts dscrbd Thorm 5. W coclud accordg to Thorm that thr xst a tour D H wth lgth at most 3 60ν + 3 ν + δ ν + + (06 + δ + + )ν (06 + δ ν k )ν or th lgth of a tour D H s boudd from blow by 3 60ν + 3 ν + ( δ )ν + + (06 + ( δ ))ν (07 δ )ν. From Thorm, w kow that th two cass abov ar NP-hard to dstgush. Hc, for vry ɛ > 0, t s NP-hard to fd a soluto to th (, )-ATSP problm wth a approxmato rato 07 ɛ δ 06+δ + 7 k For th symmtrc vrso of th problms, w costruct rductos from th Hybrd problm wth smlar proprts. Thorm 6. Suppos w ar gv a stac H of th Hybrd problm wth crcls, m quatos wth two varabls ad m 3 quatos wth xactly thr varabls wth th proprts dscrbd Thorm. 9

10 () Th, t s possbl to costruct polyomal tm a stac G H of th (, ) TSP problm wth th followg proprts: If thr xsts a assgmt φ to th varabls of H whch lavs at most u quatos usatsfd, th, thr xst a tour σ φ G H wth lgth at most l(σ φ ) = 8m + 7m u. From vry tour σ G H wth lgth l(σ) = 8m + 7m u, w ca costruct polyomal tm a assgmt ψ σ to th varabls of H that lavs at most u quatos H usatsfd. () Furthrmor, t s possbl to costruct polyomal tm a stac (V H, d H ) of th (, ) TSP problm wth th followg proprts: If thr xsts a assgmt φ to th varabls of H whch lavs at most u quatos usatsfd, th, thr xst a tour σ φ (V H, d H ) wth lgth at most l(σ φ ) = 0m + 36m u. From vry tour σ (V H, d H ) wth lgth l(σ) = 0m +36m u, w ca costruct polyomal tm a assgmt ψ σ to th varabls of H that lavs at most u quatos H usatsfd. Aalogously, w comb th formr thorm wth th xplct approxmato lowr boud for th Hybrd problm of th form dscrbd Thorm yldg th followg approxmato hardss rsult. Corollary 3. It s NP-hard to approxmat th (, ) TSP ad th (, ) TSP problm wth a approxmato factor lss tha 535/53 (.0087) ad 337/336 (.0097), rspctvly. From Thorm ad Corollary, w obta th followg xplct approxmato lowr boud. Corollary. It s NP-hard to approxmat th MAX (0, ) ATSP problm wth a approxmato factor lss tha 06/05 (.0087). 5 Approxmato Hardss of th (, ) ATSP problm 5. Ma Idas As mtod abov, w prov our hardss rsults by a rducto from th Hybrd problm. Lt E 3 b a stac of th MAX-E3-LIN problm ad H th corrspodg stac of th Hybrd problm. Evry varabl x l th orgal stac E 3 troducs assocatd crcl C l th stac H as llustratd Fgur 3. Th ma da of our rducto s to mak us of th spcal structur of th crcls H. Evry crcl C l H corrspods to a graph D l th stac D H of th (, )-ATSP problm. Morovr, D l s a subgraph of D H, whch bulds almost a cycl. A assgmt to th varabl x l wll hav a atural trprtato ths 0

11 outr loop r loop D D 3 D 3 D D 6 D 3 D D 5 Fgur 6: A llustrato of th stac D H ad a tour D H. rducto. Th party of x l corrspods to th drcto of movmt D l of th udrlyg tour. Th crcl graphs of D H ar coctd ad buld togthr th r loop of D H. Evry varabl x l a crcl C l posssss a assocatd party graph P l (Fgur 7) D l as a subgraph. Th two atural ways to travrs a party graph wll b calld 0/-travrsals ad corrspod to th party of th varabl x l. Som of th party graphs D l ar also cotad graphs Dc 3 (Fgur ad Fgur 9 for a mor dtald vw) corrspodg to quatos wth thr varabls of th form gc 3 x y z = 0. Ths graphs ar coctd ad buld th outr loop of D H. Th whol costructo s llustratd Fgur 6. Th outr loop of th tour chcks whthr th 0/-travrsals of th party graphs corrspod to a satsfyg assgmt of th quatos wth thr varabls. If a udrlyg quato s ot satsfd by th assgmt dfd va 0/-travrsal of th assocatd party graph, t wll b pushd by usg a costly -arc. 5. Costructg D H from a Hybrd Istac H Gv a stac of th Hybrd problm H, w ar gog to costruct th corrspodg stac D H = (V (D H ), A(D H )) of th (, )-ATSP problm. For vry typ of quato H, w wll troduc a spcfc graph or a spcfc way to coct th so far costructd subgraphs. I partcular, w wll dstgush btw graphs corrspodg to crcl quatos, matchg quatos, crcl bordr quatos ad quatos wth thr varabls. Frst of all, w troduc graphs corrspodg to th varabls H. Varabl Graphs Lt H b a stac of th hybrd problm ad C l a crcl H. For vry varabl x l th crcl C, w troduc th party graph P l cosstg of th vrtcs v l, v l ad v l0 dpctd Fgur 7.

12 Fgur 7: Party graph P l corrspodg to th varabl x l crcl C l. Matchg ad Crcl Equatos Lt H b a stac of th hybrd problm, C l a crcl H ad M l th assocatd prfct matchg. Furthrmor, lt x l x l = 0 wth = {, } M l ad < b a matchg quato. Du to th costructo of H, th crcl quatos x l x l + = 0 ad x l x l + = 0 ar both cotad C l. Th, w troduc th assocatd party v+ l0 v+ l v+ l + v l(+) + + Fgur 8: Coctg th party graph P l graph P l cosstg of th vrtcs, v l th party graphs P l, P l ad v l(+) +, P, l P+ l ad P l as dpctd Fgur 8. Graphs Corrspodg to Equatos wth Thr Varabls. I addto to t, w coct Lt gc 3 x l x s x k t = 0 b a quato wth thr varabls H. Th, w troduc th graph Dc 3 (Fgur ) corrspodg to th quato gc 3. Th graph Dc 3 cluds th vrtcs s c, vc, vc, vc 3 ad s c+. Furthrmor, t cotas th party graphs P, l Pb s ad Pa k as subgraphs, whrby w usd th abbrvatos = {, + }, b = {, + } ad a = {t, t + }. Exmplary, w dsplay Dc 3 wth ts coctos to th graph corrspodg to th crcl quato x l x l + = 0 Fgur 9. I cas of g 3 c x l x s x u k = 0, w coct th party graphs wth arcs (, ( +, ) ad (, +). Graphs Corrspodg to Crcl Bordr Equatos Lt C l ad C l+ b crcls H. I addto, lt x l x l = 0 b th crcl bordr quato of C l. Th, w troduc th vrtx b l ad coct t to v l0 ad v l. Lt ),

13 v 3 c v k a v k a v k0 a v c s c s c v c v s0 b v s b v s b Fgur 9: Th graph D 3 c corrspodg to g 3 c x l x s x u k = 0 coctd to graphs corrspodg to x l x l + = 0. b l+ v c {,} {,} v c b v l a {,} b l Fgur 0: Th graph corrspodg to x l x l = 0 b l+ b th vrtx corrspodg to th crcl C l+. W draw a arc from v l0 to b l+. Fally, w coct th vrtx v{,} l0 to b l+. Rcall that x also occurs th quato gc 3, whch s a quato wth thr varabls H. Ths costructo s llustratd Fgur 0, whr oly a part of th corrspodg graph Dc 3 s dpctd. Lt C b th last crcl H. Th, w st b + = s as s s th startg vrtx of th graph D 3 corrspodg to th quato g. 3 Ths s th whol dscrpto of th graph D H. Nxt, w ar gog to dscrb th assocatd tour σ φ D H gv a assgmt to th varabls H. 5.3 Costructg th Tour σ φ from a Assgmt φ Lt H b a stac of th Hybrd problm ad D H = (V H, A H ) th corrspodg stac of th (, )-ATSP problm as dfd Scto 5.. Gv a assgmt 3

14 φ : V (H) {, 0} to th varabls of H, w ar gog to costruct th assocatd Hamltoa tour σ φ D H. I addto to t, w aalyz th rlato btw th lgth of th tour σ φ ad th umbr of satsfd quatos by φ. Lt H b a stac of th Hybrd problm cosstg of crcls C, C,..., C m ad quatos wth thr varabls g 3 wth [m 3 ]. Th assocatd Hamltoa tour σ φ D H starts at th vrtx b. From a hgh lvl vw, σ φ travrss all graphs corrspodg to th quatos assocatd wth th crcl C dg wth th vrtx b. Succssvly, t passs all graphs for ach crcl H utl t rachs th vrtx b m = s as s s th startg vrtx of th graph D. 3 At ths pot, th tour bgs to travrs th rmag graphs Dc 3 whch ar smulatg th quatos wth thr varabls H. By ow, som of th party graphs apparg graphs Dc 3 alrady hav b travrsd th r loop of σ φ. Th outr loop chcks whthr for ach graph G 3 c, a v umbr of party graphs has b travrsd th r loop. I vry stuato, whch φ dos ot satsfy th udrlyg quato, th tour ds to us a -arc. Ths paths, whch ar coctd va -arcs, wll b algd by mas of -arcs ordr to buld a Hamltoa tour D H. For ach crcl C l, w us -arcs to obta a Hamltoa path from b l to b l+ travrsg all graphs assocatd wth C l som ordr xcpt th cas wh all varabls th crcl hav th sam party. Sc w spcfy oly a part of th tour σ φ w rathr rfr to a rprstatv tour from a st of tours havg th sam lgth ad th sam spcfcato. I ordr to aalyz th lgth of th tour rlato to th umbr of satsfd quato, w ar gog to xam th part of σ φ passg th graphs corrspodg to th udrlyg quato ad accout th local lgth to th aalyzd parts of th tour. Lt us bg to dscrb σ φ passg through party graphs assocatd to varabls H. Travrsg Party Graphs Lt x l b a varabl H. Th, th tour σ φ travrss th party graph P l usg th path v l[ φ(xl )] v l v lφ(xl ). I th rmadr, w call ths part of th tour a φ(x l )-travrsal of th party graph. I Fgur, w dpctd th corrspodg travrsals of th graph P l gv th assgmt φ(x l ), whrby th travrsd arcs ar llustratd by thck arrows. I both cass, w assocat th local lgth wth ths part of th tour. -travrsal of P l gv φ(x l ) =. 0-travrsal of P l gv φ(x l ) = 0. Fgur : Travrsal of th graph P l gv th assgmt φ.

15 Travrsg Graphs Corrspodg to Matchg Equatos Lt C l b a crcl H ad x l x l = 0 wth = {, } M l a matchg quato. Gv x x + = 0, x x = 0, x x + = 0 ad th assgmt φ, w ar gog to costruct a tour through th corrspodg party graphs dpdc of φ. W bg wth th cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = 0.. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = 0: I ths cas, w travrs th corrspodg party graphs as dpctd Fgur v l(+) + v l(+) Fgur :. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = v l(+) + v l(+) Fgur 3:. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = ad φ(x ) φ(x + ) = 0. 5

16 I Fgur, w hav φ(x ) = φ(x + ) = φ(x ) = φ(x + ) =, whras Fgur, w hav φ(x ) = φ(x + ) = φ(x ) = φ(x + ) = 0. I both cass, ths part of th tour has local lgth 5.. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = ad φ(x ) φ(x + ) = 0: Th tour σ φ s pcturd Fgur 3 ad. I th cas φ(x ) = φ(x + ) = 0 ad φ(x ) = φ(x + ) = dpctd Fgur 3, w ar forcd to tr ad lav th party graph P l va -arcs. So far, w assocat th local lgth 6 wth ths part of th tour. I Fgur 3, w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ) = 0. Ths part of th tour σ φ cotas o -arc yldg th local lgth Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = : I dpdc of φ, w travrs th corrspodg party graphs th way as dpctd Fgur v l(+) + v l(+) Fgur : 3. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) =. Th stuato, whch φ(x ) = φ(x + ) = 0 ad φ(x ) = 0 φ(x + ) holds, s dpctd Fgur. O th othr had, f w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ), th tour s pcturd Fgur. I both cass, w assocat th local lgth 6.. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = ad φ(x ) φ(x + ) = : Th tour σ φ s dsplayd Fgur 5. I Fgur 5, w ar gv φ(x ) = φ(x + ) = 0 ad φ(x ) = φ(x + ) =, whras Fgur 5, w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ) = 0. I both cass, w assocat th local lgth 6 wth ths part of th tour. 6

17 + + + v l(+) + v l(+) Fgur 5:. Cas φ(x ) φ(x + ) = 0, φ(x ) φ(x ) = ad φ(x ) φ(x + ) =. 5. Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = ad φ(x ) φ(x + ) = : I ths cas, w travrs th corrspodg party graphs as dpctd Fgur v l(+) + v l(+) Fgur 6: 5. Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) =, φ(x ) φ(x + ) =. I th lft had sd of Fgur 6, w st φ(x ) = φ(x + ) = 0 φ(x ) = φ(x + ) =, whras, w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ) = 0. Ths part of th tour has local lgth 7. 7

18 6. Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = : I ths cas, w travrs th corrspodg party graphs as dpctd Fgur 7. I th lft had sd of Fgur 7, w hav φ(x ) = φ(x + ) = 0 ad v l(+) v l v+ l0 v l(+) Fgur 7: 6. Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = 0, ad φ(x ) φ(x + ) =. φ(x ) = φ(x + ) =, whras, w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ) = 0. Ths part of th tour has local lgth Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = 0: + v+ l0 + v l(+) + v l(+) Fgur 8: 7. Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = 0 ad φ(x ) φ(x + ) = 0. I ths cas, w travrs th corrspodg party graphs as dpctd Fgur 8. 8

19 I Fgur 8, w hav φ(x ) = φ(x + ) = 0 ad φ(x ) = φ(x + ) =, whras, w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ) = 0. Ths part of th tour has local lgth Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = ad φ(x ) φ(x + ) = 0: I th fal cas, w travrs th corrspodg party graphs as dpctd Fgur v l(+) + v l(+) Fgur 9: 8. Cas φ(x ) φ(x + ) =, φ(x ) φ(x ) = ad φ(x ) φ(x + ) = 0. I Fgur 9, w st φ(x ) = φ(x + ) = 0 ad φ(x ) = φ(x + ) =, whras, w hav φ(x ) = φ(x + ) = ad φ(x ) = φ(x + ) = 0. Ths part of th tour has local lgth 6. Our aalyss ylds th followg proposto. Proposto 3. Lt x l x l + = 0, x l x l = 0 x l x l + = 0 b quatos H. Gv a assgmt φ to th varabls H, th assocatd tour σ φ has local lgth at most 5 + u, whr u dots th umbr of usatsfd quatos by φ. Travrsg Graphs Corrspodg to Equatos wth Thr Varabls Lt gc 3 x l x s x k t = 0 b a quato wth thr varabls H. Furthrmor, lt x l x l + = 0, x s x s + = 0 ad x k t x k t+ = 0 b crcl quatos H. For otatoal smplcty, w troduc = {, +}, a = {t, t+} ad b = {, +}. I Fgur 0, w dsplay th costructo volvg th graphs Dc, 3 Pa k, Pb s, P, l P l ad P+. l Exmplary, w dpctd th coctos of th graphs Dc, 3 P, l P l ad P+ l ths fgur. W ar gog to costruct th tour σ φ travrsg th corrspodg graphs ad aalyz th dpdcy of th local lgth of σ φ ad th umbr of satsfd quatos, amly x l x s x k t = 0, x l x l + = 0, x s x s + = 0 ad x k t x k t+ = 0. 9

20 v 3 c v k a v k a v k0 a v c s c s c v c v s0 b v s b v s b Fgur 0: Th graph D 3 c wth ts coctos to P l ad P l +. Rcall from Proposto that thr s a Hamltoa path from s c to s c+ cotag th vrtcs v c, v c ad v 3 c G 3 c f ad oly f a v umbr of party graphs P {P k a, P s b, P l } s travrsd. Th outr loop travrss th graph G 3 c startg at s c ad dg at s c+. Furthrmor, t cotas th vrtcs v c, v c ad v 3 c som ordr. If σ φ travrss a v umbr of party graphs P {P k a, P s b, P l } th r loop, t s possbl to costruct a Hamltoa local lgth wth ths part. I th othr cas, w hav to us a -arc yldg th local lgth. v 3 c v c Fgur : A part of th graphs corrspodg to x l x l + = 0 ad x l x s x k t = 0. Lt us aalyz th part of σ φ travrsg graphs corrspodg to x l x l + = 0. For ths raso, w wll xam th stuato dpctd Fgur. Lt us bg wth th cas φ(x l ) φ(x l +) = 0.. Cas φ(x l ) φ(x l +) = 0 : If φ(x l ) = φ(x l +) = holds, th tour σ φ uss th arc (v l, v+). l0 Aftrwards, th party graph P l wll b travrsd wh th tour lads through th graph G 3 c. Mor prcsly, t wll us th path vc 3 v l0 v l v l vc. I Fgur, w llustratd ths part of th tour. 0

21 v 3 c v c Fgur : Cas φ(x l ) = φ(x l +) =. I th othr cas φ(x l ) = φ(x l +) = 0, w us th path v+ l0 v l v l. Aftrwards, th tour σ φ cotas th arc (vc, vc 3 ). I both cass, w assocat th local lgth wth ths part of th tour.. Cas φ(x l +) φ(x l +) = : Assumg φ(x l ) φ(x l +) =, th tour σ φ uss a -arc trg v l ad th path v l. Furthrmor, w d aothr -arc ordr to tr v+. l0 v l v l v l0 Th stuato s dpctd Fgur 3. v 3 c v c Fgur 3: Cas φ(x l ) φ(x l +) =. I th othr cas, amly φ(x l ) φ(x l +) = 0, w us -arcs lavg v+ l0 ad v l rspctvly. Aftrwards, th tour uss th path vc 3 v l0 v l v l vc whl travrsg th graph G 3 c. I both cass, w assocat th local lgth wth ths part of th tour. W obta th followg proposto. Proposto. Lt x l x s x k t = 0 b a quato wth thr varabls H. Furthrmor, lt x l x l + = 0, x s x s + = 0 ad x k t x k t+ = 0 b crcl quatos H. Gv a assgmt φ to th varabls H, th assocatd tour σ φ has local lgth at most u, whr u dots th umbr of usatsfd quatos by φ.

22 Travrsg Graphs Corrspodg to Crcl Bordr Equatos Lt C l b a crcl H ad x l x l = 0 ts crcl bordr quato. Rcall that th varabl x l s also cludd a quato wth thr varabls. W ar gog to dscrb th part of th tour passg through th graphs dpctd Fgur dpdc of th assgd valus to th varabls x l ad x l. Lt us start wth th cas φ(x l ) φ(x l ) = 0. b l+ v 3 c {,} {,} v c {,} b v l a b l Fgur : Travrsg Graphs Corrspodg To Crcl Bordr Equatos.. Cas φ(x l ) φ(x l ) = 0 Th startg pot of th tour σ φ passg through th graph corrspodg to x l x l = 0 s th vrtx b l. Gv th valus φ(x l ) = φ(x l ), w us ach cas th φ(x l )-travrsal of th party graphs P l ad P l dg b l l+. Not that th cas φ(x l ) = φ(x l ) = 0, w us th -travrsal of th party graph P l {,}. Exmplary, w dsplay th stuato φ(x l ) = φ(x l ) = Fgur 5. b l+ v 3 c {,} {,} v c {,} b v l a b l Fgur 5: Cas φ(x l ) = φ(x l ) =. I both cass, w assocatd th local lgth wth ths part of th tour.

23 . Cas φ(x l ) φ(x l ) = Gv th assgmt φ(x l ) φ(x l ) = 0, w travrs th arc (b l, v l0 ). Du to th costructo, w hav to us -arcs to tr b l+ ad v l as dpctd Fgur 6. b l+ v 3 c {,} {,} v c b v l a {,} b l Fgur 6: Cas φ(x l ) φ(x l ) = 0. I th othr cas, w hav to us a -arc ordr to lav th vrtx b l. I addto, th tour cotas th path v l v{,} l0 vl {,} vl {,} b l+. Hc, both cass, w assocat th local lgth 3 wth ths part of σ φ. W obta th followg proposto. Proposto 5. Lt x l x l = 0 b a crcl bordr quatos H. Gv a assgmt φ to th varabls H, th assocatd tour σ φ has local lgth f th quato x l x l = 0 s satsfd by φ ad othrws, th local lgth Costructg th Assgmt ψ σ from a Tour σ Lt H b a stac of th Hybrd problm, D H = (V H, A H ) th assocatd stac of th (, )-ATSP problm ad σ a tour D H. W ar gog to df th corrspodg assgmt ψ σ : V (H) {0, } to th varabls H. I addto to t, w stablsh a cocto btw th lgth of σ ad th umbr of satsfd quatos by ψ σ. Lt us df th corrspodg assgmt ψ σ gv a tour σ D H. Dfto ( Assgmt ψ σ ). Lt H b a stac of th Hybrd problm, D H = (V H, A H ) th assocatd stac of th (, )-ATSP problm. Gv a tour σ D H, whch all party graphs ar cosstt wth rspct to σ, th corrspodg assgmt ψ σ : V (H) {0, } s dfd as follows. ψ σ (x l ) = f σ uss a -travrsal of P l = 0 othrws I ordr to obta a wll-dfd assgmt, w hav to trasform th udrlyg tour σ. 3

24 Cosstcy of Party Graphs Frst of all, w troduc th oto of a cosstt tour. Dfto 3 (Cosstt Tour). Lt H b a stac of th Hybrd problm ad D H th assocatd stac of th (, ) ATSP problm. A tour D H s calld cosstt f th tour uss oly 0/-travrsals of all D H cotad party graphs. Du to th followg proposto, w may assum that th udrlyg tour s cosstt. Proposto 6. Lt H b a stac of th Hybrd problm ad D H th assocatd stac of th (, ) ATSP problm. Ay tour σ D H ca b trasformd polyomal tm to a cosstt tour σ wth l(σ ) l(σ ). Proof. For vry party graph cotad D H, t ca b s by cosdrg all possblts xhaustvly that ay tour D H that s ot usg th corrspodg 0/-travrsals ca b modfd to a tour wth at most th sam umbr of -arcs. Th lss obvous cass ar show Fgur 5 (s 0. Fgur Appdx). Lt us start wth th aalyss. I th rmadr, w assum that th udrlyg (, )-tour σ s cosstt wth all party graphs D H. Trasformg σ Graphs Corrspodg to Matchg Equatos Gv th quatos x x + = 0, x x = 0, x x + = 0 ad a tour σ, w ar gog to costruct a assgmt dpdc of σ. I partcular, w aalyz th rlato btw th lgth of th tour ad th umbr of satsfd quatos by ψ σ.

25 x z y + x z y + + v l(+) v + v l(+) v Fgur 7:.Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = 0 & ψ σ (x ) ψ σ (x + ) = 0.. Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = 0 ad ψ σ (x ) ψ σ (x + ) = 0: Gv ψ σ (x ) = ψ σ (x ) = ψ σ (x ) = ψ σ (x + ) =, t s possbl to trasform th udrlyg tour such that o -arcs tr or lav th vrtcs v l, v+, l0 v+, l0, ad v l. Exmplary, w dsplay Fgur 7 such a trasformato, whrby v l(+) Fgur 7 ad Fgur 7 llustrat th udrlyg tour σ ad th trasformd tour σ, rspctvly. Th cas ψ σ (x ) = ψ σ (x + ) = ψ σ (x ) = ψ σ (x + ) = 0 ca b dscussd aalogously. I both cass, w obta th local lgth 5 for ths part of σ whl ψ σ satsfs all 3 quatos.. Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = ad ψ σ (x ) ψ σ (x + ) = 0: Assumg ψ σ (x ) = ψ σ (x + ) = ad ψ σ (x ) = ψ σ (x + ) = 0, w ar abl to trasform th tour such that t uss th arcs (v l, v+) l0 ad (v+, l0 v l ). Du to th costructo ad our assumpto, th tour caot travrs th arcs (v l, ), (, v l ), (v l(+), v+) l0 ad (v+, l0 v l(+) ). Cosqutly, w hav to us -arcs trg ad lavg th party graph P. l Th stuato s dsplayd Fgur 8. W assocat oly th cost of o -arc yldg th local lgth 6, whch corrspods to th fact that ψ σ lavs th quato x x = 0 usatsfd. Not that a smlar stuato holds cas of ψ σ (x ) = ψ σ (x + ) = 0 ad ψ σ (x ) = ψ σ (x + ) = (cf. Fgur 8 ). 3. Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = 0 ad ψ σ (x ) ψ σ (x + ) = : Lt us start wth th cas ψ σ (x ) = ψ σ (x + ) = ad ψ σ (x ) ψ σ (x + ) = 0. Th stuato s dsplayd Fgur 9. 5

26 + + + v l(+) + v l(+) Fgur 8:.Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = & ψ σ (x ) ψ σ (x + ) = 0. Du to th costructo, w ar abl to trasform σ such that t uss th arc (v l, v+). l0 Not that th tour caot travrs th arcs (v l(+), v+) l0 ad (v+, l0 v l ) v l(+) + v l(+) Fgur 9: 3.Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = 0 & ψ σ (x ) ψ σ (x + ) =. Hc, w ar forcd to us two -arcs crasg th cost by. All all, w obta th local lgth 6. 6

27 + + + v l(+) v l v+ l0 v l(+) Fgur 30:. Cas ψ σ (x ) ψ σ (x + ) =, ψ σ (x ) ψ σ (x ) = 0 & ψ σ (x ) ψ σ (x + ) =. Th cas ψ σ (x ) = ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) = ca b aalyzd aalogously (cf. Fgur 9 ). A smlar argumtato holds for ψ σ (x ) ψ σ (x + ) =, ψ σ (x ) ψ σ (x ) = 0 ad ψ σ (x ) ψ σ (x + ) = 0.. Cas ψ σ (x ) ψ σ (x + ) =, ψ σ (x ) ψ σ (x ) = 0 ad ψ σ (x ) ψ σ (x + ) = : Gv ψ σ (x ) ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) = 0, w ar abl to trasform th tour such that t uss th arc (v+, l0 v l(+) ). Ths stuato s dpctd Fgur 30. Notc that w ar forcd to us four -arcs ordr to coct all vrtcs. Cosqutly, t ylds th local lgth 7. Th cas, whch ψ σ (x ) ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) = 0 holds, s dsplayd Fgur 30 ad ca b dscussd aalogously. 7

28 + z v l(+) + x + z v l(+) + x Fgur 3: 5.Cas wth ψ σ (x ) = ψ σ (x + ) = ad ψ σ (x ) ψ σ (x + ) =. 5. Cas ψ σ (x ) ψ σ (x + ) = 0, ψ σ (x ) ψ σ (x ) = ad ψ σ (x ) ψ σ (x + ) = : Lt th tour σ b charactrzd by ψ σ (x ) = ψ σ (x + ) = ad ψ σ (x ) ψ σ (x + ) =. Th, w trasform σ such a way that w ar abl to us th arc (v l, v+). l0 Th corrspodg stuato s llustratd Fgur 3. I addto to t, w travrs th party graph P l th othr drcto ad obta ψ σ (x ) =. Ths trasformato ducs a tour wth at most th sam cost. O th othr had, th corrspodg assgmt ψ σ satsfs at last mor quatos sc x l x l = 0 mght gt usatsfd. I ths cas, w assocat th local costs of 6 wth σ. I th othr cas, whch ψ σ (x ) = ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) = 0 holds, w argu smlarly. Th trasformato s dpctd Fgur 3. 8

29 + + z v l(+) x v lk + v l(+) v lk + z x Fgur 3: 5.Cas wth ψ σ (x ) = ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) = Cas ψ σ (x ) ψ σ (x + ) =, ψ σ (x ) ψ σ (x ) = ad ψ σ (x ) ψ σ (x + ) = : Gv a tour σ wth ψ σ (x ) ψ σ (x + ) = ad ψ σ (x ) ψ σ (x + ) = 0, w trasform σ such that t travrss th party graph P l th oppost drcto mag ψ σ (x ) = 0 (cf. Fgur 33). Ths trasformato abls us to us th arc (v+, l0 v l ). Furthrmor, t ylds at last o mor satsfd quato H. I ordr to coct th rmag vrtcs, w ar forcd to us at last two -arcs. I summary, w assocat th local lgth 7 wth ths stuato coformty wth th at most usatsfd quatos by ψ σ. If w ar gv a tour σ wth ψ σ (x ) ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) =, w obta th stuato dsplayd Fgur 3. By applyg local trasformatos wthout crasg th lgth of th udrlyg tour, w achv th scaro dpctd Fgur 3. W argu that th assocatd local lgth of th tour s 7. 9

30 + + v l(+) + + v l(+) Fgur 33: 6.Cas wth ψ σ (x ) ψ σ (x + ) = ad ψ σ (x ) ψ σ (x + ) = 0. Th cas, whch ψ σ (x ) ψ σ (x + ) =, ψ σ (x ) ψ σ (x ) = ad ψ σ (x ) ψ σ (x + ) = 0 holds, ca b dscussd aalogously. 30

31 + v v l(+) + l0 v l + v l(+) + Fgur 3: 6.Cas wth ψ σ (x ) ψ σ (x + ) = 0 ad ψ σ (x ) ψ σ (x + ) =. W obta th followg proposto. Proposto 7. Lt x l x l + = 0, x l x l = 0 ad x l x l + = 0 b quatos H. Th, t s possbl to trasform polyomal tm th gv tour σ passg through th graph corrspodg to x l x l + = 0, x l x l = 0 x l x l + = 0 such that t has local lgth 5 + u, whr u dots th umbr of usatsfd quato by ψ σ. Trasformg σ Graphs Corrspodg to Equatos Wth Thr Varabls Lt gc 3 x l x s x r k = 0 b a quato wth thr varabls H. Furthrmor, lt C l b a crcl H ad x l x l + = 0 a crcl quato. For otatoal smplcty, w st = {, + }. W ar gog to aalyz th th umbr of satsfd quatos by ψ σ dpdc to th local lgth of σ th graphs P l, P l Frst, w trasform th tour travrsg th graphs P l, P l th ψ σ (x l )-travrsal of P. l +, P l ad Dc. 3 + ad P l such that t uss 3

32 Aftrwards, du to th costructo of D 3 c ad Proposto, th tour ca b trasformd such that t has local lgth of f t passs a v umbr of party graphs P {P l, P k a, P s b } whl usg a smpl path through D 3 c. Othrws, t ylds a local lgth of 3+. Lt us start wth th cas ψ σ (x l ) = ad ψ σ (x l +) =. v c v c v c v c Fgur 35:. Cas ψ σ (x l ) = ad ψ σ (x l +) = 3

33 v c v c v c v c Fgur 36:. Cas ψ σ (x l ) = 0 ad ψ σ (x l +) = 0. Cas ψ σ (x l ) = ad ψ σ (x l +) = : I Fgur 35 ad, w dsplay th tour passg through P l, P+ l ad P l wth ψ σ (x l ) = ad ψ σ (x l +) = bfor ad aftr th trasformato, rspctvly. It s possbl to trasform th tour σ wthout crasg th lgth such that t travrss th arc (v l, v+). l0 I th outr loop, th tour wll us at last o of th arcs (vc 3, v l0 ) ad (v l, vc 3 ) dpdg o th party chck of Dc. 3 W assocat th local lgth wth ths part of th tour.. Cas ψ σ (x l ) = 0 ad ψ σ (x l +) = 0 : I Fgur 36, w dsplay th udrlyg scaro wth ψ σ (x l ) = 0 ad ψ σ (x l +) = 0. Th trasformd tour uss th 0-travrsal of th party graph P. l Th vrtcs vc 3 ad vc ar coctd va a -arc. W assg th local lgth to ths part of th tour. 3. Cas ψ σ (x l ) = ad ψ σ (x l +) = 0 : Lt us assum that ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) = 0 holds. Hc, t s possbl to trasform th tour such that t uss th path vc 3 v l0 v l v l vc ad thus, th 0-travrsal of th party graph P l as dsplayd Fgur 37. I th othr cas, amly ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) =, w wll chag th valu of ψ σ (x l ) achvg ths way at last mor satsfd quato. Lt us xam th scaro Fgur 38. Accordgly, th tour uss th 0-travrsal of th party graph P, l whch abls σ to pass th party chck Dc. 3 I both cass, w obta th local lgth coformty wth th at most o usatsfd quato by ψ σ. 33

34 v c v c x z v c v c z x Fgur 37: 3. Cas ψ σ (x l ) =, ψ σ (x l +) = 0 ad ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) = 0 v c v c y x v c v c y x Fgur 38: 3. Cas ψ σ (x l ) =, ψ σ (x l +) = 0 ad ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) =. 3

35 v c v c x + y + + v c v c x + y + + Fgur 39:. Cas ψ σ (x l ) = 0 ad ψ σ (x l +) =. Cas ψ σ (x l ) = 0 ad ψ σ (x l +) = : Assumg ψ σ (x l ) ψ σ (x l ) ψ σ (x l ) = 0 ad th scaro dpctd Fgur 39, th tour wll b modfd such that th party graphs P l ad P l ar travrsd th sam drcto. Sc w hav ψ σ (x l ) ψ σ (x l ) ψ σ (x l ) = 0 w ar abl to ucoupl th party graph P l from th tour through G 3 c wthout crasg ts lgth. W dsplay th trasformd tour Fgur 39. Assumg ψ σ (x l ) ψ σ (x l ) ψ σ (x l ) = ad th scaro dpctd Fgur 0, w trasform σ such that th party graph P l s travrsd wh σ s passg through Dc 3 mag vc 3 v l0 v l v l vc s a part of th tour. I addto, w chag th valu of ψ σ (x l ) yldg at last mor satsfd quatos. Th trasformd tour s dsplayd Fgur 0. I both cass, w assocat th local lgth wth σ. O th othr had, ψ σ lavs at most o quato usatsfd. W obta th followg proposto. Proposto 8. Lt g 3 c x l x s x r k = 0 b a quato wth thr varabls H. Furthrmor, lt x l x l + = 0 x s x s + = 0 ad x r k x r k+ = 0 b crcl quatos H. Th, t s possbl to trasform polyomal tm th gv tour σ passg through th graph corrspodg to x l x l + = 0 x s x s + = 0, x r k x r k+ = 0 ad g 3 c such that t has local lgth u, whr u s th umbr of usatsfd quato by ψ σ. 35

36 v c v c x + y + + v c v c + x + y + Fgur 0: Cas ψ σ (x l ) = 0, ψ σ (x l +) = ad ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) = Trasformg σ Graphs Corrspodg to Crcl Bordr Equatos Lt C l b a crcl H ad x l x l = 0 ts crcl bordr quato. Furthrmor, lt gc 3 x l x s x r k = 0 b a quato wth thr varabls cotad H. W ar gog to trasform a gv tour σ passg through th graph corrspodg to x l x l = 0 such that t wll hav th local lgth + u, whr u s th umbr of usatsfd quato. Lt us bg wth th aalyss startg wth th cas ψ σ (x ) = 0 ad ψ σ (x ) = 0. I ach cas, w modfy σ such that σ uss a ψ(x l )-travrsal of P{,} l. Aftrwards, σ wll b chckd D3 c whthr t passs th party tst.. Cas ψ σ (x ) = 0 ad ψ σ (x ) = 0: Lt us assum that ψ σ lavs gc 3 usatsfd mag ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) =. I addto to t, w assum that th path vc 3 v{,} l vl {,} vl0 {,} v c s a part of σ. Ths mas that σ fals th party chck Dc 3 f vc 3 v{,} l vl {,} vl0 {,} v c s ot usd by σ. Frst, w modfy th tour such that t cluds th arc (b l, v l0 ). For th sam raso, w may assum that v l ad b l+ s coctd va a -arc. W obta th scaro dpctd Fgur. 36

37 b l+ v 3 c {,} {,} v c b {,} v l a b l b l+ v 3 c {,} {,} v c {,} b v l a b l Fgur : Cas ψ σ (x ) = 0 ad ψ σ (x ) = 0 As for th xt stp, w trasform σ such that t cotas th arcs (b l, v l ) ad (v l0, b l+ ). Cosqutly, w us th -travrsal of th party graph P{,} l ad coct vc 3 ad vc va a -arc. Th modfd tour s dpctd Fgur. If ψ σ satsfs gc 3 ad σ cotas th path vc 3 v{,} l vl {,} vl0 {,} v c, w modfy σ Dc 3 such that t passs th party tst Dc 3 ad cotas th arc (vc, vc 3 ). I both cass, w assocat th local lgth wth ths part of σ.. Cas ψ σ (x ) = ad ψ σ (x ) = : Lt us assum that ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) = holds ad σ cotas th arc (vc, vc 3 ). Gv ths scaro, w may assum that (b l, v l ) s cotad σ du to a smpl modfcato. Th, w ar gog to aalyz th stuato dpctd Fgur. W trasform σ th way dscrbd Fgur. Aftrwards, σ wll b modfd Dc 3 such that t uss a smpl path Dc 3 falg th party chck. Th cas, whch ψ σ (x l ) ψ σ (x l ) ψ σ (x l ) = 0 holds ad σ cotas th arc (vc, vc 3 ), ca b dscussd smlarly sc σ passs th party chck by cludg th path vc 3 v{,} l vl {,} vl0 {,} v c. 37

38 y b l+ v 3 c v{,} l {,} vl {,} v c x b v l a b l y b l+ v 3 c v{,} l {,} vl {,} v c x b v l a b l Fgur :. Cas ψ σ (x ) = ad ψ σ (x ) = I both cass, w assocat th lgth wth ths part of σ. 38

39 b l+ v 3 c {,} v c b b l v l a {,} y {,} x b l+ v 3 c {,} v c b b l v l a {,} y {,} x b l+ v 3 c {,} {,} v c (c) b b l v l a y {,} x Fgur 3: 3. Cas ψ σ (x ) = 0 ad ψ σ (x ) = 3. Cas ψ σ (x ) = 0 ad ψ σ (x ) = : Lt us assum that ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) = holds ad σ travrss th path vc 3 v{,} l vl {,} vl0 {,} v c. Th, w trasform th tour σ such that t cotas th arc (v l0, b l+ ). Not that thr (b l, v l0 ) or (b l, v l ) s cludd th tour. Hc, σ cotas a -arc to coct b l. Th sam holds for th vrtx v l. Ths stuato s dsplayd Fgur 3. W ar gog to vrt th valu of ψ σ (x l ) such that ψ σ satsfs gc 3 ad x l x l = 0. I ths way, w ga at last mor satsfd quatos. Th corrspodg trasformato s pcturd Fgur 3. 39

40 O th othr had, f w assum that ψ σ (x l ) ψ σ (x s ) ψ σ (x r k) = 0 holds ad σ travrss th path vc 3 v{,} l vl {,} vl0 {,} v c, w modfy th tour as dpctd Fgur 3 (c). Not that σ passs th party chck Dc 3 ad thrfor, th tour may us a smpl path Dc. 3 W assocat th local lgth 3 wth σ ths cas. v 3 c {,} v{,} l v{,} l0 v c b l+ x b v l a y b l v 3 c {,} v{,} l v{,} l0 v c b l+ x b v l a y b l v{,} l v{,} l v{,} l0 b l+ v 3 c v c x b v l a (c) y b l Fgur :. Cas ψ σ (x ) = ad ψ σ (x ) = 0. Cas ψ σ (x ) = ad ψ σ (x ) = 0: Lt us assum that ψ σ (x l ) ψ σ (x l ) ψ σ (x l ) = holds ad σ uss th arc (vc, vc 3 ). Th, w trasform th tour σ such that t cotas th arc (b l, v l ). W ot that thr (v l0, b l+ ) or (v l, v{,} l0 ) s cludd th tour. For ths raso, σ must us a -arc to coct v{,} l0. Th sam holds for th vrtx vl0. Th corrspodg stuato s dsplayd Fgur. 0

41 W modfy th tour as dsplayd Fgur ad obta at last mor satsfd quatos. O th othr had, f w assum that ψ σ (x l ) ψ σ (x l ) ψ σ (x l ) = 0 holds, w d to clud th path vc 3 v{,} l vl {,} vl0 {,} v c as dpctd Fgur (c). I both cass, w assocat th local lgth 3 wth ths part of th tour. Proposto 9. Lt C l b a crcl H ad x l x l = 0 ts crcl bordr quato. Th, t s possbl to trasform polyomal tm th gv tour σ passg through th graph corrspodg to x l x l = 0 such that t has local lgth, f x l x l = 0 s satsfd by ψ σ ad othrws, local lgth Proof of Thorm 5 () Lt H b a stac of th Hybrd problm cosstg of crcls C,..., C, m quatos wth two varabls ad m 3 quatos wth thr varabls gc 3 wth c [m 3 ]. Th, w costruct polyomal tm th corrspodg stac D H = (V (D H ), A(D H )) of th (, )-ATSP problm as dscrbd Scto 5.. () Lt φ b a assgmt to th varabls H lavg u quatos H usatsfd. Accordg to Proposto 3 5, w t s possbl to costruct polyomal tm th tour σ φ wth lgth l(σ φ ) 3 m + ( + 3 3) m u. () Lt σ b a tour D H wth lgth l(σ) = 3 m + 3 m u. Du to Proposto 6 w may assum that σ uss oly 0/-travrsals of vry party graph cludd D H. Accordg to Dfto, w assocat th corrspodg assgmt ψ σ wth th udrlyg tour σ. Rcall from Proposto 7 9 that t s possbl to covrt σ polyomal tm to a tour σ wthout crasg th lgth such that ψ σ lavs at most u quatos H usatsfd. 6 Approxmato Hardss of th (, )-ATSP Problm I ordr to prov th clamd hardss rsults for th (, )-ATSP problm, w us th sam costructo dscrbd Scto 5. wth th dffrc that all arcs party graphs hav wght, whras all othr arcs cotad th drctd graph D H obta th wght. Th ducd asymmtrc mtrc spac (V H, d H ) s gv by V H = V (D H ) ad dstac fucto dfd by th shortst path mtrc D H boudd by th valu.

42 I othr words, gv x, y V H, th dstac btw x ad y V H s d H (x, y) = m{lgth of a shortst path from x to y D H, }. Th oly dffculty that rmas s to prov that tours rma cosstt. Thus, w hav to prov that gv a tour σ V H, w ar abl to trasform σ polyomal tm to a tour σ, whch uss oly 0/-travrsals party graphs cotad D H, wthout crasg l(σ). Ths statmt ca b provd by cosdrg all possblts xhaustvly. Som cass ar dsplayd Fgur 5 Fgur 5. W ar rady to gv th proof of Thorm 5 (). 6. Proof of Thorm 5 () Gv H a stac of th Hybrd problm cosstg of crcls C,..., C, m quatos wth two varabls ad m 3 quatos wth thr varabls gc 3 wth c [m 3 ], w costruct polyomal tm th assocatd stac (V H, d) of th (, )- ATSP problm. Gv a assgmt φ to th varabls of H lavg u quatos usatsfd H, th thr xsts a tour wth lgth at most m (+)+m 3 (3 + )+ u+(+). O th othr had, f w ar gv a tour σ V H wth lgth m + 0m u, t s possbl to trasform σ polyomal tm to a tour σ wthout crasg th lgth such that th assocatd assgmt ψ σ lavs at most u quatos H usatsfd. 7 Approxmato Hardss of th (, )-TSP Problm I ordr to prov Thorm 6 (), w apply th rducto mthod usd Scto 5 to th (, )-TSP problm. As for th party gadgt, w us th graph dpctd Fgur 5 wth ts corrspodg travrsals. Th travrsd dgs ar pcturd by thck ls. Th party graph P l -travrsal of P l. 0-travrsal of P l. Fgur 5: Travrsal of th graph P l gv th assgmt φ. Lt H b a stac of th hybrd problm. Gv a matchg quato x l x l = 0 H ad th corrspodg crcl quatos x l x l + = 0 ad x l x l + = 0, w coct th assocatd party graphs P l, P+, l P{,} l, P l ad P+ l as dsplayd Fgur 6.

43 P l P l + P l {,} P l + P l Fgur 6: Graphs corrspodg to quatos x l x l = 0, x l x l + = 0 & x l x l + = 0. For quatos wth thr varabls g 3 c x y z = 0 H, w us th graph G 3 c dpctd Fgur 7. Rcall from Proposto that thr s a smpl path from s c to s c+ Fgur 7 cotag th vrtcs v {v c, v c } f ad oly f a v umbr of party graphs s travrsd. v c s c sc+ v c Fgur 7: Th graph G 3 c corrspodg to x y z = 0. Lt C l b a crcl H wth varabls {x l,..., x l }. For th crcl bordr quato of C l, w troduc th path p l = b l b l b 3 l. I addto, w coct b 3 l ad b l+ to th party graphs P l ad P l a smlar way as th rducto from th Hybrd problm to th (, ) ATSP problm. Ths s th whol dscrpto of th corrspodg graph G H = (V (G H ), E(G H )). W ar rady to gv th proof of Thorm 6 (). 3

44 7. Proof of Thorm 6 () Gv H a stac of th Hybrd problm cosstg of crcls C,..., C, m quatos wth two varabls ad m 3 quatos wth thr varabls g 3 c wth c [m 3 ], w costruct polyomal tm th assocatd stac G H of th (, ) TSP problm. Gv a assgmt φ to th varabls of H lavg u quatos usatsfd H, th, thr s a tour wth lgth at most 8 m + ( ) m O th othr had, f w ar gv a tour σ G H wth lgth 8 m +(3 8+3) m 3 +3+, t s possbl to trasform σ polyomal tm to a tour σ such that t uss 0/-travrsals of all cotad party graphs G H wthout crasg th lgth. Som cass ar dsplayd Fgur 50. Morovr, w ar abl to costruct polyomal tm a assgmt to th varabls of H, whch lavs at most u quatos H usatsfd. 8 Approxmato Hardss of th (, )-TSP Problm I ordr to prov th clamd approxmato hardss for th (, )-TSP problm, w caot us th sam party graphs as th costructo th prvous scto sc tours ar ot cssarly cosstt ths mtrc. For ths raso, w troduc th party graph dpctd Fgur 8 wth th corrspodg travrsals. Party graph P l -Travrsal of P l. 0-Travrsal of P l. Fgur 8: 0/-Travrsals of th graph P l. Gv a matchg quato x l x l = 0 H ad th crcl quatos x l x l + = 0 ad x l x l + = 0, w coct th corrspodg graphs as dsplayd Fgur 9. I ordr to df th w stac of th (, ) TSP problm, w rplac all party graphs G H by graphs dsplayd Fgur 8. I th rmadr, w rfr to ths graph as H H. All dgs cotad a party graph hav wght, whras all othr dgs hav wght. Th rmag dstacs th assocatd mtrc spac V H ar ducd by th graphcal mtrc H H boudd by th valu mag d H ({x, y}) = m{lgth of a shortst path from x to y H H, }. Ths s th whol dscrpto of th assocatd stac (V H, d H ) of th (, ) TSP problm. W ar rady to gv th proof of Thorm 6 ().

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4. Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

A Measure of Inaccuracy between Two Fuzzy Sets

A Measure of Inaccuracy between Two Fuzzy Sets LGRN DEMY OF SENES YERNETS ND NFORMTON TEHNOLOGES Volum No 2 Sofa 20 Masur of accuracy btw Two Fuzzy Sts Rajkumar Vrma hu Dv Sharma Dpartmt of Mathmatcs Jayp sttut of formato Tchoy (Dmd vrsty) Noda (.P.)

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 9 4. Matrx tgrals Lt h N b th spac of Hrmta matrcs of sz N. Th r product o h N s gv by (A, B) = Tr(AB). I ths scto w wll cosdr tgrals of th form Z

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution Itratoal Joural of Statstcs ad Applcatos, (3): 35-3 DOI:.593/j.statstcs.3. Baysa Shrkag Estmator for th Scal Paramtr of Expotal Dstrbuto udr Impropr Pror Dstrbuto Abbas Najm Salma *, Rada Al Sharf Dpartmt

More information

On the Possible Coding Principles of DNA & I Ching

On the Possible Coding Principles of DNA & I Ching Sctfc GOD Joural May 015 Volum 6 Issu 4 pp. 161-166 Hu, H. & Wu, M., O th Possbl Codg Prcpls of DNA & I Chg 161 O th Possbl Codg Prcpls of DNA & I Chg Hupg Hu * & Maox Wu Rvw Artcl ABSTRACT I ths rvw artcl,

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM OPERTIONS RESERH o.287/opr.8.559c pp. c c8 -copao ONLY VILLE IN ELETRONI FORM fors 28 INFORMS Elctroc opao Optzato Mols of scrt-evt Syst yacs by Wa K (Vctor ha a L Schrub, Opratos Rsarch, o.287/opr.8.559.

More information

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays Itratoal Cofrc o Appld Mathmatcs, Smulato ad Modllg (AMSM 6) Group Cossus of Scod-Ordr Mult-agt Ntworks wth Multpl Tm Dlays Laghao J* ad Xyu Zhao Chogqg Ky Laboratory of Computatoal Itllgc, Chogqg Uvrsty

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS Chaptr 4 NUMERICL METHODS FOR SOLVING BOUNDRY-VLUE PROBLEMS 00 4. Varatoal formulato two-msoal magtostatcs Lt th followg magtostatc bouar-valu problm b cosr ( ) J (4..) 0 alog ΓD (4..) 0 alog ΓN (4..)

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Frequency hopping sequences with optimal partial Hamming correlation

Frequency hopping sequences with optimal partial Hamming correlation 1 Frqucy hoppg squcs wth optmal partal Hammg corrlato Jgju Bao ad ju J arxv:1511.02924v2 [cs.it] 11 Nov 2015 Abstract Frqucy hoppg squcs (FHSs) wth favorabl partal Hammg corrlato proprts hav mportat applcatos

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Entropy Equation for a Control Volume

Entropy Equation for a Control Volume Fudamtals of Thrmodyamcs Chaptr 7 Etropy Equato for a Cotrol Volum Prof. Syoug Jog Thrmodyamcs I MEE2022-02 Thrmal Egrg Lab. 2 Q ds Srr T Q S2 S1 1 Q S S2 S1 Srr T t t T t S S s m 1 2 t S S s m tt S S

More information

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1 Th robablty of Ra's hyothss bg tru s ual to Yuyag Zhu Abstract Lt P b th st of all r ubrs P b th -th ( ) lt of P ascdg ordr of sz b ostv tgrs ad s a rutato of wth Th followg rsults ar gv ths ar: () Th

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 St Ssts o Ordar Drtal Equatos Novbr 7 St Ssts o Ordar Drtal Equatos Larr Cartto Mcacal Er 5A Sar Er Aalss Novbr 7 Outl Mr Rsults Rvw last class Stablt o urcal solutos Stp sz varato or rror cotrol Multstp

More information

International Journal of Mathematical Archive-6(5), 2015, Available online through ISSN

International Journal of Mathematical Archive-6(5), 2015, Available online through  ISSN Itratoal Joural of Mathmatal Arhv-6), 0, 07- Avalabl ol through wwwjmafo ISSN 9 06 ON THE LINE-CUT TRANSFORMATION RAPHS B BASAVANAOUD*, VEENA R DESAI Dartmt of Mathmats, Karatak Uvrsty, Dharwad - 80 003,

More information

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model Th Op Orgac hmstry Joural 0 5 (Suppl -M6) 87-87 Op Accss Advacs of lar's Aromatc Sxtt Thory ad Radc 's ougatd rcut Modl Fu Zhag a Xaofg Guo a ad Hpg Zhag b a School of Mathmatcal Sccs Xam Uvrsty Xam Fua

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

More Statistics tutorial at 1. Introduction to mathematical Statistics

More Statistics tutorial at   1. Introduction to mathematical Statistics Mor Sttstcs tutorl t wwwdumblttldoctorcom Itroducto to mthmtcl Sttstcs Fl Soluto A Gllup survy portrys US trprurs s " th mvrcks, drmrs, d lors whos rough dgs d ucompromsg d to do t thr ow wy st thm shrp

More information

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables

New bounds on Poisson approximation to the distribution of a sum of negative binomial random variables Sogklaaka J. Sc. Tchol. 4 () 4-48 Ma. -. 8 Ogal tcl Nw bouds o Posso aomato to th dstbuto of a sum of gatv bomal adom vaabls * Kat Taabola Datmt of Mathmatcs Faculty of Scc Buaha Uvsty Muag Chobu 3 Thalad

More information

Line Matching Algorithm for Localization of Mobile Robot Using Distance Data from Structured-light Image 1

Line Matching Algorithm for Localization of Mobile Robot Using Distance Data from Structured-light Image 1 Advacd Scc ad Tchoogy Lttrs Vo.86 (Ubqutous Scc ad Egrg 015), pp.37-4 http://dx.do.org/10.1457/ast.015.86.08 L Matchg Agorthm for Locazato of Mob Robot Usg Dstac Data from Structurd-ght Imag 1 Soocho Km

More information

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 -

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 - Statstcal Thrmodyamcs sstal Cocpts (Boltzma Populato, Partto Fuctos, tropy, thalpy, Fr rgy) - lctur 5 - uatum mchacs of atoms ad molculs STATISTICAL MCHANICS ulbrum Proprts: Thrmodyamcs MACROSCOPIC Proprts

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY Colloquum Bomtrcum 44 04 09 7 COMPISON OF SEVEL ESS FO EQULIY OF COEFFICIENS IN QUDIC EGESSION MODELS UNDE HEEOSCEDSICIY Małgorzata Szczpa Dorota Domagała Dpartmt of ppld Mathmatcs ad Computr Scc Uvrsty

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

SIMULTANEOUS METHODS FOR FINDING ALL ZEROS OF A POLYNOMIAL

SIMULTANEOUS METHODS FOR FINDING ALL ZEROS OF A POLYNOMIAL Joual of athmatcal Sccs: Advacs ad Applcatos Volum, 05, ags 5-8 SIULTANEUS ETHDS FR FINDING ALL ZERS F A LYNIAL JUN-SE SNG ollg of dc Yos Uvsty Soul Rpublc of Koa -mal: usopsog@yos.ac. Abstact Th pupos

More information

Today s topics. How did we solve the H atom problem? CMF Office Hours

Today s topics. How did we solve the H atom problem? CMF Office Hours CMF Offc ous Wd. Nov. 4 oo-p Mo. Nov. 9 oo-p Mo. Nov. 6-3p Wd. Nov. 8 :30-3:30 p Wd. Dc. 5 oo-p F. Dc. 7 4:30-5:30 Mo. Dc. 0 oo-p Wd. Dc. 4:30-5:30 p ouly xa o Th. Dc. 3 Today s topcs Bf vw of slctd sults

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Perfect Constant-Weight Codes

Perfect Constant-Weight Codes 56 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 004 Prfct Costat-Wght Cods Tuv Etzo, Fllo, IEEE, ad Mosh Schartz, Mmbr, IEEE Abstract I hs porg or from 973, Dlsart cocturd that thr

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

pn Junction Under Reverse-Bias Conditions 3.3 Physical Operation of Diodes

pn Junction Under Reverse-Bias Conditions 3.3 Physical Operation of Diodes 3.3 Physcal Orato of os Jucto Ur vrs-bas Cotos rft Currt S : ato to th ffuso Currt comot u to majorty carrr ffuso, caus by thrmally grat morty carrrs, thr ar two currt comots lctros mov by rft from to

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

' 1.00, has the form of a rhomb with

' 1.00, has the form of a rhomb with Problm I Rflcto ad rfracto of lght A A trstg prsm Th ma scto of a glass prsm stuatd ar ' has th form of a rhomb wth A th yllow bam of moochromatc lght propagatg towards th prsm paralll wth th dagoal AC

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

Examples and applications on SSSP and MST

Examples and applications on SSSP and MST Exampls an applications on SSSP an MST Dan (Doris) H & Junhao Gan ITEE Univrsity of Qunslan COMP3506/7505, Uni of Qunslan Exampls an applications on SSSP an MST Dijkstra s Algorithm Th algorithm solvs

More information

A METHOD FOR NUMERICAL EVALUATING OF INVERSE Z-TRANSFORM UDC 519.6(045)

A METHOD FOR NUMERICAL EVALUATING OF INVERSE Z-TRANSFORM UDC 519.6(045) FACTA UNIVERSITATIS Srs: Mcacs Automatc Cotrol ad Rootcs Vol 4 N o 6 4 pp 33-39 A METHOD FOR NUMERICAL EVALUATING OF INVERSE Z-TRANSFORM UDC 59645 Prdrag M Raovć Momr S Staovć Slađaa D Marovć 3 Dpartmt

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Round-Off Noise of Multiplicative FIR Filters Implemented on an FPGA Platform

Round-Off Noise of Multiplicative FIR Filters Implemented on an FPGA Platform Appl. Sc. 4, 4, 99-7; do:.339/app499 Artcl OPEN ACCESS appld sccs ISSN 76-347 www.mdp.com/joural/applsc Roud-Off Nos of Multplcatv FIR Fltrs Implmtd o a FPGA Platform Ja-Jacqus Vadbussch, *, Ptr L ad Joa

More information

and one unit cell contains 8 silicon atoms. The atomic density of silicon is

and one unit cell contains 8 silicon atoms. The atomic density of silicon is Chaptr Vsualzato o th Slo Crystal (a) Plas rr to Fgur - Th 8 orr atoms ar shar by 8 ut lls a thror otrbut atom Smlarly, th 6 a atoms ar ah shar by ut lls a otrbut atoms A, 4 atoms ar loat s th ut ll H,

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Graphs of q-exponentials and q-trigonometric functions

Graphs of q-exponentials and q-trigonometric functions Grahs of -otals ad -trgoomtrc fuctos Amla Carola Saravga To ct ths vrso: Amla Carola Saravga. Grahs of -otals ad -trgoomtrc fuctos. 26. HAL Id: hal-377262 htts://hal.archvs-ouvrts.fr/hal-377262

More information

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data Itratoal Rfrd Joural of Egrg ad Scc (IRJES) ISSN (Ol) 319-183X, (Prt) 319-181 Volum, Issu 10 (Octobr 013), PP. 6-30 Tolrac Itrval for Expotatd Expotal Dstrbuto Basd o Groupd Data C. S. Kaad 1, D. T. Shr

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

Chapter Discrete Fourier Transform

Chapter Discrete Fourier Transform haptr.4 Dscrt Fourr Trasform Itroducto Rcad th xpota form of Fourr srs s Equatos 8 ad from haptr., wt f t 8, h.. T w t f t dt T Wh th abov tgra ca b usd to comput, h.., t s mor prfrab to hav a dscrtzd

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach

Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach Po Producto va Proto Sychrotro Radato Strog Magtc Flds Rlatvstc Quatum Approach Partcl Productos TV Ergy Rgo Collaborators Toshtaka Kajo Myog-K Chou Grad. J. MATHEWS Tomoyuk Maruyama BRS. Nho Uvrsty NaO,

More information

On the Design of Finite-State Shaping Encoders for Partial-Response Channels

On the Design of Finite-State Shaping Encoders for Partial-Response Channels O th Dsg of Ft-Stat Shapg Ecodrs for Partal-Rspos Chals Josph B. Soraga Qualcomm, Ic. 5775 Morhous Drv, Sa Dgo, CA 922 Emal: jsoraga@qualcomm.com Paul H. Sgl Ctr for Magtc Rcordg Rsarch Uvrsty of Calfora,

More information