Why Linear? 4. Linear Discriminant Functions. Linear Discriminant Analysis. Theorem. Distance to a nonlinear function

Size: px
Start display at page:

Download "Why Linear? 4. Linear Discriminant Functions. Linear Discriminant Analysis. Theorem. Distance to a nonlinear function"

Transcription

1 4. Lar Dscrmat Fuctos Alx M. Martz Hadouts Hadoutsfor forece ECE874, Why Lar? It s smpl ad tutv. Mmzg a crtro rror;.g. sampl rsk, trag rror, marg, tc. Ca b gralzd to fd o-lar dscrmat rgos. It s grally vry dffcult to calculat th dstac of a tstg sampl to a olar fucto. Lmtd umbr of trag sampls. No d to stmat class dstrbutos. Dstac to a olar fucto Lar Dscrmat Aalyss If w hav sampls corrspodg to two or mor classs, w prfr to slct thos faturs that bst dscrmat btw classs rathr tha thos that bst dscrb th data. hs wll, of cours, dpd o th classfr. Assum our classfr s Bays. hus, w wat to mmz th probablty of rror. W wll dvlop a mthod basd o scattr matrcs. From Muras & Nayar, 995. horm Lt th sampls of two classs b Normally dstrbutd R p, wth commo covarac matrx. h, th Bays rrors th p-dmsoal spac ad th o-dmsoal subspac gv by v ( - )/ ( - ), ar th sam; whr x s th Euclda orm of th vctor x. hat s, thr s o loss classfcato wh rducg from p dmsos to o. LDA PCA

2 Scattr matrcs ad sparablty crtra Wth-class scattr matrx: S W Btw-class scattr matrx: SB C N x j j xj j. j C j j. j Not that: S ˆ W S B. o formulat crtra for class sparablty, w d to covrt ths matrcs to umrcal valus: tr( S S ) ypcal combato of scattr matrcs ar: S, S } { S, S },{ S, ˆ }, ad{ S, ˆ}. l S tr S tr S l S { B W B W A soluto to LDA Aga, w wat to mmz th Bays rror. hrfor, w wat th projcto from Y to X that mmzs th rror: p X ˆ ( p) y b. p h gvalu dcomposto s th optmal trasformato: S. B S W Smultaous dagoalzato. Roald Fshr (890-96) Fshr was a mt scholar ad o of th grat sctst of th frst part of th 0 th ctury. Aftr graduatg from Cambrdg ad bg dd try to th Brtsh army for hs poor ysght, h workd as a statstca for sx yars bfor startg a farmg busss. Whl a farmr, h cotud hs gtcs ad statstcs rsarch. Durg ths tm, h dvlopd th wll-kow aalyss of varac (ANOVA) mthod. Aftr th war, Fshr fally movd to Rothamstd Exprmtal Stato. Amog hs may accomplshmts, Fshr vtd ANOVA, th tchqu of maxmum lklhood (ML), Fshr Iformato, th cocpt of suffccy, ad th mthod ow kow as Lar Dscrmat Aalyss(LDA). Durg World War II, th fld of ugcs suffrd a bg blow -- maly do to th Nazs us of t as a justfcato for som of thr actos. Fshr movd back to Rothamstd ad th to Cambrdg whrh rtrd. Fshr has b accrdtd to b o of th foudrs of modr statstcs ad o caot study pattr rcogto wthout coutrg svral of hs groud-brakg sghts. Yt as grat as a statstca that h was, h also bcom a major fgur gtcs. A classcal quot th Aals of Statstcs rads I occasoaly mt gtcsts who ask m whthr t s tru that th grat gtcst R.A. Fshr was also a mportat statstca." Exampl: Fac Rcogto

3 Lmtatos of LDA o prvt S W to bcom sgular, N>d. hr ar oly C- ozro gvctors. Noparamtrc LDA s dsg to solv th last problm(w l s ths latr th cours). PCA vrsus LDA I may applcatos th umbr of sampls s rlatvly small compard to th dmsoalty of th data. Ev for smpl PDFs, PCA ca outprform LDA (tstg data). Aga, ths lmts th umbr of faturs o ca us. PCA s usually a guarat, bcaus all w try to do s to mmz th rprstato rror. udrlyg but ukow PDFs Problms wth Mult-class Eg-basd Algorthms I gral, rsarchrs df algorthms whch ar optmal th -classs cas ad th xtd ths da (way of thkg) to th mult-class problm. hs may causd problms. hs s th cas for g-basd approachs whch us th da of scattr matrcs dfd abov. Lt s df th gral cas: M V M V hs s th sam as slctg thos gvctors v that maxmz: v M v. v M v Not that ths ca oly b achvd f M ad M agr. h xstc of soluto dpds o th agl btw th gvctors of M ad M. v s th th bass vctor of th soluto spac. w ar th gvctors of M. u ar th gvctors of M. 3

4 How to kow? Classfcato: h lar cas K r r cos j u j w. j j whr r < q ad q s th umbr of gvctors of M. h largr K s, th lss probabl that th rsults wll b corrct. Dcso Surfacs A lar dscrmat fucto ca b mathmatcally wrtt as: g x) w x w. ( o -class cas: wght vctor Dcd w f g( x) 0. w f g( x) 0. W ca also do that wth: w f w x w. o thrshold thrshold Dscrmat fucto = dstac h dscrmat fucto gvs a algbrac masur of th dstac. ak two vctors x ad x, both o th dcso boudary. h, wrt x as: x x p r w w Projcto of x oto g(x)=0. g( x) r. w Dstac from x to g(x)=0. Multcatgory cas wo straghtforward algorthms: Rduc th problm to C- -class problms. Costruct C(C-)/ lar dscrmat fuctos. A lar mach assgs x to: w f g ( x) g j ( x) j. h dcso boudars (btw two adjact aras) ar gv by: g ( x) g ( x). j 4

5 Larly Sparabl Our prvous algorthm s gral ad ca b appld v wh th classs ar ot larly sparabl. C classs ar larly sparabl ff for vry w thr xst a lar classfr (hyprpla) such that all th sampl of w l o ts postv sd (g (x)>0) ad all th sampl of ( j ) ar o th gatv sd of g (x). w j Lar Classfr If th classs (or trag data) ar larly sparabl, th thr xst a uqu g (x)>0. hs mas that a w sampl t, ca b classfd as w f g (t)>0. Altratvly (wh th data s ot larly sparabl), w ca us: w ( t w,..., wc, w0,..., w0 ) arg max g ( ). C t wghts thrsholds Lar Rgrsso It s smplr to start wth rgrsso. Rmmbr that rgrsso s a rlatd (but dffrt) problm to that of classfcato. W sarch that fucto g(x) whch bst trpolats a gv trag st S={(x,y ),,(x,y )}; whr x scalars. W wat to mmz: f p ad y ar w, x w x, ( x, y) y g ( x) y w, x 0. ad w hav assumd w o =0. If ough trag data s avalabl thr xst a uqu soluto: w X y. Wh thr s os (..,thr dos ot xst a g() for whch f()=0), w us last squars (LS). h (LS) rror fucto s gv by: E( w,( X, y)) Usg orm- LS: y g ( x ). y w X y w X. Now, dffrtatg wth rspct to w, w gt: y X w XX 0, w XX y X. If th vrs xst, th: w XX Xy. Wh thr s lss sampls tha dmsos (<p), thr xst may possbl solutos for w ll-codto problm. W d to mpos a rstrcto (or bas) to favor o soluto ovr th rst. hs s kow as rgularzato. 5

6 Rdg Rgrsso W r-formulat th problm as: m w y g (x ) m E w, X, y. w w Dffrtatg wth rspct to th paramtrs, w gt: w XX w w XX I p y X w XX I p Xy. prmal soluto. Not that for ay gv, w choos that soluto whch mmzs th orm of w. Not that w could hav also wrtt w as a fucto of th puts X: w X X w y X, X w y, X X y, X X I y, G I y. G=XX s th Gram matrx: G j x, x j. Dual soluto: w x. Gralzd Lar Dscrmat A look back at PCA Rmmbr that to comput th PCs of a dstrbuto wh <p, w also usd th ~ dual opto;.. Q X X. ( 3 ) vs. ( p 3 ). h two argumts (PCA ad LS) ar quvalt. o s ths, rmmbr that to mmz Ux usg LS, w hav E Ux x U Ux. h gvctor assocatd to th smallst gvalu of UU mmzs E. W ca rwrt our lar dscrmat as: d g (x) w0 w x. W ca ow xtd ths to a quadratc form: g (x) w0 w x j wj x x j. d d d Or to ay othr polyomal dscrmat fucto: g ( x) a y dˆ g (x) a y (x). g ( x) a a x a3 x y x x 6

7 rag h wght vctor a must b dtrmd from trag obsrvatos (sampls) of th world. h data must also b larly sparabl at last y. Krls W ca also addrss ths problm usg krls. If w cosdr x p (x) F q, w ca wrt f (x, y ) y w, (x). W hav alrady show that ths mpls: G j (x ), ( x j ). krl. W ow hav: g (x) G I yk, k (x ), ( x). Complxty h ovrall complxty of computg s O(3+q). Ad, to valuat g o a w sampl O(q). Krls ar vry usful, bcaus thy allow us to comput classfcato o a spac of q dmsos (grally, q>>p), wthout th d to spcfcally calculat th o-lar projcto x,z). Do ot b dcvd though. Mthods basd o krls ar computatoally xpsv ad slow. krl. Larly Sparabl: -class problm h goal s to fd th vctor a that corrctly classfs all sampls, y. Classfcato: a y 0 w a y 0 w No r ma l z a t o :t hr pl a c m to fa l lt h sampls of w by thr gatvs. h: a y 0,. No r mal z d :all sampls postvs 7

8 Gradt dsct procdur W df a crtro fucto J(a) that s mmzd wh a s a soluto of a y 0. W start wth som arbtrary valu ad th us th drcto of th gradt: J (a). Larg quato: a(k ) a(k ) (k ) J (a(k )). larg rat N wt o sd s c t Uss: a(k ) a(k ) H J. Algorthm:. Do a a H J. Utl H J (a) thrshold. 3. rtur a. W ow calculat th gradt: Prcptro J P (a) y O of th smpls crtra usd to mmz a y 0, s th Prcptro crtro. It oly uss thos fatur vctors that ar msclassfd: J P (a) ( a y ) hs crtro s vr gatv. Wh ths s zro, a s a soluto. Ad clud ths soluto our larg quato: a(k ) a(k ) (k ) y. Algorthm: Algorthm (k=0) Do k = mod (k+,) If y k s msclassfd by a th: a a y k Utl all pattrs ar proprly classfd 8

9 # of pattrs msclassfd J P (a) ( a y ) Covrgc horm (Prcpto Covrgc): If th trag sampls ar larly sparabl, th th squc of wght vctors gv by th Prcptro algorthm wll trmat at th soluto vctor. Prcptro: Batch varabl crmt W clud a marg b to th soluto: a (k )y k b k. Ad th st of proprly classfd sampls s gv by: a y k b. h slcto of b s grally dffcult. Wow Algorthm Rlaxato Procdur Co s d r st h pos t v a d g a t v wght vctors sparatly: a ad a. Corrctos o th postv wght ar mad oly wh o or mor trag pattrs w ar msclassfd. Corrctos o th gatv wght oly wh pattrs of w ar msclassfd. h Prcptro crtro dscrbd abov s by o mas th oly soluto. Aothr possblty would b: J q (a) (a y ). Its gradt s cotuous (whras that of J p s ot). Ufortuatly, th fucto s too smooth. Covrgc s usually at a = 0. 9

10 Aothr problm wth J q s that t s domatd by th largst trag vctors. Istad, w usually us th followg: (a y b) J r (a) y margal a y b J r y. y Its gradt s: Ad th larg (updat) quato s: a y b a(k ) a(k ) ( k ) y y. Mmum Squar-Error Procdur W wll ow buld a clos-form soluto that uss all sampls y smultaously. For that w shall try to mak a y k b. A soluto s gv by th followg st of lar quatos: y0 y y0 y y 0 y yd a0 b y d a b yd ad b h gradt s: (a y b) J r (a ) y I matrx form: Ya b. Ufortuatly, Y s rctagular, ad thr ar mor quatos tha ukows => a s, thrfor, ovrdtrmd. Aga, w d to mmz a rror;.g.: rror Ya b. form whch w ca df th followg crtro: J S (a) Ya b (a y b ). A soluto s ow gv by: J S (a y b ) y Y ( Ya b). J q (a) (a y ). a (Y Y) Y b Y*b. Now, w wat to mmz ths: Y (Ya b) 0 Y Ya Y b 0 Y Ya Y b Why s ths w quato mportat? Bcaus Y Y s a squar matrx. MSE psudovrs If Y s squar ad osgular => th psudovrs = vrs. A soluto ca always b foud wth: Y * lm ( Y Y I) Y. 0 MSE = LDA. 0

11 A smpl xampl w : (,), (,0) w : (3,), (,3) wo problms of MSE:. Y Y ca b sgular.. Y s grally a vry larg matrx. a x 0 x 0 Y 3 3 LMS (last-ma-squar) procdur 5 / 4 3 / 3 / 4 7 / Y * / / 6 / / 6 0 / 3 0 / 3 W ca solv ths by mmzg th abov dfd crtro: J S (a) Ya b. h updat quato would b: a(k ) a(k ) (k )Y (Ya(k ) b). Usually howvr, w cosdr th sampl squtally: a(k ) a(k ) (k )(bk y k a (k ))y k. Advatag: lss mmory rqurd. It ca b show that wth (k ) () / k ths algorthm covrgs. Ufortuatly, th soluto ds ot gv a sparatg vctor (v f o xsts). So far, so good h Ho-Kashyap procdur h Prcptro fds th sparatg vctor wh th data s larly sparabl, but dos ot covrg o o-sparabl sts. Covrgc s guaratd MSE & LMS, but th rsultg vctor ds ot b th corrct o. W wll ow df aothr algorthm whch attmpts to addrss ths problm. h MSE mmzs: Ya b. hr xst a b for whch th MSE ylds a corrct soluto. Howvr, b s ukow. h Ho-Kashyap procdur sarchs for both, a ad b. h quato to mmz s: J S (a, b) Ya b.

12 Ad ts gradts ar: a J S Y Ya b b J S Ya b Bcaus a Y *b, o oly ds to mmzd th crtro wth rspct to b. Howvr, w also d to guarat that b>0. W ca do that wth a updat quato whch s always postv: If th sampls ar larly sparabl, covrgc s guaratd. If thy ar ot, th Ya(k ) b(k ) 0 ad th algorthm stops. hs ca b usd as a proof that th sampls ar ot sparabl. b() 0, b(k ) b( k ) ( k ) b J S b J S. Support Vctor Machs As w dd bfor th goal s to rprst th data a hgh-dmsoal spac whr th data s larly sparabl. W us a olar mappg (); as for xampl a polyomal or a Gaussa mappg fucto. Optoal homwork: show that ay datast that blogs to two classs ca b sparatd by a hyprpla f th data s rprstd a suffctly larg spac. As usual w hav g ( y ) a y ad w wat to fd th sparatg hyprpla, zk g (y k ), wth largst marg b: zk g ( y k ) a b. h goal s to fd th wght vctor a that maxmzs b. hs s th sam as: fd th sparatg hyprpla that s farthst from th most dffcult pattrs to classfd. A SVM algorthm Rcalculat a usg th Prcptro algorthm ad th worst-classfd pattrs: a(k ) a( k ) (k ) y. worst y h rsultg a s calld th support vctor.

13 Support Vctors W wat to fd thos sampls that ar closst to th hyprpla that dvds our fatur spac to two rgos (+ ad -). W ca formulat ths as follows: r a y a0, a marg h sampls that ar closst to th marg ar calld th support vctors. Our goal s to maxmz. o solv ths problm w d a rgularzg trm. As w dd bfor, w wll mmz w. Formally, a, subjct to r a y a0. m whr ={,, } (# of sampls), ad r= f th th sampl blogs to class ad f th sampl blogs to th scod class. Soft Marg SVM Lagrag Multplrs W ca solv ths quadratc optmzato problm usg Lagrag multplrs. a r a y a0 h goal s to mmz wth rspct to w ad maxmz wth rspct to. Our prvous SVM algorthms may ot prform adquatly wh th data s olarly sparabl. A soft marg SVM allows for th msclassfcato of a fw sampls whl stll maxmzg th marg for th rst. W ca modl th rror of ach sampl as follows, r a y a0. Rcostructo rror (as PCA). Multclass Classfcato K s l r scostructo Ufortuatly, thr s o gral way to achv multclass classfcato. A larg mach: W start wth a st of c- qualts: g (x) a y augmtd vctor z [a, a,..., a c ] x s assgd to w f g (x) g j (x) j. Whch s th sam as: a y k aj y k, j. a, a,..., a c a y k aj y k, 0, j,..., c. # of classs y y y 0 0 y 0, 3,..., c 0 y 0 0 y h goal s to solv: z j 0. 3

14 Gralzato of MSE h oly straghtforward soluto s to cosdr a st of c -class problms: a y y st of vctors class a y y A [a, a,..., a c ] B [b, b,..., b c ] A Y *B. 4

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4. Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution Itratoal Joural of Statstcs ad Applcatos, (3): 35-3 DOI:.593/j.statstcs.3. Baysa Shrkag Estmator for th Scal Paramtr of Expotal Dstrbuto udr Impropr Pror Dstrbuto Abbas Najm Salma *, Rada Al Sharf Dpartmt

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

A Stochastic Approximation Iterative Least Squares Estimation Procedure

A Stochastic Approximation Iterative Least Squares Estimation Procedure Joural of Al Azhar Uvrst-Gaza Natural Sccs, 00, : 35-54 A Stochastc Appromato Itratv Last Squars Estmato Procdur Shahaz Ezald Abu- Qamar Dpartmt of Appld Statstcs Facult of Ecoomcs ad Admstrato Sccs Al-Azhar

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations Appld Mathmatcal Sccs ol. 9 5 o. 43 75-73 HKAR Ltd www.m-hkar.com http://dx.do.org/.988/ams.5.567 Thr-Dmsoal Thory of Nolar-Elastc Bods Stablty udr Ft Dformatos Yu.. Dmtrko Computatoal Mathmatcs ad Mathmatcal

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

On the Possible Coding Principles of DNA & I Ching

On the Possible Coding Principles of DNA & I Ching Sctfc GOD Joural May 015 Volum 6 Issu 4 pp. 161-166 Hu, H. & Wu, M., O th Possbl Codg Prcpls of DNA & I Chg 161 O th Possbl Codg Prcpls of DNA & I Chg Hupg Hu * & Maox Wu Rvw Artcl ABSTRACT I ths rvw artcl,

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS

Chapter 4 NUMERICAL METHODS FOR SOLVING BOUNDARY-VALUE PROBLEMS Chaptr 4 NUMERICL METHODS FOR SOLVING BOUNDRY-VLUE PROBLEMS 00 4. Varatoal formulato two-msoal magtostatcs Lt th followg magtostatc bouar-valu problm b cosr ( ) J (4..) 0 alog ΓD (4..) 0 alog ΓN (4..)

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Ordinary Least Squares at advanced level

Ordinary Least Squares at advanced level Ordary Last Squars at advacd lvl. Rvw of th two-varat cas wth algbra OLS s th fudamtal tchqu for lar rgrssos. You should by ow b awar of th two-varat cas ad th usual drvatos. I ths txt w ar gog to rvw

More information

Learning from Data with Information Theoretic Criteria II

Learning from Data with Information Theoretic Criteria II Larg from Data th Iformato Thortc Crtra II Jos C. Prcp, Ph.D. Dstgushd Profssor of Elctrcal ad Bomdcal Egrg ad BllSouth Profssor Computatoal uroegrg Laborator Uvrst of Florda http://.cl.ufl.du prcp@cl.ufl.du

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

The R Package PK for Basic Pharmacokinetics

The R Package PK for Basic Pharmacokinetics Wolfsggr, h R Pacag PK St 6 h R Pacag PK for Basc Pharmacotcs Mart J. Wolfsggr Dpartmt of Bostatstcs, Baxtr AG, Va, Austra Addrss of th author: Mart J. Wolfsggr Dpartmt of Bostatstcs Baxtr AG Wagramr Straß

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY Colloquum Bomtrcum 44 04 09 7 COMPISON OF SEVEL ESS FO EQULIY OF COEFFICIENS IN QUDIC EGESSION MODELS UNDE HEEOSCEDSICIY Małgorzata Szczpa Dorota Domagała Dpartmt of ppld Mathmatcs ad Computr Scc Uvrsty

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information

A Measure of Inaccuracy between Two Fuzzy Sets

A Measure of Inaccuracy between Two Fuzzy Sets LGRN DEMY OF SENES YERNETS ND NFORMTON TEHNOLOGES Volum No 2 Sofa 20 Masur of accuracy btw Two Fuzzy Sts Rajkumar Vrma hu Dv Sharma Dpartmt of Mathmatcs Jayp sttut of formato Tchoy (Dmd vrsty) Noda (.P.)

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE 7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE Isttut of Ecoomc Forcastg Roxaa IDU Abstract I ths papr I aalyz th dffuso of a product ovato that was rctly mad avalabl for lcsd purchas wth a

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

New Schedule. Dec. 8 same same same Oct. 21. ^2 weeks ^1 week ^1 week. Pattern Recognition for Vision

New Schedule. Dec. 8 same same same Oct. 21. ^2 weeks ^1 week ^1 week. Pattern Recognition for Vision ew Schedule Dec. 8 same same same Oct. ^ weeks ^ week ^ week Fall 004 Patter Recogto for Vso 9.93 Patter Recogto for Vso Classfcato Berd Hesele Fall 004 Overvew Itroducto Lear Dscrmat Aalyss Support Vector

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

Estimation of Population Variance Using a Generalized Double Sampling Estimator

Estimation of Population Variance Using a Generalized Double Sampling Estimator r Laka Joural o Appl tatstcs Vol 5-3 stmato o Populato Varac Us a Gralz Doubl ampl stmator Push Msra * a R. Kara h Dpartmt o tatstcs D.A.V.P.G. Coll Dhrau- 8 Uttarakha Ia. Dpartmt o tatstcs Luckow Uvrst

More information

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N

MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY. e S(A)/ da, h N MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 9 4. Matrx tgrals Lt h N b th spac of Hrmta matrcs of sz N. Th r product o h N s gv by (A, B) = Tr(AB). I ths scto w wll cosdr tgrals of th form Z

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 St Ssts o Ordar Drtal Equatos Novbr 7 St Ssts o Ordar Drtal Equatos Larr Cartto Mcacal Er 5A Sar Er Aalss Novbr 7 Outl Mr Rsults Rvw last class Stablt o urcal solutos Stp sz varato or rror cotrol Multstp

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Power Spectrum Estimation of Stochastic Stationary Signals

Power Spectrum Estimation of Stochastic Stationary Signals ag of 6 or Spctru stato of Stochastc Statoary Sgas Lt s cosr a obsrvato of a stochastc procss (). Ay obsrvato s a ft rcor of th ra procss. Thrfor, ca say:

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach ISSN 168-8 Joural of Statstcs Volum 16, 9,. 1-11 Cosstcy of th Mamum Lklhood Estmator Logstc Rgrsso Modl: A Dffrt Aroach Abstract Mamuur Rashd 1 ad Nama Shfa hs artcl vstgats th cosstcy of mamum lklhood

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSES OF INER EQUIONS Itroducto Emto thods Dcomposto thods tr Ivrs d Dtrmt Errors, Rsdus d Codto Numr Itrto thods Icompt d Rdudt Systms Chptr Systms of r Equtos /. Itroducto h systm of r qutos s formd

More information

Chap 2: Reliability and Availability Models

Chap 2: Reliability and Availability Models Chap : lably ad valably Modls lably = prob{s s fully fucog [,]} Suppos from [,] m prod, w masur ou of N compos, of whch N : # of compos oprag corrcly a m N f : # of compos whch hav fald a m rlably of h

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek Etatg th Varac a Sulato Study of Balacd Two Stag Prdctor of Ralzd Rado Clutr Ma Ed Stak Itroducto W dcrb a pla to tat th varac copot a ulato tudy N ( µ µ W df th varac of th clutr paratr a ug th N ulatd

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS 3. INTRODUCTION Th Ivrs Expoal dsrbuo was roducd by Kllr ad Kamah (98) ad has b sudd ad dscussd as a lfm modl. If a radom varabl

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1 Th robablty of Ra's hyothss bg tru s ual to Yuyag Zhu Abstract Lt P b th st of all r ubrs P b th -th ( ) lt of P ascdg ordr of sz b ostv tgrs ad s a rutato of wth Th followg rsults ar gv ths ar: () Th

More information

Entropy Equation for a Control Volume

Entropy Equation for a Control Volume Fudamtals of Thrmodyamcs Chaptr 7 Etropy Equato for a Cotrol Volum Prof. Syoug Jog Thrmodyamcs I MEE2022-02 Thrmal Egrg Lab. 2 Q ds Srr T Q S2 S1 1 Q S S2 S1 Srr T t t T t S S s m 1 2 t S S s m tt S S

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

β-spline Estimation in a Semiparametric Regression Model with Nonlinear Time Series Errors

β-spline Estimation in a Semiparametric Regression Model with Nonlinear Time Series Errors Amrca Joural of Appld Sccs, (9): 343-349, 005 ISSN 546-939 005 Scc Publcatos β-spl Estmato a Smparamtrc Rgrsso Modl wth Nolar Tm Srs Errors Jhog You, ma Ch ad 3 Xa Zhou Dpartmt of ostatstcs, Uvrsty of

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data Itratoal Rfrd Joural of Egrg ad Scc (IRJES) ISSN (Ol) 319-183X, (Prt) 319-181 Volum, Issu 10 (Octobr 013), PP. 6-30 Tolrac Itrval for Expotatd Expotal Dstrbuto Basd o Groupd Data C. S. Kaad 1, D. T. Shr

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

ON RANKING OF ALTERNATIVES IN UNCERTAIN GROUP DECISION MAKING MODEL

ON RANKING OF ALTERNATIVES IN UNCERTAIN GROUP DECISION MAKING MODEL IJRRAS (3) Ju 22 www.arpapr.com/volum/voliu3/ijrras 3_5.pdf ON RANKING OF ALRNAIVS IN UNCRAIN GROUP DCISION MAKING MODL Chao Wag * & Lag L Gul Uvrty of chology Gul 544 Cha * mal: wagchao244@63.com llag6666@26.com

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information