β-spline Estimation in a Semiparametric Regression Model with Nonlinear Time Series Errors

Size: px
Start display at page:

Download "β-spline Estimation in a Semiparametric Regression Model with Nonlinear Time Series Errors"

Transcription

1 Amrca Joural of Appld Sccs, (9): , 005 ISSN Scc Publcatos β-spl Estmato a Smparamtrc Rgrsso Modl wth Nolar Tm Srs Errors Jhog You, ma Ch ad 3 Xa Zhou Dpartmt of ostatstcs, Uvrsty of North Carola at Chapl Hll Chapl Hll, NC , USA Dpartmt of Mathmatcs ad Statstcs, Uvrsty of Calgary Calgary, Albrta, Caada TN N4 3 Dpartmt of Appld Mathmatcs, Th Hog Kog Polytchc Uvrsty Hug Hom, Kowloo, Hog Kog, PR Cha Abstract: W study th stmato problms for a partly lar rgrsso modl wth a olar tm srs rror structur Th modl cossts of a paramtrc lar compot for th rgrsso coffcts ad a oparamtrc olar compot Th radom rrors ar uobsrvabl ad modld by a frstordr Markov blar procss asd o a -spl srs approxmato of th olar compot fucto, w propos a smparamtrc ordary last squars stmator ad a smparamtrc gralzd last squars stmator of th rgrsso coffcts, a last squars stmator of th autorgrsso paramtr for th rrors, ad a -spl srs stmator of th oparamtrc compot fucto Th asymptotc proprts of ths stmators ar vstgatd ad thr asymptotc dstrbutos ar drvd W also provd a cosstt stmator for th asymptotc covarac matrx of th smparamtrc gralzd last squars stmator of th rgrsso coffcts Our rsults ca b usd to mak asymptotcally ffct statstcal frcs I addto, a small smulato s coductd to valuat th prformac of th proposd stmators, whch shows that th smparamtrc gralzd last squars stmator of th rgrsso coffcts s mor ffct tha th smparamtrc ordary last squars stmator Ky words: Smparamtrc rgrsso modl, frst-ordr Markova blar procss, β-spls srs stmato, smparamtrc last squars stmators, asymptotc ormalty INTRODUCTION Partly lar rgrsso modls hav attractd a lot of rsarch trsts du to thr flxblty to allow both lar ad olar compots, as wll as srally corrlatd rrors, whch abls thm to bttr dscrb crasgly complx data from th ral world tha pur paramtrc or oparamtrc modls Cosdr a partly lar rgrsso modl of th followg form: y = x ' β + g( t ) + ε, =,,, () whr, y 's ar rsposs, x = (x,, x p )' ad t ar calld th dsg pots, β = ( β,, β p ) ' s a ukow paramtr vctor rprstg th lar compot, g( ) s a ukow fucto dfd o [0, ε 's ar ] for th olar compot, ad uobsrvabl radom rrors Th modl () has b xtsvly studd by may rsarchrs A brf rvw of rlvat ltratur s as follows Wh ε ar d Radom varabls [-5] usd varous stmato mthods, such as th krl mthod, spl mthod, srs stmato, local lar stmato, M-stmato ad two-stag stmato, to obta stmats of th ukow quatts () Thy also dscussd th asymptotc proprts of ths stmators Howvr, th dpdc assumpto for th rrors s ot always approprat applcatos, spcally for squtally collctd coomc data, whch oft xhbt vdt sral dpdc th rrors For xampl, th procss of fttg th rlatoshp btw tmpratur ad lctrcty usag [6] foud that th data ar srally corrlatd Wh ε s a autorgrssv (AR) srs [7] studd a stmator of th autocorrlato coffct [8] cosdrd th stmato problm for modl () wth lar tm srs rrors It s wll kow that ot all corrlatd rrors ca b fttd wll by lar tm srs rrors Thrfor, much attto has b shftd to olar tm srs modls th rct ltratur [9] ad th rfrcs thr Thr hav b may paprs cocrd wth th ordary lar modls wth olar tm srs rrors For xampl, udr th assumpto of radom coffct autorgrssv rrors [0] vstgatd th Corrspodg Author: Xa Zhou, Dpartmt of Appld Mathmatcs, Th Hog Kog Polytchc Uvrsty, Hug Hom, Kowloo, Hog Kog, PR Cha 343

2 lmt dstrbuto of th last squars stmators of th rgrsso ad auto rgrsso paramtrs Morovr [] usd th framwork of th formato matrx (IM) tst to dvlop a tst for th lar rgrsso modl wh th rrors ar from a autorgrssv codtoal htroscdastc (ARCH) procss [] Drvd th Wald ad Rao's Scor tst statstcs for tstg th ffcts of addtoal rgrsso paramtrs Thr has, howvr, b lttl work o th partal lar rgrsso modl wth olar tm srs rrors th ltratur xcpt [3] [3] vstgatd th stmatg problms of partal lar rgrsso modls wth radom coffct autorgrssv rrors I ths study, by approxmatg th oparamtrc compot wth -spl srs w study th problms of stmatg th paramtrc ad oparamtrc compots of th partal lar rgrsso modl () wth a olar tm srs rror structur Mor spcfcally, w cosdr a frst-ordr Markova blar rror procss ε, whch s a statoary soluto of : ε = ( φ + θ ) ε +, =,,, () whr, { } s a zro ma procss cosstg of d radom varabls wth ft scod momts σ Obvously, th modl () cluds th usual AR () structur [4] dscussd th stmato ad tst problms of th ordary lar rgrsso modl wth rror structur () Modl () has b xtsvly dscussd th cotrol thory ltratur [5,6] [7] appld modl () to study th wll-kow Wolfr suspot umbrs for th yars from 700 to 955 ad a ssmc rcord obtad from a udrgroud uclar xploso that was carrd out th USA o Octobr 9th, 966 Rctly, modl () has b xtdd to th cas of spac tm [8,9] Mor rfrcs about th thortcal rsults, applcatos ad th xtsos of th modl () ca b foud th moograph of [9] asd o th approxmato of g( ) by a -spl srs ad last squars stmato, w costruct th followg stmators for modl () wth rror structur (): Smparamtrc ordary last squars stmator (SOLSE) of β, Last squars stmator of th auto rgrsso paramtr φ, Smparamtrc gralzd last squars stmators (SLSE) of β, v Estmator of th asymptotc covarac matrx of th SLSE of β, ad v -spl srs stmator of th oparamtrc compot fucto g( ) Am J Appl Sc, (9): , W wll furthr vstgat th asymptotc proprts of ths stmators ad drv thr lmtg dstrbutos I addto, a small smulato s coductd to valuat th prformac of th stmators Estmators: Throughout ths study w wll assum that th dsg pots x ad t ar fxd, ad thy ar rlatd va: x = h ( t ) + u, =,, ; s =,, p () s s s Th rasoablss of ths rlato ca b foud [] I addto, suppos that th vctor (,,)' s ot th spac spad by th colum vctors of X = (x,, x )', whch surs th dtfablty of modl () accordg to [] It s also assumd that th squc of dsgs t forms a asymptotcally rgular squc [0] th ss that: t / max p( t) dt o( ), = 0 whr, p( ) dots a postv dsty fucto o th trval [0,] x, t, y ; =,, b a th modlf obsrvd Lt { } data from modl (), X = ( x j ) ad p y = ( y,, y )' Dot by S, j th class of spl fuctos of dgr ν ad k() kots It s wll kow [] that S, j has a bass cosstg of k() + ν ormalzd -spls {, j ( ) : j =,, k( ) + ν } whr ( ), ( ) has support k j ν + + ν +, ad ( ) α k j [( j ), ( j ) ] approxmatd by a lar combato ( ), ( ) R k + g ca b ' ( ) of th bass, whr α ν ad, j ( ) = (, ( ),,, + ν ( ))' For + ν p α R, β R, ( β, α ) = ( ' β α ' ( )) = S y x t ( β, α ) gv by β Y X β ( ' ) ' s mmzd at = X M X X M Y ad k ( ) α = ( ' ) '( ), whr ( ( t ),, ( t ))',,, +ν k( ) k( ) M = = P ad k ( ) k ( ) P = ( ' ) ' Ths β s calld th smparamtrc ordary last squars stmator (SOLSE) of β Wh th rrors ar corrlatd, th SOLSE β s ot asymptotcally ffct as t gors th corrlato Hc w propos a smparamtrc gralzd last squar stmator (SLSE) of β Sc for a gv φ :

3 Am J Appl Sc, (9): , 005 φ σ ( ) Cov( εε ') = Ω( φ) φ ε = ( ε,, ε )', w df a SLSE as whr, follows: ɶ β = ( X ' M Ω ( φ) M X ) k( ) Ω φ k( ) X ' M ( ) M Y Whr: φ φ + φ φ ( ) φ + φ φ Ω φ = 0 0 φ + φ φ φ Rmark : y Lmma 3 th Appdx, ad φ k( ) X ' M () k ( ) X ' M Ω ( ) M X ar postv dft wh s larg Thrfor, wthout loss of gralty, w ca assum that th vrss of ths two matrcs xst Wh φ s ukow, th X ɶ β () s ot drctly usabl, ad w d a sutabl stmator, say Ω φ by Ω ( ) φ, of φ Th w ca rplac ( ) () ad obta a stmat of β that ca b computd from th data Notg that ε s uobsrvabl, a rasoabl stmator of φ s th last squars stmator : φ = ε ε ε = = basd o th stmatd rsduals: ε = y x ' β α ' ( t ), =,, (3) φ Cosqutly, w df our SLSE of β, dotd by β, as: β = ( X ' M Ω ( φ) M X) X ' M ( ) M Y Ω φ k( ) (4) g ( t) = ( ' ) '( Y X β ) (5) k( ) k( ) Furthrmor, a stmator of th asymptotc covarac matrx of β s gv by Σ, whr Σ = σ ( X ' M Ω ( φ ) M X ) ad: ε ε = y x t = σ ( ' β α ' ( )) (6) Larg sampl proprts: W bg wth th followg assumptos rqurd to drv th ma rsults, whch ar qut mld ad ca b asly satsfd (Rmark blow) Assumpto : For =,, ad j =,, p, u j satsfy: lm = =, for = 0, ±, ±, ;, =,, h ukuk + h, j bhj h j p k = whr, th matrx = ( b oj ) s osgular, ad: p ( ) / max Au O [tr(a'a] foraymatrx A whr, = = (3) Euclda orm u = ( u,, u )' ad dots th Assumpto : Th fuctos g( ) ad h ( ),,h p( ) ar ν tms cotuously dffrtabl o th trval [0,], whr ν > Assumpto 3: Th coffcts θ ad φ, ad th varac φ + θ σ < σ of { } modl () satsfy φ < ad Rmark : Th abov u j bhav lk zro ma, ucorrlatd radom varabls ad h j (t ) ar th rgrsso of x j o t Spcfcally, suppos that th dsg pots (x, t ) ar d Radom varabls, ad lt h j (t ) = E[x j t ] ad u j = x j h j (t ) wth E[u u '] = Th by th law of larg umbrs, (3) holds wth probablty Morovr, accordg to [] (3) holds wh u j bhav lk zro ma, ucorrlatd radom varabls Assumpto s mld ad holds for most commoly usd fuctos, such as th polyomal ad trgoomtrc fuctos Th frst thorm blow shows th asymptotc ormalty of th SOLSE β asd o ths SLSE β, w ca costruct th followg stmator of th oparamtrc compot fucto g( ) : Thorm 3: Suppos that Assumptos to 3 hold ν/(ν+ ) ν/(ν+ ) ad c k() c whr c ad c ar postv costats Th: 345

4 ( φ ) σ ( β β) D N0, as φ whr, = U Ω φ U provdd t s postv lm ' ( ) dft, U = (u,, u ), s dfd Assumpto ad dots covrgc dstrbuto D Th asymptotc ormalty of φ s stablshd th scod thorm blow Thorm 3: Udr th codtos of Thorm 3, f, 4 addto, E [ ε ] <, th: σ [ ] [ ] E ε + θ σ E ε ( φ φ) D N0, as ( E[ ε ]) Th xt thorm shows that th SLSE ɶ β dfd () ad ts fasbl vrso β (4) hav th sam lmtg ormal dstrbuto Thorm 33: Udr th codtos of Thorm 3 w / hav ( β β ) = ( ɶ β β ) + O ( ) ad th p commo lmtg dstrbuto of β ad by: ( φ ) σ ( β β ) D N0, as φ Am J Appl Sc, (9): , 005 ɶ β s gv whr, = lm U ' Ω ( φ) U provdd t s postv dft Sc, accordg to Thorms 3 ad 33, β th asymptotc covarac matrxt tha β trms of asymptotc covarac matrx Lt ν ( ) dot th ν th roull polyomal, whch s rcursvly dfd by: ( t) =, ( t) = ( z) dz + b =,,, 0 0 whr, = t 0 0 t b ( z) dzdt s th th roull umbr [3] Th followg thorm stablshs th asymptotc ormalty of th -spl srs stmator g ( t) of g (t) Thorm 34: Udr th codtos of Thorm 3, for ay t ( /( k( ) + ν ),( + ) /( k( ) + ν )] : s g ( t) ( g( t) + b( t)) N(0,) as, { } D 346 whr, s = Var ( ' ) ' ε, ( ν ) ν b( t) = g ( t) ν ( tk( ) ) /[ ν! k( ) ], ε = ( ε,, ε )' For frc about β basd o th asymptotc dstrbuto of β, a stmator of ts asymptotc covarac matrx s dd Lt Σ b gv by (6)- -(7) Th w hav th followg rsult Thorm 35: Udr th codtos of Thorm 3 w hav : ( φ ) σ φ Σ = o () p From th rsults gv Thorms 33 ad 35, t follows that: ( β β )' Σ ( β β ) χ as D p p,α Thrfor, th st { β : ( β β ) ' Σ ( β β ) χ } costtuts a largsampl 00( α )% cofdc llpsod for β For small sampl szs F p ca b usd to substtut χ p, α p, p, α / Rmark 3: y applyg th tsor-product -spl tchqu [4] th abov rsults ca b asly xtdd to th cas of multvarat rgrssor t A smulato study: Ths prsts a smulato study to valuat th ft sampl prformac of th stmators Th obsrvatos ar gratd from: y = 35x + cos( πt ) + ε, ε = ( φ + 0 ) ε +, =,,, whr, t = ( 05) /, x = 5t + 05η ad { } ar d N (0,) For a rag of valus of φ, w grat 0,000 sampls of sz 00 from th abov modl (th x j valus ar gratd oc for a fxd φ valu) ad stmat φ, β ad g( ) for ach sampl W hr us th uform kots Accordg to [4] uform kots ar usually suffct wh th fucto g( ) dos ot xhbt dramatc chags ts drvatvs Thus, w just d to dtrm th umbr of kots to us W us th mthod [4] to do so ass ad sampl varacs (Var) of th smulatd stmats ar gv ɶ ar Tabls ad, whr ( ) g t, g ( t ) ad g ( t) basd o β, β ad ɶ β rspctvly

5 Tabl : Smulatd bass ad varacs of th stmators for φ ad β Am J Appl Sc, (9): , 005 φ as( φ ) Var( φ ) as( β ) Var( β ) as( β ) Var( β ) as( Tabl : Smulatd bass ad varacs of th stmators for g( ) ɶ β ) Var( ɶ β ) T g(t) as( g ) Var( g ) as( g ) Var( g ) as( (30-05)/ (60-05)/ (90-05)/ (0-05)/ (50-05)/ (70-05)/ gɶ ) Var( gɶ ) From Tabl w ca s that all cass th smparamtrc gralzd last squars stmator β has smallr bassmparamtrcs tha th smparamtrc ordary last squars stmator β Th advatag of β ovr β s mor sgfcat wh φ s larg (hgh sral corrlato), as o would xpct sc β taks th sral corrlato to accout whras β dos ot Morovr, as φ crass, th bas ad varac of β dcras, but ths s ot th cas for β I addto, th prformac of β s clos to that of th φ-kow dmostratd that th smparamtrc gralzd last squars stmator s mor ffct tha th smparamtrc ordary last squars stmator Appdx: Proofs of Thorms: I ordr to prov th thorms prstd arlr w frst troduc svral lmmas Lmma : Suppos that a fucto f ( ) satsfs Assumpto Th w hav: t [0,] k( ) k( ) k( ) k( ) sup f ( t) ( ' ) ' f = ν O( k( )) + O( k( ) ) smparamtrc gralzd last squars stmator β across th valus of φ Tabl also shows that th stmator φ of φ s adquat From Tabl w ca s that th oparamtrc stmator g basd o th smparamtrc gralzd last squars stmator β s bttr tha th oparamtrc stmator g basd o th smparamtrc ordary last squars stmator β trms of bas ad varac CONCLUSION I ths artcl w hav studd th stmato problm of a partly lar rgrsso modl wth blar tm srs rrors Usg -spls to approxmat th oparamtrc compot, w hav costructd th smparamtrc ordary ad gralzd last squars stmators of th paramtrc compot, th last squars stmator of th autorgrssv paramtr, ad th -spl srs stmator of th oparamtrc compot W hav also drvd th asymptotc ormalty for ths stmats I both thory ad smulato, w hav whr f = (f(t ),, f(t ))' Lmma : For th bass of -spls, ν w hav: +ν, for all t; ad = ' All gvalus of c ad c 0 < c < c < Proof: Applyg Lmmas ad, th proof of Lmma 3 s smpl W hr omt th dtal 347 S ar btw for som costats Th proofs of Lmmas ad ca b foud [5] Lmma 3: Suppos that Assumptos ad hold Th as, X ' M X ad k ( ) ' ( φ) k( ) X M Ω M X k ( ) k ( )

6 Am J Appl Sc, (9): , 005 Cosdr th ormalzd wghtd sum of radom varabls { ε } dfd (), amly, / a aε = = costats It has th followg asymptotc proprty, whr {a } s a squc of ral Lmma 4: If h a a α for h = ±, ±,, + h h k= boudd, ad Assumpto 3 holds, th: / ε D σ = = whr a a N(0, ) as, σ α γ ( h) h= h h ad γ ( h) σ φ ( φ θ σ ) autocovarac fucto of { } {a } s = s th ε Cosqutly: ( β β ) = ( X ' M X ) X ' M ε + ( X ' M X ) X ' M k ( ) k ( ) k ( ) k ( ) g = U U U ε + o ( ' ) ' p() Th cocluso of Thorm 3 th follows from Lmma 3 ad Assumpto Proof of Thorm 3: It s asy to s that th followg quato holds: ε ε ε ε = ( ε ε )( ε ε ) + = = = ( ε ε ) ε + ( ε ε ) ε = = (A) Accordg to th dfto of ε (3), w hav: Proof: Accordg to th proprty of { ε } ad Lmmdffcult [6], t s ot dffculty to complt th proof W ar ow rady to prov th ma rsults Proof of Thorm 3: y () t s asy to s that ' ' ' u M ε = u ε u P ε + h ' ( I P ) ε, =,,, whr h = ( h ( t ),, hp ( t ))' Lt c0 = σ ( φ θ σ ) Sc ' ' ' 0 0 max Var( u P ε) = c u P Ω( φ) P u c λ [ Ω ( φ)] u P u = O( k( ) + ν ) = o( ), whr, λ max ( ) matrx, w hav dots th maxmum gvalu of a ' / p u P ε = o ( ) Morovr, by Lmma, thr xsts a ral vctor η such that: k( ) max h ' η = O( k( )) + O( k( ) ν ) Ths mpls: ' ' ' ε = ( ) 0 Ω φ ( ) ( ) 0λmax Ω φ k k k k ( ) Var( h M ) c h M ( ) M h c [ ( )] h M h ν = O( k( ) ) + O( k( ) ) ' / p Hc h M ε = o ( ) It follows that / = ε + p X ' M ε U ' o ( ) Nxt, by Lmma, thr xsts a ral vctor π such that: max g( t ) '( t ) π = O( k( )) + O( k( ) ν ) Thrfor ' ν k ( ) x M g = O( k( ) ) + O( k( ) ) for g = (g(t ),, g(t ))', whr x = ( x,, x )' 348 ( ε ε ) ε = ( β β )' x ε = = = = ( β β )' X ' ( ' ) ( t ) ε + [ g( t ) '( t )( ' ) ( t ) g ] ε = ε ' ( ' ) ( t ) ε = I I + I I, say 3 4 (A) y th root- cosstcy of β ad th proof of Thorm 3, w hav I = O p () Nxt, lt ( ( t ),, ( t ))', = (,, )' = ε ε ε, ad Ω ( φ ) = Var ( ε ) Th th Cauchy-Schwarz qualty gvs I ( ' ) ' ( )' X ' P X ( ) I I, say ' ε k( ) k( ) ε + β β β β = + Sc E[ I] = O( k( )), w hav I = O p ( k( )) y Thorm 3, t s asy to s I = O p () So / I = op ( ) Th Lmma ylds E[ I ] O( k( ) ν = ) + O( k( ) ) so 3 / ν / that I3 = O( k( ) ) + O( k( )) Th proof of I4 = Op ( k( )) s smlar to that for I Thrfor, by (A), th mddl trm th rght had sd of (A) s o p ( / ), ad smlar argumts show that th othr two trms ar o p ( / ) as wll Cosqutly, / ε ε = εε + p( ) = = hav / ε = ε + p( ) = = o y th sam raso, w o It follows that: ( φ φ) = ε εε φ + op () = =

7 Combg ths wth th rsult of [7], w complt th proof Proof of Thorm 33: y th dfto of β, Lmmas to 3 ad Thorm 3 w hav: β β U φ U U φ ε o ( ) = ( ' Ω ( ) ) ' Ω ( ) + p() Morovr, smlar to th proof of Thorm 43 [0], w hav: D ( U ' Ω ( φ) U ) U ' Ω ( φ) ε ( φ ) σ N0, as φ Thus th proof s complt Proof of Thorm 34: Combg th root- cosstcy of β wth Thorm [8] w ca asly complt th proof Proof of Thorm 35: Ths thorm follows from Lmma ad th proofs of Thorms 3 33 REFERENCES Ch, H, 988 Covrgc rats for paramtrc compots a partly lar modl A Statst, 6: Spckma, P, 988 Krl smoothg partal lar modls J Roy Statst Soc Sr, 50: Ch, H ad J Shau, 994 Data-drv ffct stmato for a partal lar modl lar modl A Statst, : Doald, ad K Nwy, 994 Srs stmato of smlar modls J Multvarat Aal, 50: Hamlto, A ad KTruog, 997 Local lar stmato partly lar modls J Multvarat Aal, 60:-9 6 Egl, RF, W J ragr, J Rc ad A Wss, 986 Smparamtrc stmats of th rlato btw wathr ad lctrcty sals J Amr Statst Assoc, 80: Schck, A, 994 Estmato of th autocorrlato coffct th prsc of a rgrsso trd Statst Probab Ltt, : ao, JT, 995 Asymptotc thory for partly lar modls Comm Statst Thory Mthods, A4 8: Tog, H, 990 Nolar Tm Srs Oxford Uvrsty Prss, Oxford 0 Hwag, SY ad I V asawa, 993 Paramtr stmato a rgrsso modl wth radom coffct autorgrssv rrors J Statst Pla Ifr, 36: Am J Appl Sc, (9): , ra, AK ad X L Zuo, 996 Spcfcato tst for a lar rgrsso modl wth ARCH procss J Statst Pla Ifr, 50: Dutta, H, 999 Larg sampl tsts for a rgrsso modl wth autorgrssv codtoal htroscdastc rrors Comm Statst Thory Mthods, A8: You, JH ad Ch, 00 Paramtr stmato partally lar rgrsso modls wth radom coffct autorgrssv rrors Comm Statst Thory Mthods, 3: Hwag, SY, 995 A study o a rgrsso modl wth olar tm srs rrors Kora J Appld Stat, 9: Rubbrt, A, A Isdor ad P d'allsadro, 97 Thory of lar Dyamcal Systms rl: Sprgr-Vrlag 6 Mohlr, RR, 973 lar Cotrol Procsss Nw York: Acadmc Prss 7 Rao, TS, 98 O th thory of blar tm srs modls J Roy Statst Soc Sr, 43: Da, Y ad L llard, 998 A spac tm blar modl ad ts dtfcato J Tm Sr Aal, 9: Da, Y ad L llard, 003 Maxmum lklhood stmato spac tm blar modls J Tm Sr Aal, 4: Sacks, J ad D Ylvsackr, 970 Dsg for rgrsso problms wth corrlatd rrors III A Math Statst, 4: d oor, C, 978 A practcal ud to Spls Sprgr-Vrlag, Nw York Moyd, R A ad P J Dggl, 994 Rats of covrgc sm-paramtrc modlg of logtudal data Austra J Statst, 36: arrow, DL ad PW Smth, 979 Effct L approxmato by spls Numr Math, 33: H, X ad P D Sh, 996 varat tsorproduct -spl a partly lar modl J Multvarat Aal, 58: urma, P, 99 Rgrsso fucto stmato from dpdt obsrvatos J Multvarat Aal, 36: Fullr, WA, 996 Itroducto to statstcal tm srs Wly, Nw York 7 Fg, PD ad RLTwd, 985 Radom coffct autorgrssv procsss: A Markov cha aalyss of statoarty ad ftss of momts J Tm Sr Aal, 6: Zhou, S, X Sh ad D A Wolf, 998 Local asymptotc for rgrsso spls ad cofdc rgos Aal Statst, 6:

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Unbalanced Panel Data Models

Unbalanced Panel Data Models Ubalacd Pal Data odls Chaptr 9 from Baltag: Ecoomtrc Aalyss of Pal Data 5 by Adrás alascs 4448 troducto balacd or complt pals: a pal data st whr data/obsrvatos ar avalabl for all crosssctoal uts th tr

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data saqartvlos mcrbata rovul akadms moamb, t 9, #2, 2015 BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol 9, o 2, 2015 Mathmatcs O Estmato of Ukow Paramtrs of Epotal- Logarthmc Dstrbuto by Csord

More information

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution Itratoal Joural of Statstcs ad Applcatos, (3): 35-3 DOI:.593/j.statstcs.3. Baysa Shrkag Estmator for th Scal Paramtr of Expotal Dstrbuto udr Impropr Pror Dstrbuto Abbas Najm Salma *, Rada Al Sharf Dpartmt

More information

Lecture 1: Empirical economic relations

Lecture 1: Empirical economic relations Ecoomcs 53 Lctur : Emprcal coomc rlatos What s coomtrcs? Ecoomtrcs s masurmt of coomc rlatos. W d to kow What s a coomc rlato? How do w masur such a rlato? Dfto: A coomc rlato s a rlato btw coomc varabls.

More information

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty (c Pogsa Porchawssul, Faculty of Ecoomcs, Chulalogor Uvrsty 3 Bary Choc LPM logt logstc rgrso probt Multpl Choc Multomal Logt (c Pogsa Porchawssul,

More information

Estimation of the Present Values of Life Annuities for the Different Actuarial Models

Estimation of the Present Values of Life Annuities for the Different Actuarial Models h Scod Itratoal Symposum o Stochastc Modls Rlablty Egrg, Lf Scc ad Opratos Maagmt Estmato of th Prst Valus of Lf Auts for th Dffrt Actuaral Modls Gady M Koshk, Oaa V Guba omsk Stat Uvrsty Dpartmt of Appld

More information

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Suzan Mahmoud Mohammed Faculty of science, Helwan University Europa Joural of Statstcs ad Probablty Vol.3, No., pp.4-37, Ju 015 Publshd by Europa Ctr for Rsarch Trag ad Dvlopmt UK (www.ajourals.org ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN WEIBULL DISTRIBUTION

More information

Estimation Theory. Chapter 4

Estimation Theory. Chapter 4 Estmato ory aptr 4 LIEAR MOELS W - I matrx form Estmat slop B ad trcpt A,,.. - WG W B A l fttg Rcall W W W B A W ~ calld vctor I gral, ormal or Gaussa ata obsrvato paramtr Ma, ovarac KOW p matrx to b stmatd,

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY

A COMPARISON OF SEVERAL TESTS FOR EQUALITY OF COEFFICIENTS IN QUADRATIC REGRESSION MODELS UNDER HETEROSCEDASTICITY Colloquum Bomtrcum 44 04 09 7 COMPISON OF SEVEL ESS FO EQULIY OF COEFFICIENS IN QUDIC EGESSION MODELS UNDE HEEOSCEDSICIY Małgorzata Szczpa Dorota Domagała Dpartmt of ppld Mathmatcs ad Computr Scc Uvrsty

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Ordinary Least Squares at advanced level

Ordinary Least Squares at advanced level Ordary Last Squars at advacd lvl. Rvw of th two-varat cas wth algbra OLS s th fudamtal tchqu for lar rgrssos. You should by ow b awar of th two-varat cas ad th usual drvatos. I ths txt w ar gog to rvw

More information

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data

Tolerance Interval for Exponentiated Exponential Distribution Based on Grouped Data Itratoal Rfrd Joural of Egrg ad Scc (IRJES) ISSN (Ol) 319-183X, (Prt) 319-181 Volum, Issu 10 (Octobr 013), PP. 6-30 Tolrac Itrval for Expotatd Expotal Dstrbuto Basd o Groupd Data C. S. Kaad 1, D. T. Shr

More information

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu

More information

Almost all Cayley Graphs Are Hamiltonian

Almost all Cayley Graphs Are Hamiltonian Acta Mathmatca Sca, Nw Srs 199, Vol1, No, pp 151 155 Almost all Cayly Graphs Ar Hamltoa Mg Jxag & Huag Qogxag Abstract It has b cocturd that thr s a hamltoa cycl vry ft coctd Cayly graph I spt of th dffculty

More information

A Stochastic Approximation Iterative Least Squares Estimation Procedure

A Stochastic Approximation Iterative Least Squares Estimation Procedure Joural of Al Azhar Uvrst-Gaza Natural Sccs, 00, : 35-54 A Stochastc Appromato Itratv Last Squars Estmato Procdur Shahaz Ezald Abu- Qamar Dpartmt of Appld Statstcs Facult of Ecoomcs ad Admstrato Sccs Al-Azhar

More information

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space. Rpatd Trals: As w hav lood at t, th thory of probablty dals wth outcoms of sgl xprmts. I th applcatos o s usually trstd two or mor xprmts or rpatd prformac or th sam xprmt. I ordr to aalyz such problms

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach ISSN 168-8 Joural of Statstcs Volum 16, 9,. 1-11 Cosstcy of th Mamum Lklhood Estmator Logstc Rgrsso Modl: A Dffrt Aroach Abstract Mamuur Rashd 1 ad Nama Shfa hs artcl vstgats th cosstcy of mamum lklhood

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D {... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data pots

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Bayesian Test for Lifetime Performance Index of Ailamujia Distribution Under Squared Error Loss Function

Bayesian Test for Lifetime Performance Index of Ailamujia Distribution Under Squared Error Loss Function Pur ad Appld Mathmatcs Joural 6; 5(6): 8-85 http://www.sccpublshggroup.com/j/pamj do:.648/j.pamj.656. ISSN: 36-979 (Prt); ISSN: 36-98 (Ol) Baysa Tst for ftm Prformac Idx of Alamuja Dstrbuto Udr Squard

More information

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since 56 Chag Ma J Sc 0; () Chag Ma J Sc 0; () : 56-6 http://pgscccmuacth/joural/ Cotrbutd Papr Th Padova Sucs Ft Groups Sat Taș* ad Erdal Karaduma Dpartmt of Mathmatcs, Faculty of Scc, Atatürk Uvrsty, 50 Erzurum,

More information

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1) Math Trcks r! Combato - umbr o was to group r o objcts, ordr ot mportat r! r! ar 0 a r a s costat, 0 < r < k k! k 0 EX E[XX-] + EX Basc Probablt 0 or d Pr[X > ] - Pr[X ] Pr[ X ] Pr[X ] - Pr[X ] Proprts

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Different types of Domination in Intuitionistic Fuzzy Graph

Different types of Domination in Intuitionistic Fuzzy Graph Aals of Pur ad Appld Mathmatcs Vol, No, 07, 87-0 ISSN: 79-087X P, 79-0888ol Publshd o July 07 wwwrsarchmathscorg DOI: http://dxdoorg/057/apama Aals of Dffrt typs of Domato Itutostc Fuzzy Graph MGaruambga,

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

Odd Generalized Exponential Flexible Weibull Extension Distribution

Odd Generalized Exponential Flexible Weibull Extension Distribution Odd Gralzd Epotal Flbl Wbull Etso Dstrbuto Abdlfattah Mustafa Mathmatcs Dpartmt Faculty of Scc Masoura Uvrsty Masoura Egypt abdlfatah mustafa@yahoo.com Bh S. El-Dsouy Mathmatcs Dpartmt Faculty of Scc Masoura

More information

The R Package PK for Basic Pharmacokinetics

The R Package PK for Basic Pharmacokinetics Wolfsggr, h R Pacag PK St 6 h R Pacag PK for Basc Pharmacotcs Mart J. Wolfsggr Dpartmt of Bostatstcs, Baxtr AG, Va, Austra Addrss of th author: Mart J. Wolfsggr Dpartmt of Bostatstcs Baxtr AG Wagramr Straß

More information

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES

ASYMPTOTIC AND TOLERANCE 2D-MODELLING IN ELASTODYNAMICS OF CERTAIN THIN-WALLED STRUCTURES AYMPTOTIC AD TOLERACE D-MODELLIG I ELATODYAMIC OF CERTAI THI-WALLED TRUCTURE B. MICHALAK Cz. WOŹIAK Dpartmt of tructural Mchacs Lodz Uvrsty of Tchology Al. Poltrchk 6 90-94 Łódź Polad Th objct of aalyss

More information

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4. Coutg th compostos of a postv tgr usg Gratg Fuctos Start wth,... - Whr, for ampl, th co-ff of s, for o summad composto of aml,. To obta umbr of compostos of, w d th co-ff of (...) ( ) ( ) Hr for stac w

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Numerical Method: Finite difference scheme

Numerical Method: Finite difference scheme Numrcal Mthod: Ft dffrc schm Taylor s srs f(x 3 f(x f '(x f ''(x f '''(x...(1! 3! f(x 3 f(x f '(x f ''(x f '''(x...(! 3! whr > 0 from (1, f(x f(x f '(x R Droppg R, f(x f(x f '(x Forward dffrcg O ( x from

More information

A Measure of Inaccuracy between Two Fuzzy Sets

A Measure of Inaccuracy between Two Fuzzy Sets LGRN DEMY OF SENES YERNETS ND NFORMTON TEHNOLOGES Volum No 2 Sofa 20 Masur of accuracy btw Two Fuzzy Sts Rajkumar Vrma hu Dv Sharma Dpartmt of Mathmatcs Jayp sttut of formato Tchoy (Dmd vrsty) Noda (.P.)

More information

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto   {t-asano, School of Iformato Scc Chal Capacty 009 - Cours - Iformato Thory - Ttsuo Asao ad Tad matsumoto Emal: {t-asao matumoto}@jast.ac.jp Japa Advacd Isttut of Scc ad Tchology Asahda - Nom Ishkawa 93-9 Japa http://www.jast.ac.jp

More information

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays

Group Consensus of Second-Order Multi-agent Networks with Multiple Time Delays Itratoal Cofrc o Appld Mathmatcs, Smulato ad Modllg (AMSM 6) Group Cossus of Scod-Ordr Mult-agt Ntworks wth Multpl Tm Dlays Laghao J* ad Xyu Zhao Chogqg Ky Laboratory of Computatoal Itllgc, Chogqg Uvrsty

More information

On the Beta Mekaham Distribution and Its Applications. Chukwu A. U., Ogunde A. A. *

On the Beta Mekaham Distribution and Its Applications. Chukwu A. U., Ogunde A. A. * Amrca Joural of Mathmatcs ad Statstcs 25, 5(3: 37-43 DOI:.5923/j.ajms.2553.5 O th Bta Mkaham Dstruto ad Its Applcatos Chukwu A. U., Ogud A. A. * Dpartmt of Statstcs, Uvrsty Of Iada, Dpartmt of Mathmatcs

More information

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations

Three-Dimensional Theory of Nonlinear-Elastic. Bodies Stability under Finite Deformations Appld Mathmatcal Sccs ol. 9 5 o. 43 75-73 HKAR Ltd www.m-hkar.com http://dx.do.org/.988/ams.5.567 Thr-Dmsoal Thory of Nolar-Elastc Bods Stablty udr Ft Dformatos Yu.. Dmtrko Computatoal Mathmatcs ad Mathmatcal

More information

Second Handout: The Measurement of Income Inequality: Basic Concepts

Second Handout: The Measurement of Income Inequality: Basic Concepts Scod Hadout: Th Masurmt of Icom Iqualty: Basc Cocpts O th ormatv approach to qualty masurmt ad th cocpt of "qually dstrbutd quvalt lvl of com" Suppos that that thr ar oly two dvduals socty, Rachl ad Mart

More information

i j i i i = S i 1 Y Y i F i ..., X in

i j i i i = S i 1 Y Y i F i ..., X in R ASHI :43-48 (06 ESIA IO OF HE SALLES LOCA IO OF WO EGAIVE EXPOEIAL POPULAIOS Partha Pal ad Uttam Badyopadhyay Dpartmt of Statsts aulaa Azad Collg Kolkata Dpartmt of Statsts Uvrsty of Calutt a ABSRAC

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Chapter 6. pn-junction diode: I-V characteristics

Chapter 6. pn-junction diode: I-V characteristics Chatr 6. -jucto dod: -V charactrstcs Tocs: stady stat rsos of th jucto dod udr ald d.c. voltag. ucto udr bas qualtatv dscusso dal dod quato Dvatos from th dal dod Charg-cotrol aroach Prof. Yo-S M Elctroc

More information

Note on the Computation of Sample Size for Ratio Sampling

Note on the Computation of Sample Size for Ratio Sampling Not o th Computato of Sampl Sz for ato Samplg alr LMa, Ph.D., PF Forst sourcs Maagmt Uvrst of B.C. acouvr, BC, CANADA Sptmbr, 999 Backgroud ato samplg s commol usd to rduc cofdc trvals for a varabl of

More information

BAYESIAN ANALYSIS OF THE SIMPLE LINEAR REGRESSION WITH MEASUREMENT ERRORS

BAYESIAN ANALYSIS OF THE SIMPLE LINEAR REGRESSION WITH MEASUREMENT ERRORS BAYESIAN ANALYSIS OF THE SIMPLE LINEAR REGRESSION WITH MEASUREMENT ERRORS Marta Yuk BABA Frado Atoo MOALA ABSTRACT: Usually th classcal approach to mak frc lar rgrsso modl assums that th dpdt varabl dos

More information

More Statistics tutorial at 1. Introduction to mathematical Statistics

More Statistics tutorial at   1. Introduction to mathematical Statistics Mor Sttstcs tutorl t wwwdumblttldoctorcom Itroducto to mthmtcl Sttstcs Fl Soluto A Gllup survy portrys US trprurs s " th mvrcks, drmrs, d lors whos rough dgs d ucompromsg d to do t thr ow wy st thm shrp

More information

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k. Modr Smcoductor Dvcs for Itgratd rcuts haptr. lctros ad Hols Smcoductors or a bad ctrd at k=0, th -k rlatoshp ar th mmum s usually parabolc: m = k * m* d / dk d / dk gatv gatv ffctv mass Wdr small d /

More information

signal amplification; design of digital logic; memory circuits

signal amplification; design of digital logic; memory circuits hatr Th lctroc dvc that s caabl of currt ad voltag amlfcato, or ga, cojucto wth othr crcut lmts, s th trasstor, whch s a thr-trmal dvc. Th dvlomt of th slco trasstor by Bard, Bratta, ad chockly at Bll

More information

Estimation of Population Variance Using a Generalized Double Sampling Estimator

Estimation of Population Variance Using a Generalized Double Sampling Estimator r Laka Joural o Appl tatstcs Vol 5-3 stmato o Populato Varac Us a Gralz Doubl ampl stmator Push Msra * a R. Kara h Dpartmt o tatstcs D.A.V.P.G. Coll Dhrau- 8 Uttarakha Ia. Dpartmt o tatstcs Luckow Uvrst

More information

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1 Th robablty of Ra's hyothss bg tru s ual to Yuyag Zhu Abstract Lt P b th st of all r ubrs P b th -th ( ) lt of P ascdg ordr of sz b ostv tgrs ad s a rutato of wth Th followg rsults ar gv ths ar: () Th

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

On Approximation Lower Bounds for TSP with Bounded Metrics

On Approximation Lower Bounds for TSP with Bounded Metrics O Approxmato Lowr Bouds for TSP wth Boudd Mtrcs Mark Karpsk Rchard Schmd Abstract W dvlop a w mthod for provg xplct approxmato lowr bouds for TSP problms wth boudd mtrcs mprovg o th bst up to ow kow bouds.

More information

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 -

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 - Statstcal Thrmodyamcs sstal Cocpts (Boltzma Populato, Partto Fuctos, tropy, thalpy, Fr rgy) - lctur 5 - uatum mchacs of atoms ad molculs STATISTICAL MCHANICS ulbrum Proprts: Thrmodyamcs MACROSCOPIC Proprts

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek Etatg th Varac a Sulato Study of Balacd Two Stag Prdctor of Ralzd Rado Clutr Ma Ed Stak Itroducto W dcrb a pla to tat th varac copot a ulato tudy N ( µ µ W df th varac of th clutr paratr a ug th N ulatd

More information

Round-Off Noise of Multiplicative FIR Filters Implemented on an FPGA Platform

Round-Off Noise of Multiplicative FIR Filters Implemented on an FPGA Platform Appl. Sc. 4, 4, 99-7; do:.339/app499 Artcl OPEN ACCESS appld sccs ISSN 76-347 www.mdp.com/joural/applsc Roud-Off Nos of Multplcatv FIR Fltrs Implmtd o a FPGA Platform Ja-Jacqus Vadbussch, *, Ptr L ad Joa

More information

T and V be the total kinetic energy and potential energy stored in the dynamic system. The Lagrangian L, can be defined by

T and V be the total kinetic energy and potential energy stored in the dynamic system. The Lagrangian L, can be defined by From MEC '05 Itrgratg Prosthtcs ad Mdc, Procdgs of th 005 MyoElctrc Cotrols/Powrd Prosthtcs Symposum, hld Frdrcto, Nw Bruswc, Caada, ugust 7-9, 005. EECROMECHNIC NYSIS OF COMPEE RM PROSHESIS (EMS) Prmary

More information

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE

7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE 7THE DIFFUSION OF PRODUCT INNOVATIONS AND MARKET STRUCTURE Isttut of Ecoomc Forcastg Roxaa IDU Abstract I ths papr I aalyz th dffuso of a product ovato that was rctly mad avalabl for lcsd purchas wth a

More information

Notation for Mixed Models for Finite Populations

Notation for Mixed Models for Finite Populations 30- otato for d odl for Ft Populato Smpl Populato Ut ad Rpo,..., Ut Labl for,..., Epctd Rpo (ovr rplcatd maurmt for,..., Rgro varabl (Luz r for,...,,,..., p Aular varabl for ut (Wu z μ for,...,,,..., p

More information

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider Mach Larg Prcpl Compot Aalyss Prof. Dr. Volkr Sprschdr AG Maschlls Lr ud Natürlchsprachlch Systm Isttut für Iformatk chsch Fakultät Albrt-Ludgs-Uvrstät Frburg sprschdr@formatk.u-frburg.d I. Archtctur II.

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Extension of Two-Dimensional Discrete Random Variables Conditional Distribution

Extension of Two-Dimensional Discrete Random Variables Conditional Distribution Itratoal Busss Rsarch wwwccstorg/br Extso of Two-Dsoal Dscrt Rado Varabls Codtoal Dstrbuto Fxu Huag Dpartt of Ecoocs, Dala Uvrsty of Tchology Dala 604, Cha E-al: softwar666@63co Chg L Dpartt of Ecoocs,

More information

On the Possible Coding Principles of DNA & I Ching

On the Possible Coding Principles of DNA & I Ching Sctfc GOD Joural May 015 Volum 6 Issu 4 pp. 161-166 Hu, H. & Wu, M., O th Possbl Codg Prcpls of DNA & I Chg 161 O th Possbl Codg Prcpls of DNA & I Chg Hupg Hu * & Maox Wu Rvw Artcl ABSTRACT I ths rvw artcl,

More information

Entropy Equation for a Control Volume

Entropy Equation for a Control Volume Fudamtals of Thrmodyamcs Chaptr 7 Etropy Equato for a Cotrol Volum Prof. Syoug Jog Thrmodyamcs I MEE2022-02 Thrmal Egrg Lab. 2 Q ds Srr T Q S2 S1 1 Q S S2 S1 Srr T t t T t S S s m 1 2 t S S s m tt S S

More information

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS

CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS CHAPTER: 3 INVERSE EXPONENTIAL DISTRIBUTION: DIFFERENT METHOD OF ESTIMATIONS 3. INTRODUCTION Th Ivrs Expoal dsrbuo was roducd by Kllr ad Kamah (98) ad has b sudd ad dscussd as a lfm modl. If a radom varabl

More information

On Three-Way Unbalance Nested Analysis of Variance

On Three-Way Unbalance Nested Analysis of Variance Joural o Mathmatcs ad Statstcs 8 : -4 0 ISS 549-3644 0 Scc Publcatos O Thr-Wa Ubalac std alss o Varac Smala S. Sa ad ug. Uagbu Dpartmt o Statstcs Facult o Phscal Sccs Uvrst o gra sua gra bstract: Problm

More information

Optimal Progressive Group-Censoring Plans for. Weibull Distribution in Presence. of Cost Constraint

Optimal Progressive Group-Censoring Plans for. Weibull Distribution in Presence. of Cost Constraint It J Cotmp Mat Sccs Vol 7 0 o 7 337-349 Optmal Progrssv Group-Csorg Plas for Wbull Dstrbuto Prsc of Cost Costrat A F Atta Dpartmt of Matmatcal Statstcs Isttut of Statstcal Stus & Rsarc Caro Uvrsty Egypt

More information

Graphs of q-exponentials and q-trigonometric functions

Graphs of q-exponentials and q-trigonometric functions Grahs of -otals ad -trgoomtrc fuctos Amla Carola Saravga To ct ths vrso: Amla Carola Saravga. Grahs of -otals ad -trgoomtrc fuctos. 26. HAL Id: hal-377262 htts://hal.archvs-ouvrts.fr/hal-377262

More information

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model

Advances of Clar's Aromatic Sextet Theory and Randic 's Conjugated Circuit Model Th Op Orgac hmstry Joural 0 5 (Suppl -M6) 87-87 Op Accss Advacs of lar's Aromatc Sxtt Thory ad Radc 's ougatd rcut Modl Fu Zhag a Xaofg Guo a ad Hpg Zhag b a School of Mathmatcal Sccs Xam Uvrsty Xam Fua

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

The Beta Inverted Exponential Distribution: Properties and Applications

The Beta Inverted Exponential Distribution: Properties and Applications Volum, Issu 5, ISSN (Ol): 394-894 Th Bta Ivrtd Epotal Dstrbuto: Proprts ad Applcatos Bhupdra Sgh Dpartmt of Statstcs, Ch. Chara Sgh Uvrsty, Mrut, Ida Emal: bhupdra.raa@gmal.com Rtu Gol Dpartmt of Statstcs,

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

ON ESTIMATION OF STRESS STRENGTH MODEL FOR GENERALIZED INVERTED EXPONENTIAL DISTRIBUTION

ON ESTIMATION OF STRESS STRENGTH MODEL FOR GENERALIZED INVERTED EXPONENTIAL DISTRIBUTION Joural of Rlablt ad Statstcal Studs; ISSN Prt: 974-84, Ol:9-5666 Vol. 6, Issu 3: 55-63 ON ESTIMATION OF STRESS STRENGTH MODEL FOR GENERALIZED INVERTED EXPONENTIAL DISTRIBUTION Mohad A. Hussa Dpartt of

More information

Transmuted Exponentiated Gamma Distribution: A Generalization of the Exponentiated. Gamma Probability Distribution

Transmuted Exponentiated Gamma Distribution: A Generalization of the Exponentiated. Gamma Probability Distribution Appld Mathatcal Sccs Vol. 8 04 o. 7 97-30 HIKARI Ltd www.-hkar.co http//d.do.org/0.988/as.04.405 Trasutd Epotatd Gaa Dstrbuto A Gralzato o th Epotatd Gaa Probablty Dstrbuto Mohad A. Hussa Dpartt o Mathatcal

More information

A practical threshold estimation for jump processes

A practical threshold estimation for jump processes A practcal threshold estmato for jump processes Yasutaka Shmzu (Osaka Uversty, Japa) WORKSHOP o Face ad Related Mathematcal ad Statstcal Issues @ Kyoto, JAPAN, 3 6 Sept., 2008. Itroducto O (Ω, F,P; {F

More information

Statistical Methods for Jointly Estimating the Decay Constant of 40 K and. the Age of a Dating Standard

Statistical Methods for Jointly Estimating the Decay Constant of 40 K and. the Age of a Dating Standard Kwo M Bckl ad R Statstcal Mthods or Jotly Estmat th Dcay Costat o 40 K ad th A o a Dat Stadard GXZ^ ` _ /H `_ : 5/H ` _ `_/JZ_ ; 5/M c/g7/ez \ ] : /X_ /MX ]/O7/O ;5 / Dpartmt o Statstcs Uvrsty o Calora

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

HANDY REFERENCE SHEET HRP/STATS 261, Discrete Data

HANDY REFERENCE SHEET HRP/STATS 261, Discrete Data Bary prdctor Bary outcom HANDY REFERENCE SHEE HRP/SAS 6, Dscrt Data x Cotgcy abls Dsas (D No Dsas (~D Exposd (E a b Uxposd (~E c d Masurs of Assocato a /( a + b Rs Rato = c /( c + d RR * xp a /( a+ b c

More information

Adagba O Henry /International Journal Of Computational Engineering Research / ISSN: OPERATION ON IDEALS

Adagba O Henry /International Journal Of Computational Engineering Research / ISSN: OPERATION ON IDEALS Adagba O Hry /Itratoal Joural Of Computatoal Egrg Rsarh / ISSN 50 3005 OPERATION ON IDEALS Adagba O Hry, Dpt of Idustral Mathmats & Appld Statsts, Eboy Stat Uvrsty, Abakalk Abstrat W provd bas opratos

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

Learning from Data with Information Theoretic Criteria II

Learning from Data with Information Theoretic Criteria II Larg from Data th Iformato Thortc Crtra II Jos C. Prcp, Ph.D. Dstgushd Profssor of Elctrcal ad Bomdcal Egrg ad BllSouth Profssor Computatoal uroegrg Laborator Uvrst of Florda http://.cl.ufl.du prcp@cl.ufl.du

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( )

Weights Interpreting W and lnw What is β? Some Endnotes = n!ω if we neglect the zero point energy then ( ) Sprg Ch 35: Statstcal chacs ad Chcal Ktcs Wghts... 9 Itrprtg W ad lw... 3 What s?... 33 Lt s loo at... 34 So Edots... 35 Chaptr 3: Fudatal Prcpls of Stat ch fro a spl odl (drvato of oltza dstrbuto, also

More information

Logistic Regression Sara Vyrostek Senior Exercise November 16, 2001

Logistic Regression Sara Vyrostek Senior Exercise November 16, 2001 ogstc Rgrsso Sara Vrostk Sor Ercs Novmbr 6, Itroducto: I th modlg of data, aalsts dvlop rlatoshps basd upo th obsrvd valus of a st of prdctor varabls ordr to dtrm th pctd valu of th rspos varabl of trst,

More information

This is a repository copy of Estimation of generalised frequency response functions.

This is a repository copy of Estimation of generalised frequency response functions. hs s a rpostory copy of Estmato of gralsd frqucy rspos fuctos. Wht Ros Rsarch Ol URL for ths papr: http://prts.whtros.ac.uk/74654/ Moograph: L, L.M. ad Bllgs, S.A. 9 Estmato of gralsd frqucy rspos fuctos.

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

' 1.00, has the form of a rhomb with

' 1.00, has the form of a rhomb with Problm I Rflcto ad rfracto of lght A A trstg prsm Th ma scto of a glass prsm stuatd ar ' has th form of a rhomb wth A th yllow bam of moochromatc lght propagatg towards th prsm paralll wth th dagoal AC

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source: Cour 0 Shadg Cour 0 Shadg. Bac Coct: Lght Sourc: adac: th lght rg radatd from a ut ara of lght ourc or urfac a ut old agl. Sold agl: $ # r f lght ourc a ot ourc th ut ara omttd abov dfto. llumato: lght

More information

ON RANKING OF ALTERNATIVES IN UNCERTAIN GROUP DECISION MAKING MODEL

ON RANKING OF ALTERNATIVES IN UNCERTAIN GROUP DECISION MAKING MODEL IJRRAS (3) Ju 22 www.arpapr.com/volum/voliu3/ijrras 3_5.pdf ON RANKING OF ALRNAIVS IN UNCRAIN GROUP DCISION MAKING MODL Chao Wag * & Lag L Gul Uvrty of chology Gul 544 Cha * mal: wagchao244@63.com llag6666@26.com

More information

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University Chatr 5 Scal Dscrt Dstrbutos W-Guy Tzg Comutr Scc Dartmt Natoal Chao Uvrsty Why study scal radom varabls Thy aar frqutly thory, alcatos, statstcs, scc, grg, fac, tc. For aml, Th umbr of customrs a rod

More information

Integral points on hyperbolas over Z: A special case

Integral points on hyperbolas over Z: A special case Itgral pots o hprbolas ovr Z: A spcal cas `Pag of 7 Kostat Zlator Dpartmt of Mathmatcs ad Computr Scc Rhod Islad Collg 600 Mout Plasat Avu Provdc, R.I. 0908-99, U.S.A. -mal addrss: ) Kzlator@rc.du ) Kostat_zlator@ahoo.com

More information