ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program

Size: px
Start display at page:

Download "ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program"

Transcription

1 TÁMOP C-13/1/KONV projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program keretében finanszírozott ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT financed by the program Practice-oriented, student-friendly modernization of the biomedical education for strengthening the international competitiveness of the rural Hungarian universities Dátum / Date: OKTÓBER 11. / OCTOBER 11, 2017 Helyszín / Place: MTA SZBK BIOFIZIKAI INTÉZET, TANÁCSTEREM / LECTURE ROOM, INST. OF BIOPHYSICS, BIOLOGICAL RESEARCH CENTRE SZEGED, TEMESVÁRI KRT. 62. Az előadás címe / Title of the presentation: OPTICAL SPECTROSCOPY TOOLS TO INVESTIGATE THE MOLECULAR ORGANIZATION OF PROTEIN COMPLEXES Előadó / Speaker: PETAR LAMBREV Biological Research Centre Address: H-6726 Szeged, Temesvári krt. 62. Mail: H-6701 Szeged, POB

2 Practice-oriented, student-friendly modernization of the biomedical education for strengthening the international competitiveness of the rural Hungarian universities TÁMOP C-13/1/KONV Optical Spectroscopy Tools to Investigate the Molecular Organization of Protein Complexes Petar Lambrev Institute of Plant Biology October 11, 2017 OUTLINE T h e e s s e n c e o f o p t i c a l s p e c t r o s c o p y P h o t o s y n t h e t i c m e m b r a n e p r o t e i n c o m p l e x e s L i g h t-h a r v e s t i n g c o m p l e x e s R e a c t i o n c e n t e r s B a s i c t h e o r e t i c a l a s p e c t s M o l e c u l a r e x c i t e d s t a t e s a n d o p t i c a l t r a n s i t i o n s E x c i t o ni n t e r a c t i o n s a n d e n e r g y t r a n s f e r P o l a r i z e d l i g h t s p e c t r o s c Co D p, y L D, A C D, F P T i m e -r e s o l v e d s p e c t r o s c o p y U l t r a f a s t t r a n s i e n t a b s o r p t i o n s p e c t r o s c o p y T i m e -r e s o l v e d f l u o r e s c e n c e s p e c t r o s c o p y THE ESSENCE OF SPECTROSCOPY p r o t e i n 1. F i n d a n o b j e c t o f i n t e r e s t l i g h t 2. S e n d a b e a m o f e l e c t r o m a g n e t i c r a d i a t i o n t o t h e o b j e c t 3. O b s e r v e t h e o u t c o m i n g r a d i a t i o ln i g h t 4. L e a r n s o m e t h i n g a b o u t t h e o b jp er co t e i n 1

3 THE ELECTROMAGNETIC SPECTRUM INTERACTIONS OF EM RADIATION WITH MATTER Absorption Emission Reflection U V / V I S s p e c t r o s c o p y p r o b e s e l e c t r o n i c e x c i t e d s t a t e s e l e c t r o n i c s p e c t r o s c o p y I R s p e c t r o s c o p y p r o b e s m o l e c u l a r v i b r a t i o n s v i b r a t i o n a l s p e c t r o s c o p y PHOTOSYNTHETIC ANTENNA COMPLEXES g r e e n s u l f u r b a c t e r i a p u r p l e b a c t e r i a c y a n o b a c t e r i a d i a t o m s c h l o r o s o m e s d i n o f l a g e l l a t e s L H 2 p h y c o b i l i s o m e s p l a n t s F u c o x a n t h i n- c h l o r o p h y l-p l r o t e i n s ( F C P ) P C P L H C 2

4 PHOTOSYNTHETIC PIGMENTS Chlorophyll a Carotenoid (β-carotene) C h l o r o p h y l l s a n d b a c t e r i o c h l o r o p h y l l s m a j o r p h o t o s e n s i t i v e p i g m e n t s h e t e r o c y c l i c m a c r o c y c l e p l a n a r r i n g o f c o n j u g a t-b eod n d s c e n t r a l M g a t o m d i f f e r e n t t y p e s d e p e n d i n g o n s u b s t i t u t e n t s C h l s a b s o r b b l u e ( n m ) a n d r e d ( n m ) l i g h t C a r o t e n o i d s x a n t h o p h y l l s O - c o n t a i n i n g c a r o t e n o i d s l i n e a r c h a i n o f c o n j u g a t e d C = C b o n d s 7 PHOTOSYNTHETIC PIGMENT MOLECULES The Emerson & Arnold experiment: P r i m a r y p h o t o c h e m i s t r y o n l y t a k e s p l a c e i n r e a c t i o n c e n pt ie gr m e n t s M a j o r i t y o f p i g m e n t s d o n o t p e r f o r m p h o t o c h e m i s t r y t h e y a r e p a r t l oi f g h-t h a r v e s t i n g a n t e n n a c o m p l e x e s L H A s d e l i v e r a b s o r b e d l i g h t e n e r g y t o R C v i a e x c i t a t i o n e n e r g y t r a n s f e r A t s a t u r a t i n g i n t e n s i t i e s, 2 o n e O m o l e c u l e i s p r o d u c e d p e r C h l s q u a n t a a r e u s e d p e2 r O a t l e a s t 4 b y e a c h p h o t o s y s t e m s e v e r a l h u n d r e d m o l e c u l e s a s s o c i a t e d w i t h e a c h p h o t o s y s t e m r e a c t i o n c e n t e r 8 THE FUNNEL CONCEPT Energy b l u e-a b s o r b i n g g r e e n-a b s o r b i n g o r a n g e-a b s o r b i n g r e d-a b s o r b i n g R C E n e r g y i s p r e f e r e n t i a l l y t r a n s f e r r e d d o w n h i l l f r o m h i g h e r-e n e r g y s t a t e s t o l o w e-e r n e r g y o n e s H i g h e r-e n e r g y-a b s o r b i n g p i g m e n t s a r e l o c a t e d i n t h e p e r i p h e r a l L H A s L o w e r -e n e r g y-a b s o r b i n g p i g m e n t s a r e l o c a t e d c l o s e r t o t h e R C c o r e E n s u r i n g f a s t d i r e c t i o n a l t r a n s f e r t o w a r d s t h e R C A c c o r d i n g t o t h e tz B omla n n d i s t r i b u t i o n, i n t h e t h e r m a l l y e q u i l i b r a t e d a n t e n n a l o-e wne er r g y s t a t e s h a v e h i g h e r p o p u l a t i o n 9 3

5 ENERGY FUNNELS IN PHOTOSYNTHETIC ORGANISMS P u r p l e b a c t e r i a C y a n o b a c t e r i a LIGHT-HARVESTING COMPLEXES IN PLANTS Light-harvesting complex II T h e L H C s u p e r f a m i l y I n t e g r a l m e m b r a n e p r o t e i n s 3 o r 4 t r a n s m e m b r a n e h e l i c e s c h l o r o p h y l l s a s m a i n p i g m e n t s 2-4 x a n t h o p h y l l sa s a c c e s s o r y p i g m e n t s M o n o m e r i c o r o l i g o m e r i c T h e p r o t e i n d e t e r m i n e s t h e p i g m e n t s o p t i c a l p r o p e r t i e s D y n a m i c r e g u l a t i o n o f t h e l i g h t h a r v e s t i n g f u n c t i o n LIGHT-HARVESTING COMPLEXES IN PLANTS L h c b 1 ( f o r m s t r i m e r s ) L h c b 3 ( m o n o m e r i c ) 4

6 LHCII TRIMERS C h l s i n L H C I I a r e r o u g h l y a r r a n g e d i n r i n g s, o p t i m i z i n g l i g h t a b s o r p t i o n f r o m a l l d i r e c t i o n s a n d e n e r g y t r a n s f e r T h e e n e r g i e s o f t h e p i g m e n t s i t e s v a r y d u e t o t h e p r o t e i n e n v i r o n m e n t a n d e x c i t o n i c i n t e r a c t i o n s T h i s c r e a t e s a w i d e r a b s o r p t i o n b a n d m o r e e f f i c i e n t l-i g h t h a r v e s t i n g L o w e s t e n e r g y p i g m e n t s l o c a t e d i n t h e p e r i p h e r y o f t h e c o m p l e x t r a n s f e r e n e r g y a w a y. PHOTOSYSTEM II CORE top side s u b u n i t s D 1 (P s b A ) D 2 (P s b D ) C y t b (P s b E / F ) A c c e s s o r y s u b u n i t s (P s b F -P s b Z ) C P 4 3 (P s b B ) C P 4 7 (P s b C ) W O C ( P s b O, P s b U, P s b V ) 3 5 C h l o r o p h y l l a 2 P h e o p h y t i n 1 1 β -c a r o t e n e 2 P l a s t o q u i n o n e 2 H e m e F e 1 N o n -h e m e F e 4 M n, 3-4 C a, 3 C l, H3 C, O l i p i d s PHOTOSYSTEM II SUPERCOMPLEXES C 2 S 2 C 2 S 2 M 2 Nield & Barber, BBA, 2012, 1757: Pagliano et al., BBA, 2013, /j.bbabio

7 PSII REACTION CENTER ELECTRON-TRANSPORT CHAIN Müh & Zouni, Front. Biosci., 2011, 16: PHOTOSYNTHETIC PROTEIN COMPLEXES SUMMARY P r o t e i n s a c t as m a r t s c a f f o l d t h a t b i n d a l a r g e n u m b e r o f -a l ibgsho tr b i n g p i g m e n t s d y n a m i c a l l y c o n t r o l t h e p r o p e r t i e s o f t h e b o u n d p i g m e n t s T h e s a m e p i g m e n t m o l e c u l e s c a n h a dv ie f fa e r e n t f u n c t i o n d e p e n d i n g o n t h e p r o t e i n e n v i r o n m e n t L i g h t-h a r v e s t i n g ( i n a n t e n n a p r o t e i n s ) L i g h t-d i s s i p a t i o n ( i n a n t e n n a p r o t e i n s u n d e r h i g h l i g h t ) P h o t o c h e m i c a l r e a c t i o n ( i n r e a c t i o n c e n t e r p r o t e i n s ) M i n i s c u l e c h a n g e s pirn o t e i n c o n f o r m a t i o n c a n c h a n g e t h e p i g m e n t f u n c t i o n s T h e p h o t o p h y s i c a l a n d p h o t o c h e m i c a l r e a c t i ou nl s t raarf e a s t 1 f s = s LIGHT AS A WAVE 6

8 POLARIZATION MOLECULAR ENERGY E t o t a l = E v i b r a t i o n a l + E e l e c t r o n i c E S S 0-0 S 0 -X e l e c t r o n i c g r o u n d s t a t e S 1 -X e l e c t r o n i c e x c i t e d s t a t e S X -0 v i b r a t i o n a l g r o u n d s t a t e S X -1 v i b r a t i o n a l e x c i t e d s t a t e ABSORPTION OF LIGHT A b s o r p t i o n o f U V / V I S l i g h t i s a m o l e c u l a r t r a n s i t i o n b e t w e e n t w o e l e c t r o n i c l e v e l s hυ S S 0-0 Dipole moment + 7

9 TYPES OF TRANSITIONS * C = C n * C = O ( v e r y w e a k ) d d F e, C u, M n, C o C o m p o u n d λ [ n m ] ε [ M 1 c m -N H -C O - ( * ) N H -C O - (n * ) T r p T y r N A D H C h l a β -c a r o t e n e ] TIME OF THE TRANSITION DECAY OF THE EXCITED STATE Perrin-Jablonski diagram F l u o r e s c e n c e E n e r g y t r a n s f e r I n t e r n a l c o n v e r s i o n E l e c t r o n t r a n s f e r V i b r a t i o n a l r e l a x a t i o n I n t e r s y s t e m c r o s s i n g P h o s p h o r e s c e n c e D e l a y e d f l u o r e s c e n c e 8

10 ABSORPTION AND EMISSION SPECTRA K a s h a -V a v i l o vr u l e : T h e f l u o r e s c e n c e e m i s s i o n i s i n d e p e n d e n t f r o m e x c i t a t i o n w a v e l e n g t h K a s h a s r u l e ( r e p h r a s e d ) : F l u o r e s c e n c e i s e m i t t e d f r o m t h e l o w e s t e l e c t r o n iec x c i t e d l e v e l M i r r o r-i m a g e r u l e F r a n c k-c o n d o n f a c t o r s E x c e p t i o n s t o t h e m i r r o r i m a g e r u l e RATE CONSTANTS, LIFETIMES AND YIELDS INTERMOLECULAR INTERACTIONS I o n i c I o n -i o n i n t e r a c t i o n s I o n -d i p o l e i n t e r a c t i o n s V a n d e r W a a l s D i p o l e- d i p o l e i n t e r a c t i o n s D i s p e r s i o n i n t e r a c t i o n s D e b y e d i s p e r s i o n i n t e r a c t i o n s L o n d o n d i s p e r s i o n i n t e r a c t i o n s 9

11 THE EXCITONIC DIMER molecule 1 dimer transition dipole moments z + molecule 2 y 2 E 2V E a+v E a V E a 1 x Absorption dimer monomer υ 0a V υ 0a υ 0a+V Monomer and dimer energies Interaction energy (point-dipole approximation) FÖRSTER ENERGY TRANSFER S S 0 A* B A B* THEORETICAL ASPECTS - SUMMARY O p t i c a l s p e c t r o s c o p y ( -m l iagthtt e r i n t e r a c t i o n s ) i s u n d e r s t o o d b y t h e t h e o r y o f q u a n t u m e l e c t r o d y n a m i c s L i g h t i s p o r t r a y e d aes l ea cn t r o m a g n e t i c w a v e M a t t e r i s p o r t r a y e d a s a s e t o f m oqluea cnutluam r e i g e n s t a t e s T h e e l e c t r o m a g n e t i c f i e l d i s c o u tp rl ae nd s ti o t i o n sb e t w e e n e l e c t r o n i c a n d v i b r a t i o n a l e i g e n s t a t e s A b s o r p t i o n a n d f l u o r e s c e n c ee m i s s i o n s p e c t r a r e v e a l i n f o r m a t i o n a b o u t t h e m o l e c u l a r s t a t e s E x c i t e d s t a t e s d e c avy i a r a d i a t i v e a n d -rn ao dn i a t i v e p a t h w a y s T h e e x c i t e d s t a t e r e a c t i o n p a t h w a y s a r e c h a r a c trea rtie z ec d o nbsy t a n t s T h e f l u o r e s c e n c e l i f e t i m e s a n d y i e lr de s v e a l i n f o r m a t i o n a b o u t t h e e -x c i t e d s t a t e d y n a m i c s. D i p o l e -d i p o l e i n t e r a c t i o nbs e t w e e n m o l e c u l e s c r e a t e n e w, s h a r e d e x c i t o n s t a t e s D i p o l e-d i p o l e i n t e r a c t i o n s a r e t h e beans eirs g y o f t r a n s f e r 10

12 WHAT IS POLARIZED LIGHT SPECTROSCOPY? A b s o r p t i o n P o l a r i z e d a b s o r p t i o n L i n e a r d i c h r o i s m C i r c u l a dr i c h r o i s m M a g n e t i c C D A n i s o t r o p i Cc D C h l o r o s o m e s C h l o r o p l a s t s T h y l a k o i d m e m b r a n e s L H C I I F l u o r e s c e n c e F l u o r e s c e n c e p o l a r i z a t i o n F l u o r e s c e n c e a n i s o t r o p y F l u o r e s c e n c-d e e t e c t e d L D / C D 3 1 LINEAR DICHROISM T h e d i f f e r e n c e i n a b s o r p t i o n o f l i g h t p o l a r i z e d p a r a l l e l a n d p e r p e n d i c u l a r t o a n o r i e n t a t i o n a x i s. L D g i v e s d i r e c t s t r u c t u r a l i n f o r m a t i o n, b e c a u s e i t d e p e n d s o n t h e a n g l e o f t h e t r a n s i t i o n d i p o l e m o m e n t LD / 3A θ - a n g l e b e t w e e n t h e t r a n s i t i o n d i p o l e m o m e n t a n d m a i n s y m m e t r y a x i s Angle, 3 2 SAMPLE ORIENTATION (ALIGNMENT) Magnetic orientation Orientation by gel squeezing 11

13 ORIENTATION OF MEMBRANES Face-aligned orientation should preferentially excite transitions in the membrane plane Edge-aligned orientation shows transitions primarily perpendicular to the membrane. However the linear anisotropy generates LD and distorts the CD CIRCULAR DICHROISM T h e d i f f e r e n c e i n a b s o r p t i o n -oaf n d l e f t r i g h t-h a n d e d c i r c u l a r l y p o l a r i z e d l i g h t. I n t r i n s i c C D c h i r a l m o l e c u l e s E x c i t o n i c C D d i p o l e i n t e r a c t i o n s b e t w e e n p i g m e n t s P s i-t y p e C D l o n g-r a n g e i n t e r a c t i o n s i n o r d e r e d p i g m e n t e n s e m b l e s 3 5 THE ORIGIN OF INTRINSIC CD R o s e n f e l d qeu a t i o n: CD Im μ m μ m e l e c t r i c d i p o l e m o m e n t m a g n e t i c d i p o l e m o m e n t P u r e e l e c t r i c a b s o r p t i o n P u r e m a g n e t i c a b s o r p t i o n ( c u r r e n t l o o p ) O p t i c a l a c t i v i t y C a n t o r C. R. S& c h i m m e l P. R., B i o p h y s i c a l C h e m i s t r y, , F r e e m a n & C o. 12

14 EXCITONIC CD (+) CD (-) CD ν T h e t w o e x c i t o n t r a n s i t i o n s i o f t h e d i m e r a n d h a v e C D o f e q u a l m a g n i t u d e b u t o p p o s i t e s i g n T h e C D o f t h e d i m e r i s t h e s u m o f t h e C D o f t h e t w o t r a n s i t i o n s T h e C D i s n o n z e r o b e c a u s e o f t h e e x c i t o n e n e r g y s p l i t T h e m o n o m e r m o l e c u l e s d o n o t n e e d t o b e c h i r a l T h e C D s t r o n g l y d e p e n d s o n t h e g e o m e t r y o f t h e d i m e r MEASURING LD AND CD P h o t o e l a s t imco d u l a t o r : p o l a r i z a t i o n i s c o n t r o l l e d b y p h a s e s h i f t i n g C D / L D i s m e a s u r e d a s t h e a m p l i t u d e o f t h e m o d u l a t e d s i g n a l CD OF CHLOROPLAST MEMBRANES L o n g -r a n g e p i g m e n t- p i g m e n t i n t e r a c t i o n s i n t h e m e m b r a n e m a c r o s t r u c t u r e p r o d u c e p s i-t y p e C D P s i-t y p e C D i s s e n s i t i v e t o t h e m a c r o s t r u c t u r a l o r g a n i z a t i o n D i s r u p t i o n o f t h e l-r o an ng g e i n t e r a c t i o n s r e v e a l s t h e e x c i t o n i c C D o f p i g m-e n t p r o t e i n s C D s p e c t r a o f s t a c k e d a n d w a s h e d t h y l a k o i d m e m b r a n e s 13

15 CD OF INTACT PLANT LEAVES WT C 2 S 2 M 2 CD kocp24 C 2 S 2 Wavelength (nm) CD OF ISOLATED LHCII T h e C D s p e c t r a d e t eo cl t i g o m e r i z a t i oann d c h a n g e s i n t h e m o l e c u l a r e n v i r o n m e n t TIME-RESOLVED SPECTROSCOPY 14

16 TIME-RESOLVED SPECTROSCOPY I n f o r m a t i o n a b o u t f a s t a n d u l t r a f a s t p r o c e s s e s i n t h e s y s t e m e x c i t e d-s t a t e r e a c t i o n s, e t c. T h e s y s t e m i s p e r t u r b e d b y a v e r y s h o r t l a s e r p u l s e a n d t h e t i m e e v o l u t i o n o f t h e s y s t e m s p r o p e r t i e s a f t e r t h e p u l s e i s f o l l o w e d K i n e t i c p r o f i l e : c a n r e s o l v e m u l t i -l p lie v esd h oirntt e r m e d i a t e r e a c t i o n s t a t e s, t h e i r s p e c t r a l p r o p e r t i e s, t r a n s i e n t c o n c e n t r a t i o n s, r e a c t i o n r a t e c o n s t a n t s, e t c. T e m p o r a l r e s o l u t i o n d o w n t o 1 f s = s T e m p o r a l r e s o l u t i o n a n d s p e c t r a l r e s o l u t i o n a r e r e l a t e d b y t h e u n c e r t a i n t y p r i n c i p l e ( s h o r t p u l s e s h a v e b r o a d s p e c t r a l w i d t h ) PUMP-PROBE TRANSIENT ABSORPTION S2 S1 p u m p p r o b e P u m p p u l s e c r e a t e s e x c i t e d s t a t e s ( G S S 1 ) A s u b s e q u e n t p r o b e p u l s e ( S 1 S n ) m e a s u r e s t h e c h a n g e s i n d u c e d b y t h e p u m p T h e t e m p o r a l e v o l u t i o n i s f o l l o w e d b y s c a n n i n g o v e r t h e t i m e b e t w e e n p u m p a n d p r o b e T e m p o r a l r e s o l u t i o n i s o n l y l i m i t e d b y t h e p u l s e d u r a t i o n GS D i f f e r e n t i a l a b s o r p t i o n : Δ A ( t ) = A + p u m p A p u m p PUMP-PROBE TRANSIENT ABSORPTION 15

17 TRANSIENT ABSORPTION OF PHOTOSYNTHETIC ANTENNA COMPLEXES Active LH1 complexes Energy-dissipating LH1 complexes T y p e s o f t r a n s i e n t a b s o r p t i o n s i g n a l s : N e g a t i v e A d u e t o l o s s ( b l e a c h i n g ) o f g r o u n d s t a t e s N e g a t i v e A d u e t o e m i s s i o n f r o m e x c i t e d s t a t e s P o s i t i v e A d u e t o a b s o r p t i o n b y e x c i t e d s t a t e s 4 6 TIME-RESOLVED FLUORESCENCE A F τ f t F l u o r e s c e n c e l i f e t i m e : A b s o l u t e v a l u e I n d e p e n d e n t o n c o n c e n t r a t i o n I n s e n s i t i v e t o a r t i f a c t s M u l t i p l e l i f e t i m e s : H e t e r o g e n e i t y T r u e d y n a m i c s INFORMATION FROM LIFETIME MEASUREMENTS F l u o r o p h o r e e n v i r o n m e n t M u l t i p l e c o n f o r m a t i o n s, c o n f o r m a t i o n a l c h a n g e s M u l t i p l e e n v i r o n m e n t s I n t e r a c t i o n s w i t h n e i g h b o u r i n g r e s i d u e s S o l v e n t r e l a x a t i o n F l u o r e s c e n c e l i f e t i m e s e n s o 2 r + s, ( MCg 2 a + ) R e s o n a n c e e n e r g y t r a n s f e r Lakowicz J.R. (2006) Springer 16

18 TRF QUENCHING T R F c a n d i s t i n g u i s h b e t w e e n d y n a m i c q u e n c h i n g ( c o l l i s i o n a l q u e n c h i nlg i) f e t i m e d e c r e a s e w i t h q u e n c h e r c o n c e n t r a t i o n s t a t i c q u e n c h i (e n g x c i p l e xf o r m a t i o n ) l i f e t i m e i s u n c h a n g e d, a m p l i t u d e d e c r e a s e s T R F c a n d i s t i n g u i s h d i f f eq ru e nt c h e d p o p u l a t i o n s Lakowicz J.R. (2006) Springer DECAY-ASSOCIATED EMISSION SPECTRA k AB = 5 ns A* -1 B* 0.5 ns ns -1 A B METHODOLOGY FOR TRF SPECTROSCOPY D i r e c t F r e q u e n c y- d o m a i n ( C W ) T i m e -d o m a i n ( p u l s e d ) G a t i n g P h a s e m o d u l a t i o n T C S P C S t r e a k c a m e r a U p c o n v e r s i o n T C S P C i s t h e m o s t v e r s a t i l e a n d c o m m o n l y u s e d t e c h n i q u e C a n r e s o l v e l i f e t i m e s f r o m f e w μsp s t o H i g h d y n a m i c r a n g e a n d s i g-t n o-n a l o i s e r a t i o N o w a f f o r d a b l e a n d a c c e s s i b l e t-so p ne oc ni a l i s t u s e r s 17

19 TIME-CORRELATED SINGLE-PHOTON COUNTING threshold Reference pulses from light source Range CFD start zero cross Gain Mem ory Histogram threshold TAC AMP ADC Address (tim e) Pream plifier stop Detector Singlephoton CFD zero cross Offset = control elements data +1 Adder pulses T i m e -t o-a m p l i t u d e c o n v e r s i o n : 1. T h e l a s e r p u l s e s t a r t s a c l o c k 2. T h e d e t e c t e d f l u o r e s c e n c e p h o t o n s t o p s t h e c l o c k 3. T h e t i m e b e t w e e n t h e S t a r t a n d S t o p s i g n a l s i s r e c o r d e d TIME-CORRELATED SINGLE-PHOTON COUNTING Detector Signal: Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9 Period 10 Original Waveform (Distribution of photon probability) Time 4. A f t e r m a n y s i n g l e p h o t o n e v e n t s a h i s t o g r a m o f d e c a y t i m e s i s c o l l e c t e d 5. T h i s h i s t o g r a m i s t h e f l u o r e s c e n c e d e c a y k i n e t i c s Period N Result after many Photons OPTICAL SPECTROSCOPY - SUMMARY P o l a r i z e d l i g h t s p e c t r o s c o p y i s a v a l u a b l e t o o l t o m o n i t o r t h e m o l e c u l a r s t r u c t u r e o f p r o t e i n c o m p l e x e s L D r e v e a l s t h e o r i e n t a t i o n o f c h r o m o p h o r e s i n t h e p r o t e i n m a t r i x C D i s s e n s i t i v e t o s-r hao nrgt e i n t e r a c t i o n s o f c h r o m o p h o r e s i n t h e p r o t e i n a n d l o-r n ga n g e i n t e r a c t i o n s i n p r o t e i n m a c r o a s s e m b l i e s T i m e -r e s o l v e d s p e c t r o s c o p y r e v e a l s e-sx tc ai t e d r e a c t i o n d y n a m i c s T r a n s i e n t a b s o r p t i o n c a n m e a s u r e u l t r a f a s t t r a n s i t i o n s b e t w e e n e x c i t e d s t a t e s, e v e n n o n r a d i a t i v e o n e s T i m e -r e s o l v e d f l u o r e s c e n c e m e a s u r e s d i r e c t l y e m i s s i v e e x c i t e d s t a t e s a n d e x c i t e-s d t a t e l i f e t i m e s w i t h u n p a r a l l e l e d p r e c i s i o n, s e n s i t i v i t y a n d d y n a m i c r a n g e 18

20 THANK YOU FOR YOUR ATTENTION! This work is supported by the European Union, co-financed by the European Social Fund, within the framework of " Practice-oriented, student-friendly modernization of the biomedical education for strengthening the international competitiveness of the rural Hungarian universities " TÁMOP C-13/1/KONV project. 19

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program TÁMOP-4.1.1.C-13/1/KONV-2014-0001 projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program

More information

P. Lambrev October 10, 2018

P. Lambrev October 10, 2018 TIME-RESOLVED OPTICAL SPECTROSCOPY Petar Lambrev Laboratory of Photosynthetic Membranes Institute of Plant Biology The Essence of Spectroscopy spectro-scopy: seeing the ghosts of molecules Kirchhoff s

More information

TIME-RESOLVED OPTICAL SPECTROSCOPY

TIME-RESOLVED OPTICAL SPECTROSCOPY TIME-RESOLVED OPTICAL SPECTROSCOPY Petar Lambrev Laboratory of Photosynthetic Membranes Institute of Plant Biology The Essence of Spectroscopy spectro-scopy: seeing the ghosts of molecules Kirchhoff s

More information

ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program

ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program TÁMOP-4.1.1.C-13/1/KONV-2014-0001 projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program

More information

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes PETAR LAMBREV PREAMBLE LASERS IN LIFE SCIENCE LASERS IN MEDICINE AND LIFE SCIENCE, SZEGED 2017 2 Preamble LASERS IN MEDICINE AND LIFE

More information

ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program

ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program TÁMOP4.1.1.C13/1/KONV0140001 projekt Az élettudományiklinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program keretében

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Transduction of Light Energy in Chloroplasts

Transduction of Light Energy in Chloroplasts Module 0210101: Molecular Biology and Biochemistry of the Cell Lecture 16 Transduction of Light Energy in Chloroplasts Dale Sanders 9 March 2009 Objectives By the end of the lecture you should understand

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

LABORATORY OF ELEMENTARY BIOPHYSICS

LABORATORY OF ELEMENTARY BIOPHYSICS LABORATORY OF ELEMENTARY BIOPHYSICS Experimental exercises for III year of the First cycle studies Field: Applications of physics in biology and medicine Specialization: Molecular Biophysics Fluorescence

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

Scientific Program pm A. Holzwarth Harnessing solar energy for the production of clean fuel

Scientific Program pm A. Holzwarth Harnessing solar energy for the production of clean fuel Scientific Program Tuesday, March 10, 2009 2.00 pm - 4.30 pm Registration 4.30 pm Come together 5.20 pm Opening 5.30 pm A. Holzwarth Harnessing solar energy for the production of clean fuel 6.15 pm K.

More information

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) 2 2. Circular dichroism (optical activity) CD / ORD 3 3. Fluorescence spectroscopy and energy transfer Electromagnetic Spectrum Electronic Molecular

More information

PHOTOSYNTHESIS. The Details

PHOTOSYNTHESIS. The Details PHOTOSYNTHESIS The Details Photosynthesis is divided into 2 sequential processes: 1. The Light Dependent Reactions (stages 1 & 2) 2. The Light Independent Reactions (stage 3) a.k.a. the Calvin Cycle THE

More information

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty?

Homework Due by 5PM September 20 (next class) Does everyone have a topic that has been approved by the faculty? Howdy Folks. Homework Due by 5PM September 20 (next class) 5-Problems Every Week due 1 week later. Does everyone have a topic that has been approved by the faculty? Practice your presentation as I will

More information

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis:

5/08/ :49 PM 28/02/13. Lecture 2: Photosynthesis: 5/08/2014 10:49 PM 28/02/13 Lecture 2: Photosynthesis: Two types of chlorophyll in plants (green pigments in the thylakoids that are responsible for the absorption of Photosynthetically active radiation

More information

Discussion Session prior to the Second Examination: Sunday evening April 13 6 to 8 pm. 161 Noyes Laboratory

Discussion Session prior to the Second Examination: Sunday evening April 13 6 to 8 pm. 161 Noyes Laboratory Discussion Session prior to the Second Examination: Sunday evening April 13 6 to 8 pm 161 Noyes Laboratory Determination of the Stokes Radius by measuring the Rotational Diffusion Coefficient: D rot D

More information

Lecture-17. Electron Transfer in Proteins I

Lecture-17. Electron Transfer in Proteins I Lecture-17 Electron Transfer in Proteins I The sun is main source of energy on the earth. The sun is consumed by the plant and cyanobacteria via photosynthesis process. In this process CO2 is fixed to

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

Fluorescence polarisation, anisotropy FRAP

Fluorescence polarisation, anisotropy FRAP Fluorescence polarisation, anisotropy FRAP Reminder: fluorescence spectra Definitions! a. Emission sp. b. Excitation sp. Stokes-shift The difference (measured in nm) between the peak of the excitation

More information

Photo-Phosphorylation. Photosynthesis 11/29/10. Lehninger 5 th ed. Chapter 19

Photo-Phosphorylation. Photosynthesis 11/29/10. Lehninger 5 th ed. Chapter 19 1 Photo-Phosphorylation Lehninger 5 th ed. Chapter 19 2 Photosynthesis The source of food, and therefore life on earth. It uses water to produce O 2. However E 0 of water is 0.816V (NADH s is -0.32V).

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Quantum yield, polarized light, dipole moment, photoselection, dipole radiation, polarization and anisotropy

More information

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton Lecture 5. Anisotropy decay/data analysis Enrico Gratton Anisotropy decay Energy-transfer distance distributions Time resolved spectra Excited-state reactions Basic physics concept in polarization The

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Outline - Photosynthesis

Outline - Photosynthesis Outlin Photosynthesis Photosynthesis 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts: Structure and Function 5. Photosynthetic

More information

Supplementary Figure 1. Vector presentation example for two dipoles μ(1) and μ(2) placed in the asymmetric unit of a crystal with orthorhombic

Supplementary Figure 1. Vector presentation example for two dipoles μ(1) and μ(2) placed in the asymmetric unit of a crystal with orthorhombic Supplementary Figure 1. Vector presentation example for two dipoles μ(1) and μ(2) placed in the asymmetric unit of a crystal with orthorhombic symmetry and their projections on the A, B and C axes. For

More information

The light reactions convert solar energy to the chemical energy of ATP and NADPH

The light reactions convert solar energy to the chemical energy of ATP and NADPH 10.2 - The light reactions convert solar energy to the chemical energy of ATP and NADPH Chloroplasts are solar-powered chemical factories The conversion of light energy into chemical energy occurs in the

More information

University of Groningen

University of Groningen University of Groningen Photosynthetic Quantum Yield Dynamics Hogewoning, Sander W.; Wientjes, Emilie; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Croce, Roberta; Harbinson, Jeremy Published

More information

Fluorescence Polarization Anisotropy FPA

Fluorescence Polarization Anisotropy FPA Fluorescence Polarization Anisotropy FPA Optics study of light Spectroscopy = light interacts the study of the interaction between matter & electro-magnetic radiation matter Spectroscopy Atomic Spectroscopy

More information

Application of time resolved area normalized emission spectroscopy to multicomponent systems

Application of time resolved area normalized emission spectroscopy to multicomponent systems JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 15 15 OCTOBER 2001 Application of time resolved area normalized emission spectroscopy to multicomponent systems A. S. R. Koti and N. Periasamy a) Department

More information

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth. Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll: Photosynthesis INTRODUCTION: metabolic process occurring in green plants, algae, some protists and cyanobacteria Photosynthesis is an PROCESS (building organic molecules which store radiant energy as chemical

More information

Winter College on Optics and Energy February Photophysics for photovoltaics. G. Lanzani CNST of Milano Italy

Winter College on Optics and Energy February Photophysics for photovoltaics. G. Lanzani CNST of Milano Italy 13-4 Winter College on Optics and Energy 8-19 February 010 Photophysics for photovoltaics G. Lanzani CNST of IIT@POLIMI Milano Italy Winter College on Optics and Energy Guglielmo Lanzani CNST of IIT@POLIMI,

More information

Supporting Information

Supporting Information Supporting Information For Bioinspired Orientation of β-substituents on Porphyrin Antenna Ligands Switches Ytterbium(III) NIR Emission with Thermosensitivity Yingying Ning, Xian-Sheng Ke, Ji-Yun Hu, Yi-Wei

More information

Albert Szent-Györgyi Nobel prize for vitamin C

Albert Szent-Györgyi Nobel prize for vitamin C Albert Szent-Györgyi Nobel prize for vitamin C Photosynthesis: Molecular Mechanisms Global Effects Győző Garab, Biological Research Center, Szeged, Hungary SAIP - UNISA, 2011 In this talk: 1. Why photosynthesis?

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

CLASS 11 th. Photosynthesis

CLASS 11 th. Photosynthesis CLASS 11 th 01. Introduction Autotrophic organisms have the ability to synthesise organic food from inorganic raw materials. In this process, they consume physical and chemical forms of energy. One such

More information

Determining the orientation of the emissive dipole moment associated with dye molecules in microcavity structures

Determining the orientation of the emissive dipole moment associated with dye molecules in microcavity structures journal of modern optics, 15 october 2004 vol. 51, no. 15, 2287 2295 Determining the orientation of the emissive dipole moment associated with dye molecules in microcavity structures S. H. GARRETT, J.

More information

Self-assembled Nanoscale DNA-porphyrin Complex for. Artificial Light-harvesting

Self-assembled Nanoscale DNA-porphyrin Complex for. Artificial Light-harvesting Supporting Information for Self-assembled Nanoscale DNA-porphyrin Complex for Artificial Light-harvesting Jakob G. Woller, Jonas K. Hannestad, and Bo Albinsson Department of Chemical and Biological Engineering/Physical

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Basic Photoexcitation and Modulation Spectroscopy

Basic Photoexcitation and Modulation Spectroscopy Basic Photoexcitation and Modulation Spectroscopy Intro Review lock-in detection Photoinduced absorption Electroabsorption (Stark) Spectroscopy Charge Modulation Photoexcite sample Take absorption spectra

More information

Unit 1 Matter & Energy for Life. Biology Photosynthesis

Unit 1 Matter & Energy for Life. Biology Photosynthesis Unit 1 Matter & Energy for Life Biology 2201 3.2 The Process of Photosynthesis Photosynthesis The process by which an organism captures the energy of the sun to convert CO 2 and water into glucose. Light

More information

3. Perturbed Angular Correlation Spectroscopy

3. Perturbed Angular Correlation Spectroscopy 3. Perturbed Angular Correlation Spectroscopy Dileep Mampallil Augustine K.U.Leuven, Belgium Perturbed Angular Correlation Spectroscopy (PAC) is a gamma ray spectroscopy and can be used to investigate

More information

Photosynthesis. The Sun powers life. capture about 5% of the Sun s energy and, through the process of, provide energy to.

Photosynthesis. The Sun powers life. capture about 5% of the Sun s energy and, through the process of, provide energy to. Photosynthesis The Sun powers life. capture about 5% of the Sun s energy and, through the process of, provide energy to. Photosynthesis is carried out by : 1. 2. 3. 4. These organisms all contain the pigment.

More information

ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program

ELŐADÁS KIVONAT CLASSROOM LECTURE HANDOUT. financed by the program TÁMOP-4.1.1.C-13/1/KONV-2014-0001 projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information

Of Electrons, Energy, and Excitons

Of Electrons, Energy, and Excitons Of,, and Gert van der Zwan July 17, 2014 1 / 35 Bacterial 2 / 35 Bacterial Bacterial LH1, LH2: excitonic interaction and energy transfer. RC, cytochromes: electron transfer reactions. Q, UQ: proton transfer

More information

Fluorescence Depolarization. Ben Berger and Ben Berger

Fluorescence Depolarization. Ben Berger and Ben Berger Fluorescence Depolarization Ben Berger and Ben Berger Small molecules rotate quickly Large molecules rotate slowly There is a time delay from the moment a molecule is excited to the time it fluoresces

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Thomas Schmidt Department of Biophysics Leiden University, The Netherlands tschmidt@biophys.leidenuniv.nl www.biophys.leidenuniv.nl/research/fvl Biophysical Structural Biology

More information

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work) PHOTOSYNTHESIS Energy can be transformed from one form to another FREE ENERGY (available for work) vs. HEAT (not available for work) THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS

More information

The mechanism of energy transfer in the antenna of photosynthetic purple bacteria

The mechanism of energy transfer in the antenna of photosynthetic purple bacteria Journal of Photochemistry and Photobiology A: Chemistry 142 (2001) 107 119 The mechanism of energy transfer in the antenna of photosynthetic purple bacteria Mino Yang, Ritesh Agarwal, Graham R. Fleming

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

Variable Fluorescence 4/13/10. Fluorescence HEAT

Variable Fluorescence 4/13/10. Fluorescence HEAT Fluorescence HEAT Variable Fluorescence 1 F Start with a pulse of weak light--this will cause weak (background) fluorescence and is called the probe flash 0 Time 1 Variable Fluorescence 1 F 0 Time Turn

More information

Polarised light. Polarised light. Polarised light. Polarizer. Polarisation

Polarised light. Polarised light. Polarised light. Polarizer. Polarisation Polarisation UNIVRSITY OF PÉCS MDICAL SCHOOL Fluorescence anisotrop, FRT In photograph! Miklós Nitrai, Februar 10, 2015 Wh? Polarised light Polarised light Light: lectro-magnetic radiation - a transverse

More information

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,

More information

PHOTOSYNTHESIS: THE LIGHT REACTIONS

PHOTOSYNTHESIS: THE LIGHT REACTIONS PHOTOSYNTHESIS: THE LIGHT REACTIONS ECOSYSTEM Photosynthesis CO 2 +H 2 O Organic + O molecules 2 Cellular respiration in mitochondria 1 PHOTOAUTOTROPHS The producers of the biosphere AUTOTROPH means self

More information

4.1. Photosynthesis Light-Dependent Reactions

4.1. Photosynthesis Light-Dependent Reactions 4.1 Photosynthesis Light-Dependent Reactions Photosynthesis Each year, Canada s boreal forest convert 12.5 million tonnes of carbon into energy-rich compounds for billions of organisms Photosynthesis

More information

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John WJEC UNIT 3 ATP & Photosynthesis 1 Adenosine Triphosphate (ATP) Revision from unit 1 1. ATP is a nucleotide. Label the components of the ATP molecule below: In the space below draw a simplified diagram

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the wner Societies 217 Electronic Supplementary Information Cylcodextrin-assisted Modulation in the Photophysical

More information

Radiation-matter interaction.

Radiation-matter interaction. Radiation-matter interaction Radiation-matter interaction Classical dipoles Dipole radiation Power radiated by a classical dipole in an inhomogeneous environment The local density of optical states (LDOS)

More information

THEORETICAL INVESTIGATION OF ELECTRONIC EXCITATION TRANSFER BETWEEN CHLOROPHYLLS IN LIGHT-HARVESTING ANTENNA OF PHOTOSYSTEM II USING QUANTUM COMPUTERS

THEORETICAL INVESTIGATION OF ELECTRONIC EXCITATION TRANSFER BETWEEN CHLOROPHYLLS IN LIGHT-HARVESTING ANTENNA OF PHOTOSYSTEM II USING QUANTUM COMPUTERS Quim. Nova, Vol. 35, No. 9, 1800-1805, 2012 THEORETICAL INVESTIGATION OF ELECTRONIC EXCITATION TRANSFER BETWEEN CHLOROPHYLLS IN LIGHT-HARVESTING ANTENNA OF PHOTOSYSTEM II USING QUANTUM COMPUTERS Artigo

More information

Singlet Singlet Annihilation Kinetics in Aggregates and Trimers of LHCII

Singlet Singlet Annihilation Kinetics in Aggregates and Trimers of LHCII Biophysical Journal Volume 80 May 2001 2409 2421 2409 Singlet Singlet Annihilation Kinetics in Aggregates and Trimers of LHCII V. Barzda,* V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen,*

More information

Optical Spectroscopy. Steady State and Time Dependent Fluorescence Measurements. Kai Wen Teng. October 8 th PHYS 403 Fall 2013

Optical Spectroscopy. Steady State and Time Dependent Fluorescence Measurements. Kai Wen Teng. October 8 th PHYS 403 Fall 2013 Optical Spectroscopy Steady State and Time Dependent Fluorescence Measurements Kai Wen Teng October 8 th 2013 PHYS 403 Fall 2013 EM Spectrum of molecules Rotational Energy Infrared Vibrational Energy Near

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

light-dependent reactions (i.e., light reactions)

light-dependent reactions (i.e., light reactions) LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available

More information

Brain regions related to quantum coherence

Brain regions related to quantum coherence Brain regions related to quantum coherence Research since 2007 has shown that quantum coherence is utilised in increasing the efficiency of energy transfer in photosynthetic systems. What has not been

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Photosystem I in Arabidopsis Thaliana

Photosystem I in Arabidopsis Thaliana Photosystem I in Arabidopsis Thaliana Part A. Photosystem I in Arabidopsis Thaliana Arabidopsis thaliana is a small flowering plant related to the cabbage and mustard plants. Like all plants, Arabidopsis

More information

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Supporting information Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Chavdar Slavov, Helvi Hartmann, Josef Wachtveitl Institute of Physical and Theoretical

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean

More information

EE 472 Solutions to some chapter 4 problems

EE 472 Solutions to some chapter 4 problems EE 472 Solutions to some chapter 4 problems 4.4. Erbium doped fiber amplifier An EDFA is pumped at 1480 nm. N1 and N2 are the concentrations of Er 3+ at the levels E 1 and E 2 respectively as shown in

More information

A Structure-Based Model of Energy Transfer Reveals the Principles of Light Harvesting in Photosystem II Supercomplexes

A Structure-Based Model of Energy Transfer Reveals the Principles of Light Harvesting in Photosystem II Supercomplexes pubs.acs.org/jacs A Structure-Based Model of Energy Transfer Reveals the Principles of Light Harvesting in Photosystem II Supercomplexes Doran I. G. Bennett, Kapil Amarnath, and Graham R. Fleming* Department

More information

SAM Teachers Guide Photosynthesis

SAM Teachers Guide Photosynthesis SAM Teachers Guide Photosynthesis Overview This activity focuses on how certain molecules called pigments interact with light and determine the color of plants. Students explore how molecules such as chlorophyll

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Resonant optical rectification. Theory and application to bacteriorhodopsin

Resonant optical rectification. Theory and application to bacteriorhodopsin Resonant optical rectification. Theory and application to bacteriorhodopsin Institute of Biophysics Biological Research Centre of the Hungarian Academy of Sciences Szeged, Hungary Laboratory for Optical

More information

Structures of photosynthetic pigment-protein

Structures of photosynthetic pigment-protein Structures of photosynthetic pigment-protein protein complexes and probing electrostatic field inside them by Stark spectroscopy Hideki Hashimoto, 1 Ritsuko Fujii, 1 Satoru Suzuki, 1 Katsunori Nakagawa,

More information

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko 2010 Pearson Education, Inc. PowerPoint Lectures for Campbell Essential Biology, Fourth Edition

More information

Structural insights into energy regulation of light-harvesting complex from spinach CP29

Structural insights into energy regulation of light-harvesting complex from spinach CP29 SUPPLEMENTARY INFORMATION Structural insights into energy regulation of light-harvesting complex from spinach CP29 Xiaowei Pan 1, Mei Li 1, Tao Wan 1,2, Longfei Wang 1,2, Chenjun Jia 1,2, Zhiqiang Hou

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Theme 1 Energy Capture and Catalysis at the Nanoscale

Theme 1 Energy Capture and Catalysis at the Nanoscale Theme 1 Energy Capture and Catalysis at the Nanoscale Grand Challenge: Enhance the efficiency of solar energy capture in artificial (and natural) systems Theme 1 bjectives bjective 1. Define basic principles

More information

Energy can be transformed from one form to another

Energy can be transformed from one form to another LEARNING OBJECTIVES By the end of this lecture you will be able to: Photosynthesis 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy

More information