SAM Teachers Guide Photosynthesis

Size: px
Start display at page:

Download "SAM Teachers Guide Photosynthesis"

Transcription

1 SAM Teachers Guide Photosynthesis Overview This activity focuses on how certain molecules called pigments interact with light and determine the color of plants. Students explore how molecules such as chlorophyll interact with light and gain energy. Students are then introduced to the concept that this energy is used by plants to make sugar and release oxygen which is the beginning of the photosynthesis process. Learning Objectives Students will be able to: Interpret a model of photons emitted by sunlight. Describe how different colored leaves absorb, reflect, and transmit different photons due to the presence or absence of a variety of pigments. Correlate the energy of a photon to the change in energy levels of electrons in molecules. Observe the structure of a chlorophyll molecule and explain how it can transfer energy to other molecules. Possible Student Pre/Misconceptions Plants are green because they absorb only green light. Photosynthesis can take place at night. Plants get their food from soil, not through sunlight. Models to Highlight After completion of the activity: Models to Highlight: Page 2 What Happens When Light Shines on Leaves o Review with students how the red leaf absorbs photons of any color but red while the green leaf absorbs photons of any color but green. This observation is the foundation for understanding the rest of the activity. Page 3 3D Structure of Chlorophyll Molecule o Point to the two parts of the molecule: the light catching head and the hydrocarbon tail. Talk about the structure and the function of these different parts of the molecule. o Link to other SAM activities: Intermolecular Attractions and Solubility. Help students relate the structure of the molecules to how they function.

2 Page 5 How Does Chlorophyll Work? o Students will most likely need to consult the Help link in order to clarify how to complete this task. It is worthwhile to discuss what the students are doing and why they are doing it. Compare this process to what is really going on in the photosystems of leaves. o Link to other SAM activities: Excited States and Photons and Spectroscopy. Explain the correlation between the energy of the photons and the excited states of the electrons. Possible Discussion Questions: How would leaves look different if chlorophyll was not the primary pigment present in chloroplasts? How does the process of photosynthesis connect to the idea of energy being converted from one form to another?

3 Connections to Other SAM Activities Photosynthesis is a biology capstone activity that deals with light being captured and the light matter interaction. It has many supporting activities. Atomic Structure introduces students to atoms, orbitals, and excited states. Excited States and Photons and Spectroscopy help students grasp the concept that certain atoms and/or molecules can only absorb certain photons or wavelengths of light. Lipids and Carbohydrates and Nucleic Acids and Proteins look at the structure and function of biomolecules and help students explore the chlorophyll molecule. Cellular Respiration describes a different part of the photosynthesis process the electron transport chain.

4 Activity Answer Guide Page 1: 1. What color light has the highest frequency? (d) 2. Which photon has the lowest amount of energy? (a) Page 2: 1. Based on the model, which of the following must be true? (Check all that are true.) (c) (d) 2. What will happen if we put a plant in a dark room and only shine green light on it? Explain your answer. A green leaf will absorb photons of any color but green. Since the light is green, the leaf will reflect the green light and not absorb any photons. The plant will die. Page 3: 1. Based on your observation of the above model, which molecule is responsible for absorbing light in the leaf? (c) 2. Click the Whole Leaf button and describe three things you have observed about photons after they hit a leaf. Sample responses: 1. The green photons are bounced back. 2. The other color photons are absorbed. 3. Non-visible light photons are absorbed. 4. Some photons pass through the leaves. (This is why leaves are semi-transparent.) 3. In the cell, chlorophyll binds to other molecules in a large complex. Based on the structure of chlorophyll's tail, with which of the following would chlorophyll associate? (Check all that apply.) (a) (b) 4. Heme is a functional group similar to chlorophyll's head, but it has iron in place of magnesium. Heme is what makes blood look red. What colors of light does iron help heme absorb? Explain your answer. (Hint) Heme must absorb all colors of light except red. That is why blood looks red as red photons are reflected back. Chlorophyll absorbs colors other than green. Leaves look green because green photons are reflected back. Page 4: 1. How do additional pigments help chlorophyll to transfer energy for photosynthesis? (c) 2. Compared to the other pigments, there is so much chlorophyll in leaves that they appear green. In the autumn, pigments start to break down. How can you explain the other colors in autumn leaves? With a lack of sunlight in the fall (as compared to summer) comes a lack of chlorophyll. Without the presence of chlorophyll the other colored pigments can be seen in autumn leaves. The principle of light being reflected back is the same. Page 5: 1. Describe what you need to do in order to produce a blue pigment. You need to prevent blue photons from being absorbed. The energy levels that represent blue photons being absorbed must be deleted to create a gap in energy levels. 2. Place the snapshot of the energy level diagram you have designed that produces a blue pigment. Sample snapshot:

5 plant to make its own food? Explain your answer. Indian pipe plants must not make their own food, but rather, they must get food in some other way such as parasitism. Without chlorophyll, they cannot excite the electrons to go through the process of photosynthesis. This makes the Indian pipe plant more similar to an animal or fungus. Page 6: Summary 1. What color of light is LEAST effective in causing photosynthesis? Why? Green, because it is reflected back. 2. If a substance is blue, then what is true about the photons it absorbs? (b) 3. Water tends to absorb more red photons than blue ones. Red algae are the known photosynthetic organisms that live deepest in the sea (as deep as 600 feet). Why do they have a red color when we observe them under sunlight? Because they are reflecting the red light when they are put in the sunlight. 4. Which of the following must be true about photon absorption and energy levels of pigments? (a) 5. Indian pipe plants (see the image on the left) contain no chlorophyll. What can you conclude about the ability of the Indian pipe

6 SAM HOMEWORK QUESTIONS Photosynthesis Directions: After completing the unit, answer the following questions to review. 1. A lichen is a symbiotic association of a fungus and green algae. Lichens are considered to be producers and primitive plants. Given what you have learned in this lesson, what role do you think the green algae play? 2. The snapshot shows the energy levels of a blue pigment. Explain how the gap in energy levels accounts for the pigment absorbing any photons but blue ones. 3. Describe what a photosystem is. 4. What determines the frequencies of the photons a pigment molecule absorbs? 5. Career connection: More solar energy hits the surface of the Earth in one hour than is used by the entire planet in one year. Plants absorb 3-6% of the sun hitting them through photosynthesis. Computer models are an important tool for planning for and designing new ways to capture solar energy to be used for electricity. Research and summarize one way people are trying to convert light/solar energy into some other form of energy.

7 SAM HOMEWORK QUESTIONS Harvesting Light for Photosynthesis With Suggested Answers for Teachers Directions: After completing the unit, answer the following questions to review. 1. A lichen is a symbiotic association of a fungus and green algae. Lichens are considered to be producers and primitive plants. Given what you have learned in this lesson, what role do you think the green algae play? The green algae can go through photosynthesis to make food for the symbiotic association. The fact that the algae are green is a clue that they contain chlorophyll, the pigment necessary to start the photosynthetic reactions. 2. The snapshot shows the energy levels of a blue pigment. Explain how the gap in energy levels accounts for the pigment absorbing any photons but blue ones. The gap shown makes it impossible for blue photons to be absorbed. If a photon's energy is not equal to the energy difference between any two energy levels in the molecule, then the photon cannot be absorbed. Instead, it will bounce back or pass through. Since blue photons have frequencies in the range where there is a gap of energy levels, so they are reflected back and seen as a blue pigment. 3. Describe what a photosystem is. A photosystem is a group of chlorophyll molecules held together by proteins. 4. What determines the frequencies of the photons a pigment molecule absorbs? When a pigment molecule absorbs a photon, one of the molecule s electrons gains energy and the electron jumps from a lower energy state to an excited state. The difference between the lower energy and the higher one is equal to the energy of the absorbed photon. 5. Career connection: One technique for capturing solar energy is to use dyes inspired by chlorophyll in a type of organic solar cell. Others include silicon-based solar cells, heating water using mirrors, and biomass for fuel, where the solar energy captured by plants is converted to heat energy through burning of the plant.

Photosynthesis and Life

Photosynthesis and Life 7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food

More information

SAM Teachers Guide Atoms, Excited States, and Photons

SAM Teachers Guide Atoms, Excited States, and Photons SAM Teachers Guide Atoms, Excited States, and Photons Overview This activity focuses on the ability of atoms to store energy and re emit it at a later time. Students explore atoms in an ʺexcitedʺ state

More information

AP Biology. Photosynthesis

AP Biology. Photosynthesis Photosynthesis Redox Reactions break bonds & move electrons from one molecule to another as electrons move they carry energy with them that energy is stored in another bond, released as heat or harvested

More information

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis: A.P. Biology Chapter 10- Photosynthesis Scale: 0 - No understanding of the concept and chemical process of photosynthesis. 1- With help, a partial understanding of the reactants and products of the photosynthesis

More information

Photosynthesis. 8Big idea. Cellular Basis of Life Q: How do plants and other organisms capture energy from the sun? Name Class Date WHAT I KNOW

Photosynthesis. 8Big idea. Cellular Basis of Life Q: How do plants and other organisms capture energy from the sun? Name Class Date WHAT I KNOW Name Class Date 8Big idea Photosynthesis Cellular Basis of Life Q: How do plants and other organisms capture energy from the sun? WHAT I KNOW WHAT I LEARNED 8.1 How do organisms store energy? 8.2 What

More information

Cellular Respiration and Photosynthesis Test

Cellular Respiration and Photosynthesis Test Cellular Respiration and Photosynthesis Test 1. When bonds are made energy is, when bonds are broken energy is. A. stored / released C. released / stored B. used / not used D. created / destroyed 2. Aerobic

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air Photosynthesis: Life from Light and Air 2006-2007 Energy needs of life All life needs a constant input of energy get their energy from eating others eat food = other organisms = make energy through get

More information

Lesson Overview. Photosynthesis: An Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Lesson Overview. Photosynthesis: An Overview. Lesson Overview. 8.2 Photosynthesis: An Overview Lesson Overview 8.2 Photosynthesis: An Overview Light and pigments Energy from the sun travels to Earth in the form of light. Sunlight is a mixture of different wavelengths. The wavelengths we see is known

More information

PHOTOSYNTHESIS &CELLULAR RESPIRATION. Mrs. Green

PHOTOSYNTHESIS &CELLULAR RESPIRATION. Mrs. Green PHOTOSYNTHESIS &CELLULAR RESPIRATION Mrs. Green Bell work 1) What type of organism would Most likely benefit directly from increased levels of CO 2? a) Fish b) Bird c) Tree d) Mushroom 2) Which of these

More information

Unit 4.1: Energy for Life

Unit 4.1: Energy for Life Unit 4.1: Energy for Life This caterpillar is busily munching its way through leaf after leaf. In fact, caterpillars do little more than eat, day and night. Like all living things, they need food to provide

More information

Name 7 Photosynthesis: Using Light To Make Food Test Date Study Guide You must know: How photosystems convert solar energy to chemical energy.

Name 7 Photosynthesis: Using Light To Make Food Test Date Study Guide You must know: How photosystems convert solar energy to chemical energy. Name _ 7 Photosynthesis: Using Light To Make Food Test Date Study Guide You must know: How photosystems convert solar energy to chemical energy. How linear electron flow in the light reactions results

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Welcome to Bio 10. Cell Shape and Movement. Maintaining Cell Shape. Motor proteins. How cells move. Ch. 5 How Cells Use Energy

Welcome to Bio 10. Cell Shape and Movement. Maintaining Cell Shape. Motor proteins. How cells move. Ch. 5 How Cells Use Energy Welcome to Bio 10 Last day to add classes: Sat Apr 16 Peer-tutoring groups Meet Tu at 11:30, Th at 12:30 or Fri at 10:30 Skills Center in ATC302 Today: ATP, enzymes (Ch 5), Photosynthesis (Ch 7) Test 1

More information

Science Skills Station

Science Skills Station Science Skills Station Objective Analyze the effects of sunlight intensity on the rate of photosynthesis. Determine the importance of carbon dioxide on the rate of photosynthesis. Skills Utilized Infer

More information

Name Date Class. This section explains how plants make food by using the energy from sunlight.

Name Date Class. This section explains how plants make food by using the energy from sunlight. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Photosynthesis This section explains how plants make food by using the energy from sunlight. Use Target Reading

More information

Photosynthesis: Life from Light and Air. Regents Biology

Photosynthesis: Life from Light and Air. Regents Biology Photosynthesis: Life from Light and Air Plants are energy producers Like animals, plants need energy to live unlike animals, plants don t need to eat food to make that energy Plants make both FOOD & ENERGY

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration What you will learn: GPS Standard SB3a Explain the cycling of energy through the processes of photosynthesis and respiration. IN OTHER WORDS Photosynthesis and Cellular

More information

Complete the notes on photosynthesis in the spaces below.

Complete the notes on photosynthesis in the spaces below. Section: 3.2 Name: Opening Activity: What type of energy is absorbed by pigment molecules in plant cells to start photosynthesis? Latin Root Word: Review of Old Information: ATP then provides the energy

More information

Energy can be transformed from one form to another

Energy can be transformed from one form to another LEARNING OBJECTIVES By the end of this lecture you will be able to: Photosynthesis 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars).

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Photosynthesis Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Plants do photosynthesis to make their own food (sugars) and are called, photoautotrophs.

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air http://www.youtube.com/watch?v=wi60tqa8jfe Photosynthesis: Life from Light and Air 2011-2012 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) obtain

More information

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy. Chapter 7 Capturing Solar Energy: Photosynthesis Overview - the process that feeds the biosphere Photosynthesis: transformation of solar energy into chemical energy. Responsible for O 2 in our atmosphere

More information

8.2 Photosynthesis Overview

8.2 Photosynthesis Overview 8.2 Photosynthesis Overview Chlorophyll and Chloroplasts What role do pigments play in the process of photosynthesis? Photosynthetic organisms capture energy from sunlight with pigments. Light Energy from

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs Sample Questions: Chapter 7 1 Which of these types of organisms produce the biosphere's food supply? A autotrophs and heterotrophs B consumers and heterotrophs C heterotrophs D autotrophs E consumers 2

More information

Jeddah Knowledge International School

Jeddah Knowledge International School Jeddah Knowledge International School Biology Revision Pack Answer key 2016-2017 Quarter 3 Grade 9 Name: Section: ANSWER KEY- SCIENCE GRADE 9, QUARTER 3 1 Mark Scheme Multiple Choice Part A 1. Which gas

More information

Biology. Slide 1 of 28. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 28. End Show. Copyright Pearson Prentice Hall Biology 1 of 28 8-2 Photosynthesis: An Overview 2 of 28 8-2 Photosynthesis: An Overview The key cellular process identified with energy production is photosynthesis. Photosynthesis is the process in which

More information

Unit 4.2: Photosynthesis - Sugar as Food

Unit 4.2: Photosynthesis - Sugar as Food Unit 4.2: Photosynthesis - Sugar as Food Lesson Objectives Outline the stages of photosynthesis. Describe the chloroplast and its role in photosynthesis. List the steps of the light reactions. Describe

More information

ENERGY = ATP ATP. B. How is Energy stored in our cells? 1. In the chemical bonds between the phosphates

ENERGY = ATP ATP. B. How is Energy stored in our cells? 1. In the chemical bonds between the phosphates I. What is energy in biology? ENERGY = Adenosine TriPhosphate Whoa! HOT stuff! 2009-2010 A. What is? Adenosine Triphosphate is similar to a nucleotide but has three phosphates instead of one B. How is

More information

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work) PHOTOSYNTHESIS Energy can be transformed from one form to another FREE ENERGY (available for work) vs. HEAT (not available for work) THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS

More information

light-dependent reactions (i.e., light reactions)

light-dependent reactions (i.e., light reactions) LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available

More information

UNIT 2: CELLS Chapter 4: Cells and Energy

UNIT 2: CELLS Chapter 4: Cells and Energy CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Photosynthesis & Cellular Respiration. mages/life/chap1_2/ph otosyn.swf://

Photosynthesis & Cellular Respiration.   mages/life/chap1_2/ph otosyn.swf:// Photosynthesis & Cellular Respiration http://mrescience.com/i mages/life/chap1_2/ph otosyn.swf:// Photosynthesis Photosynthesis is a chemical reaction. Plants use light to make their own food. Where does

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Name Period Date Photosynthesis and Cellular Respiration Biology A - STUDY GUIDE 1. Know the parts of the process. (MTS_LT1 ) a. The site (organelle) in a plant cell where photosynthesis takes place: b.

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs

More information

Outline - Photosynthesis

Outline - Photosynthesis Outlin Photosynthesis Photosynthesis 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts: Structure and Function 5. Photosynthetic

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

Energy in Animals Classwork. 3) Complete the following chart to show what Energy is used for in animals: Use of Energy Description (slides )

Energy in Animals Classwork. 3) Complete the following chart to show what Energy is used for in animals: Use of Energy Description (slides ) Energy in Animals Classwork 5 th Grade PSI 1) Define Energy. Give an example. 2) Why do animals need to eat? 3) Complete the following chart to show what Energy is used for in animals: Use of Energy Description

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Biology Slide 1 of 28

Biology Slide 1 of 28 Biology 1 of 28 8-2 Photosynthesis: An Overview 2 of 28 8-2 Photosynthesis: An Overview 8-2 Photosynthesis: An Overview The key cellular process identified with energy production is photosynthesis. Photosynthesis

More information

SAM Teachers Guide Chemical Bonds

SAM Teachers Guide Chemical Bonds SAM Teachers Guide Chemical Bonds Overview Students discover that the type of bond formed ionic, non polar covalent, or polar covalent depends on the electronegativity of the two atoms that are bonded

More information

Photosynthesis

Photosynthesis Student Expectations: Cellular Energy Understand that cellular energy is temporarily stored in the nucleotide ATP (adenosine triphosphate) Describe how energy is released by ATP When the outer phosphate

More information

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview Lesson Overview 8.2 Photosynthesis: An Overview Chlorophyll and Chloroplasts What role do pigments play in the process of photosynthesis? Photosynthetic organisms capture energy from sunlight with pigments.

More information

Biology I Photosynthesis. O + sunlight energy C 6. Outer membrane. Inner membrane

Biology I Photosynthesis. O + sunlight energy C 6. Outer membrane. Inner membrane Name: Why? Biology I Photosynthesis How do light-dependent and light-independent reactions provide food for a plant? Plants are the original solar panels. Through photosynthesis a plant is able to convert

More information

8-2 Photosynthesis: An Overview. 8-2 Photosynthesis: An Overview

8-2 Photosynthesis: An Overview. 8-2 Photosynthesis: An Overview 8-2 Photosynthesis: An Overview The key cellular process identified with energy production is photosynthesis. Photosynthesis is the process in which green plants use the energy of sunlight to convert water

More information

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview.

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview. Photosynthesis Bellringer A.1 Identify the following as: heterotroph, autotroph, photosynthesis reactant, or photosynthesis product State Biology Standards H.B.3A1-3 and H.B.2A.1 A.1 Plants take in carbon

More information

ATP. Pentose Sugar (ribose) 3 phosphate groups. adenine. Does this structure look familiar?

ATP. Pentose Sugar (ribose) 3 phosphate groups. adenine. Does this structure look familiar? Photosynthesis The Big Picture Photosynthesis and Respiration work together in plants to make energy for the plant they are autotrophs Animals only use cellular respiration why? They are heterotrophs!

More information

Activity 12: The Cells of Plants

Activity 12: The Cells of Plants Name Activity 12: The Cells of Plants Guiding Question: What structures in plant cells convert energy from the sun into energy stored in food? Key Words: cell, cell wall, chloroplast, energy Get Started:

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

X Biology I. Unit 1-4: Cellular Energy

X Biology I. Unit 1-4: Cellular Energy NOTE/STUDY GUIDE: Unit 1-4, Cellular Energy X Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE X Biology I Unit 1-4: Cellular Energy Additional

More information

11/19/2013. How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis

11/19/2013. How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis Unit 5: Cellular Respiration and Photosynthesis How do cells obtain energy from food molecules? 1. Cellular respiration release energy from food molecules 2. Glycolysis begins the production of Energy

More information

Chapter 8 Notes Photosynthesis

Chapter 8 Notes Photosynthesis Name: Date: Chapter 8 Notes Photosynthesis Section 8-2 & 8-3 Photosynthesis: An Overview (p. 204-214) The study of energy capture and use begins with. Photosynthesis is the process in which plants use

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information

Chapter 8: Photosynthesis

Chapter 8: Photosynthesis Name: KEY Class: Date Chapter 8: Photosynthesis Section 8-1 Energy and Life (pages 201-203) Autotrophs and Heterotrophs (page 201) 1. Where does the energy of food originally come from? The sun, plants

More information

PHOTOSYNTHESIS. Chapter 8

PHOTOSYNTHESIS. Chapter 8 PHOTOSYNTHESIS Chapter 8 ENERGY & LIFE ENERGY The ability to do work. Can be stored in chemical bonds. Cells need energy to do things like active transport, dividing, moving, and producing and storing

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

10/4/2016. Matter, Energy, and Life

10/4/2016. Matter, Energy, and Life DISCLAIMER: Principles and concepts on atomic structure, the Periodic Table, atoms, ions, ionic and covalent compounds, metals, and nonmetals will not be covered in this course. You are expected to know

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as Photosynthesis.

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Unit 8 Cell Metabolism. Foldable Notes

Unit 8 Cell Metabolism. Foldable Notes Unit 8 Cell Metabolism Foldable Notes Silently read pages 94-96 of your biology textbook Middle Inside Top Vocabulary 1. ATP 2. ADP 3. Product 4. Reactant 5. Chloroplast 6. Mitochondria 7. Heterotroph

More information

Cellular Energy: Photosythesis

Cellular Energy: Photosythesis Cellular Energy: hotosythesis Cellular respiration and photosynthesis are chemical reactions that provide kinetic and potential energy for cells Sunlight energy hotosynthesis in chloroplasts Glucose +

More information

Overview of Photosynthesis

Overview of Photosynthesis Photosynthesis Overview of Photosynthesis During photosynthesis, autotrophs/producers use the sun s energy to make carbohydrate molecules from water and carbon dioxide, releasing oxygen as a by-product

More information

Photosynthesis and Cellular Respiration: Photosynthesis

Photosynthesis and Cellular Respiration: Photosynthesis Photosynthesis and Cellular Respiration: Photosynthesis Unit Objective I can compare the processes of photosynthesis and cellular respiration in terms of energy flow, reactants, and products. During this

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

PHOTOSYNTHESIS. Trapping the Sun s Energy

PHOTOSYNTHESIS. Trapping the Sun s Energy 1 PHOTOSYNTHESIS Trapping the Sun s Energy 2 Energy is trapped in chemical bonds But where does energy come from? GLUCOSE 3 Carbohydrate sugar molecule Simple sugar, known as a monosaccharide(ex: fructose,

More information

Photosynthesis Prep Test 2

Photosynthesis Prep Test 2 Photosynthesis Prep Test 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Energy is released from ATP when a. a phosphate group is added. b. adenine bonds

More information

The main form of energy from the sun is in the form of electromagnetic radiation. Visible radiation (white light) used for photosynthesis ROY G.

The main form of energy from the sun is in the form of electromagnetic radiation. Visible radiation (white light) used for photosynthesis ROY G. PHOTOSYNTHESIS The main form of energy from the sun is in the form of electromagnetic radiation Visible radiation (white light) used for photosynthesis ROY G. BIV The electromagnetic spectrum A Red Object

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name: Chloroplasts and Mitochondria Plant cells and some algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as

More information

Photosynthesis. All Materials Cmassengale

Photosynthesis. All Materials Cmassengale Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life A. All organisms require energy B. Some organisms (autotrophs) obtain energy directly from the sun and store it in organic compounds

More information

Cellular Respiration and Photosynthesis

Cellular Respiration and Photosynthesis Cellular Respiration and Photosynthesis Imagine an abandoned house that is falling apart. Restoring order to the house will require an input of energy (for example: hammering nails, applying paint). Living

More information

Photosynthesis and Cellular Respiration Lapbook Pre-test. SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis.

Photosynthesis and Cellular Respiration Lapbook Pre-test. SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis. Photosynthesis and Cellular Respiration Lapbook Pre-test Covers Standards: SC.912.L.18.7: Identify the reactants, products, and basic functions of photosynthesis. SC.912.L.18.8: Identify the reactants,

More information

PHOTOSYNTHESIS: THE LIGHT REACTIONS

PHOTOSYNTHESIS: THE LIGHT REACTIONS PHOTOSYNTHESIS: THE LIGHT REACTIONS ECOSYSTEM Photosynthesis CO 2 +H 2 O Organic + O molecules 2 Cellular respiration in mitochondria 1 PHOTOAUTOTROPHS The producers of the biosphere AUTOTROPH means self

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) (Autotrophs: photo-autotrophs, chemo-autotrophs, electro-autotrophs,

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

PHOTOSYNTHESIS Chapter 6

PHOTOSYNTHESIS Chapter 6 PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:

More information

Unit 5.1 ~ Cell Energy: PHOTOSYNTHESIS

Unit 5.1 ~ Cell Energy: PHOTOSYNTHESIS Unit 5.1 ~ Cell Energy: PHOTOSYNTHESIS Objectives/Goals: Classify organisms in how they obtain energy Identify the reactants and products of photosynthesis Understand how ATP is used to provide cells with

More information

Material cycles and energy: photosynthesis

Material cycles and energy: photosynthesis 7 Material cycles and energy: photosynthesis Remember: Plants are living organisms and can carry out all the life processes. Plants must be able to make foods. The foods provide raw materials for growth

More information

Photosynthesis. Light-dependent Reactions

Photosynthesis. Light-dependent Reactions Photosynthesis Light-dependent Reactions video http://www.youtube.com/watch?v=hj_wkgnl 6MI&feature=related Overview Photosynthesis transforms the radiant energy from the sun into the chemical energy of

More information

Photosynthesis. Plant Anatomy. Plant Anatomy. Plant Anatomy 1/14/2015. Stems. Leaves

Photosynthesis. Plant Anatomy. Plant Anatomy. Plant Anatomy 1/14/2015. Stems. Leaves //205 Plant Anatomy Photosynthesis Roots Anchor plant to the ground Absorb water minerals from soil (by osmosis) Store food for plant (glucose made in photosynthesis is stored as starch) Plant Anatomy

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name Date Your # Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process

More information

Lesson Overview. 8.2 Photosynthesis: An Overview

Lesson Overview. 8.2 Photosynthesis: An Overview 8.2 Photosynthesis: An Overview Light Energy from the sun travels to Earth in the form of light. Sunlight is a mixture of different wavelengths Light Our eyes see the different wavelengths of the visible

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean

More information

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis?

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis? Chapter 7 Capturing Solar Energy: Photosynthesis What is Photosynthesis? Answer: The capture of sunlight energy and the subsequent storage of that energy in the chemical bonds (e.g., glucose) Chemical

More information

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and

More information

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration Ch. 4 Cells and Energy Photosynthesis and Cellular Respiration 1 2 4.1 Chemical Energy and ATP Living organisms need energy Most comes indirectly from sun! Some change sunlight into organic compounds Others

More information

Chapter 8 Photosynthesis Class/Homework

Chapter 8 Photosynthesis Class/Homework 2011 Chapter 8 Photosynthesis Class/Homework Chapter 8 Vocabulary 8.1 Term Definition Adenosine triphosphate (ATP) Autotroph Heterotroph Photosynthesis Compound that cells use to store and release energy

More information

light-dependent reactions (i.e., light reactions)

light-dependent reactions (i.e., light reactions) LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available

More information

SAM Teachers Guide Intermolecular Forces Overview Learning Objectives: Possible student pre/misconceptions

SAM Teachers Guide Intermolecular Forces Overview Learning Objectives: Possible student pre/misconceptions SAM Teachers Guide Intermolecular Forces Overview This unit focuses on the attractive forces felt between molecules. Both London Dispersion and Dipole Dipole intermolecular attractions will be discussed

More information

Autotrophs and Heterotrophs

Autotrophs and Heterotrophs Section 8-1 Notes Energy and Life Energy is the ability to do work. Living things depend on energy. Without the ability to obtain and use energy, life would cease to exist. Where does the energy that living

More information

7th Grade PSI. Matter and Energy in Everyday Life. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Table of Contents.

7th Grade PSI. Matter and Energy in Everyday Life. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Table of Contents. Slide 1 / 44 Slide 2 / 44 7th Grade PSI Matter and Energy in Everyday Life www.njctl.org Slide 3 / 44 Table of Contents Click on the topic to go to that section Photosynthesis Photosynthesis Formula Game

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

Student Exploration: Cell Energy Cycle

Student Exploration: Cell Energy Cycle Name: Date: Student Exploration: Cell Energy Cycle Vocabulary: aerobic respiration, anaerobic respiration, ATP, cellular respiration, chemical energy, chlorophyll, chloroplast, cytoplasm, glucose, glycolysis,

More information