Hybrid Discontinuous Galerkin methods for incompressible flow problems

Size: px
Start display at page:

Download "Hybrid Discontinuous Galerkin methods for incompressible flow problems"

Transcription

1 Hybrid Discontinuous Galerkin methods incompressible flow problems Christoph Lehrenfeld, Joachim Schöberl MathCCES Computational Mathematics in Engineering Workshop Linz, May 31 - June 1, 2010

2 Contents The methods: Cockburn, Lazarov, Gopalakrishnan, 2008 Egger, Schöberl, 2009 Scalar convection diffusion (IP) (U) (IP) (U) Cockburn, Kanschat, Schötzau, 2005 incompressible Navier Stokes Equations (IP) (IP) (U) (U) Schöberl, Zaglmayr, 2005 Reduced Reduced 'high order 'high order divfree' divfree' basis basis Software, Examples, Conclusion

3 Contents The methods: Cockburn, Lazarov, Gopalakrishnan, 2008 Egger, Schöberl, 2009 Scalar convection diffusion (IP) (U) (IP) (U) Cockburn, Kanschat, Schötzau, 2005 incompressible Navier Stokes Equations (IP) (IP) (U) (U) Schöberl, Zaglmayr, 2005 Reduced Reduced 'high order 'high order divfree' divfree' basis basis Software, Examples, Conclusion

4 Hybrid scalar convection diffusion equations u + div(bu) = f

5 Discretization space Trial functions are: discontinuous piecewise polynomials (on each facet and element) with appropriate mulations we get more unknowns but less matrix entries implementation fits into standard element-based assembling structure allows condensation of element unknowns

6 mulation u Symmetric Interior Penalty Formulation (τ h h ): p 2 B (u, v) = u v dx T T + { { u } { v } } [[v]] ds [[u]] ds + τ h [[u]][[v]] ds E E n E n E Hybrid Symmetric Interior Penalty Formulation (τ h h ): p 2 B ( (u,u F ),(v,v F ) ) = { u v dx T T u T n (v v v F ) ds T n (u u F ) ds } + τ h (u u F )(v v F ) ds T This and other hybridizations of CG, mixed and methods were discussed in [Cockburn+Gopalakrishnan+Lazarov, 08]

7 mulation u Symmetric Interior Penalty Formulation (τ h h ): p 2 B (u, v) = u v dx T T + { { u } { v } } [[v]] ds [[u]] ds + τ h [[u]][[v]] ds E E n E n E Hybrid Symmetric Interior Penalty Formulation (τ h h ): p 2 B ( (u,u F ),(v,v F ) ) = { u v dx T T u T n (v v v F ) ds T n (u u F ) ds } + τ h (u u F )(v v F ) ds T This and other hybridizations of CG, mixed and methods were discussed in [Cockburn+Gopalakrishnan+Lazarov, 08]

8 mulation div(bu) = f (div(b) = 0) After partial integration on each element we get div(bu) v dx = { bu v dx + Ω T T Upwind Hybridized Upwind : T } b n u? v ds u U = { unb if b n 0 u if b n > 0 = u HU = { uf if b n 0 u if b n > 0

9 mulation div(bu) = f (div(b) = 0) After partial integration on each element we get div(bu) v dx = { bu v dx + Ω T T Upwind Hybridized Upwind : T } b n u? v ds u U = { unb if b n 0 u if b n > 0 = u HU = { uf if b n 0 u if b n > 0 + T T out b n (u F u)v F ds This gives us an appropriate bilinearm C ( (u, u F ), (v, v F ) ) the convective term. Already used in [Egger+Schöberl, 09]

10 mulation div(bu) = f (div(b) = 0) After partial integration on each element we get div(bu) v dx = { bu v dx + Ω T T Upwind Hybridized Upwind : T } b n u? v ds u U = { unb if b n 0 u if b n > 0 = u HU = { uf if b n 0 u if b n > 0 + T T out b n (u F u)v F ds This gives us an appropriate bilinearm C ( (u, u F ), (v, v F ) ) the convective term. Already used in [Egger+Schöberl, 09]

11 mulation u + div(bu) = f (div(b) = 0) Now we can add the introduced bilinearms together and easily get a mulation the convection diffusion problem: A ( (u, u F ), (v, v F ) ) := B ( (u, u F ), (v, v F ) ) + C ( (u, u F ), (v, v F ) ) = (f, v)

12 Contents The methods: Cockburn, Lazarov, Gopalakrishnan, 2008 Egger, Schöberl, 2009 Scalar convection diffusion (IP) (U) (IP) (U) Cockburn, Kanschat, Schötzau, 2005 incompressible Navier Stokes Equations (IP) (IP) (U) (U) Schöberl, Zaglmayr, 2005 Reduced Reduced 'high order 'high order divfree' divfree' basis basis Software, Examples, Conclusion

13 Hybrid incompressible Navier Stokes Equations div( ν u + u u + pi ) = f div u = 0 + b.c.

14 (steady) incompressible Navier Stokes Equations variational mulation: B(u, v) + C(u; u, v) + D(p, v) + D(q, u) = f (v) where B is a suitable bilinearm the viscous term, D is the bilinearm the incompressibility-constraint and the pressure term and C is the convective Trilinearm. tasks: Find an appropriate discretization space Find appropriate bilinearms Find an iterative procedure to solve the nonlinearity ( Oseen its.)

15 Contents The methods: Cockburn, Lazarov, Gopalakrishnan, 2008 Egger, Schöberl, 2009 Scalar convection diffusion (IP) (U) (IP) (U) Cockburn, Kanschat, Schötzau, 2005 incompressible Navier Stokes Equations (IP) (IP) (U) (U) Schöberl, Zaglmayr, 2005 Reduced Reduced 'high order 'high order divfree' divfree' basis basis Software, Examples, Conclusion

16 H(div)-conming elements Navier Stokes [Cockburn, Kanschat, Schötzau, 2005]: + inc. Navier-Stokes + local conservation + energy-stability = need exactly divergence-free convective velocity C(u; u, v)

17 Contents The methods: Cockburn, Lazarov, Gopalakrishnan, 2008 Egger, Schöberl, 2009 Scalar convection diffusion (IP) (U) (IP) (U) Cockburn, Kanschat, Schötzau, 2005 incompressible Navier Stokes Equations (IP) (IP) (U) (U) Schöberl, Zaglmayr, 2005 Reduced Reduced 'high order 'high order divfree' divfree' basis basis Software, Examples, Conclusion

18 H(div)-conming elements Navier Stokes Trial and test functions: normal-cont., tangential-discont. velocity element functions, piecewise polynomial (degree k) u, v facet velocity functions the tangential component only, piecewise polynomial (degree k) u t F, v t F discont. element pressure functions, piecewise polynomial (degree k 1) p, q

19 Hybrid Navier Stokes bilinearms Viscosity: B ( (u, u F ), (v, v F ) ) = Convection: T T C ( w; (u, u F ), (v, v F ) ) = T pressure / incompressibility constraint: D ( (u, u F ), q ) = T { ν u : v dx ν u n (v t vf t ) ds T T } ν v n (u t uf t ) ds + ντ h (u t uf t ) (v t vf t ) ds T { } u w : v dx+ w nu up v ds+ w n(uf t u t )vf t ds T T T out T div(u)q dx weak incompressibility (+ H(div)-conmity) exactly divergence-free solutions

20 Contents The methods: Cockburn, Lazarov, Gopalakrishnan, 2008 Egger, Schöberl, 2009 Scalar convection diffusion (IP) (U) (IP) (U) Cockburn, Kanschat, Schötzau, 2005 incompressible Navier Stokes Equations (IP) (IP) (U) (U) Schöberl, Zaglmayr, 2005 Reduced Reduced 'high order 'high order divfree' divfree' basis basis Software, Examples, Conclusion

21 Reduced basis H(div)-conming Finite Elements We use the construction of high order finite elements of [Schöberl+Zaglmayr, 05, Thesis Zaglmayr 06]: It is founded on the de Rham complex H 1 H(curl) curl H(div) div L 2 W h curl div Vh S h Q h a a b b c c + 1 Leading to a natural separation of the space ( higher order) W hp = W L1 + span{ϕ W h.o.} V hp = V N0 + span{ ϕ W h.o.} + span{ϕ V h.o.} S hp = S RT 0 + span{curl ϕ V h.o.} + span{ϕ S h.o.} Q hp = Q P0 + span{div ϕ S h.o.}

22 Reduced basis H(div)-conming Finite Elements We use the construction of high order finite elements of [Schöberl+Zaglmayr, 05, Thesis Zaglmayr 06]: It is founded on the de Rham complex H 1 H(curl) curl H(div) div L 2 W h curl div Vh S h Q h a a b b c c + 1 Leading to a natural separation of the space ( higher order) W hp = W L1 + span{ϕ W h.o.} V hp = V N0 + span{ ϕ W h.o.} + span{ϕ V h.o.} S hp = S RT 0 + span{curl ϕ V h.o.} + span{ϕ S h.o.} Q hp = Q P0 + span{div ϕ S h.o.}

23 Reduced basis H(div)-conming Finite Elements We use the construction of high order finite elements of [Schöberl+Zaglmayr, 05, Thesis Zaglmayr 06]: It is founded on the de Rham complex H 1 H(curl) curl H(div) div L 2 W h curl div Vh S h Q h a a b b c c + 1 Leading to a natural separation of the space ( higher order) W hp = W L1 + span{ϕ W h.o.} V hp = V N0 + span{ ϕ W h.o.} + span{ϕ V h.o.} S hp = S RT 0 + span{curl ϕ V h.o.} + span{ϕ S h.o.} Q hp = Q P0 + span{div ϕ S h.o.}

24 Reduced basis H(div)-conming Finite Elements We use the construction of high order finite elements of [Schöberl+Zaglmayr, 05, Thesis Zaglmayr 06]: It is founded on the de Rham complex H 1 H(curl) curl H(div) div L 2 W h curl div Vh S h Q h a a b b c c + 1 Leading to a natural separation of the space ( higher order) W hp = W L1 + span{ϕ W h.o.} V hp = V N0 + span{ ϕ W h.o.} + span{ϕ V h.o.} S hp = S RT 0 + span{curl ϕ V h.o.} Q hp = Q P0 + span{div ϕ S h.o.}

25 space separation in 2D div(σ k h ) = T RT 0 DOF higher order edge DOF higher order div.-free DOF higher order DOF with nonz. div RT 0 shape fncs. curl of H 1 -edge fncs. curl of H 1 -el. fncs. remainder P 0 (T ) {0} {0} T [P k 1 P 0 ](T ) 1 #DOF = 3 + 3k + 2 k(k 1) k(k + 1) 1 discrete functions have only piecewise constant divergence only piecewise constant pressure necessary exact incompressibility

26 Summary of ingredients and properties So, we have presented a new Finite Element Method Navier Stokes, with H(div)-conming Finite Elements Hybrid Discontinuous Galerkin Method viscous terms Upwind flux (in -sence) the convection term leading to solutions, which are locally conservative energy-stable ( d dt u 2 L 2 C ν f 2 L 2 ) exactly incompressible static condensation standard finite element assembly is possible less matrix entries than std. approaches reduced basis possible

27 Software, Examples and Conclusion

28 Software Netgen Downloads: Help & Instructions: NGSolve (including the presented scalar methods) Downloads: Help & Instructions: NGSflow (including the presented methods) Downloads: Help & Instructions: NGSflow is the flow solver add-on to NGSolve. It includes: The presented Navier Stokes Solver A package solving heat (density) driven flow

29 Examples 2D Driven Cavity (u top = 0.25, ν = 10 3 )

30 Examples 2D laminar flow around a disk (Re=100): 3D laminar flow around a cylinder (Re=100):

31 Heat driven flow changes in density are small: incompressibility model is still acceptable changes in density just cause some buoyancy ces Boussinesq-Approximation: Incompressible Navier Stokes Equations are just modified at the ce term: f = g (1 β(t T 0 ))g β : heat expansion coefficient Convection-Diffusion-Equation the temperature T t + div( λ T + u T ) = q Discretization of Convection Diffusion Equation with method Weak coupling of unsteady Navier Stokes Equation and unsteady Convection Diffusion Equation Higher Order (p 1,.., 5) in time with IMEX schemes

32 Examples Benard-Rayleigh example: Top temperature: constant 20 C Bottom temperature: constant 20.5 C Initial mesh and initial condition (p = 5):

33 Conclusion and ongoing work Conclusion: efficient methods scalar convection diffusion equations Navier Stokes Equations using Hybrid H(div)-conming Finite Elements reduced basis related/future work: heat driven flow (Boussinesq Equations) time integration (IMEX schemes,...) 3D Solvers (Preconditioners,...)

34 Thank you your attention!

Advanced Higher Order Finite Elements From Theory to Application with Netgen/NGSolve

Advanced Higher Order Finite Elements From Theory to Application with Netgen/NGSolve Advanced Higher Order Finite Elements From Theory to Application with Netgen/NGSolve Christoph Lehrenfeld, Joachim Schöberl Center for Computational Engineering Sciences (CCES) RWTH Aachen University Vancouver

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

Hybrid Discontinuous Galerkin Methods for Fluid Dynamics and Solid Mechanics

Hybrid Discontinuous Galerkin Methods for Fluid Dynamics and Solid Mechanics Hybrid Discontinuous Galerkin Methods for Fluid Dynamics and Solid Mechanics Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations Bernardo Cockburn Guido anschat Dominik Schötzau June 1, 2007 Journal of Scientific Computing, Vol. 31, 2007, pp.

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

An Introduction to Netgen and NGSolve Session 1 Using Netgen/NGSolve

An Introduction to Netgen and NGSolve Session 1 Using Netgen/NGSolve An Introduction to Netgen and NGSolve Session 1 Using Netgen/NGSolve Christoph Lehrenfeld Center for Computational Engineering Sciences (CCES) RWTH Aachen University University of British Columbia, November

More information

Nitsche-type Mortaring for Maxwell s Equations

Nitsche-type Mortaring for Maxwell s Equations Nitsche-type Mortaring for Maxwell s Equations Joachim Schöberl Karl Hollaus, Daniel Feldengut Computational Mathematics in Engineering at the Institute for Analysis and Scientific Computing Vienna University

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

Diplomarbeit. Ausgefu hrt am Institut fu r. Analysis und Scientific Computing. der Technischen Universita t Wien. unter der Anleitung von

Diplomarbeit. Ausgefu hrt am Institut fu r. Analysis und Scientific Computing. der Technischen Universita t Wien. unter der Anleitung von Diplomarbeit Pressure Robust Discretizations for Navier Stokes Equations: Divergence-free Reconstruction for Taylor-Hood Elements and High Order Hybrid Discontinuous Galerkin Methods Ausgefu hrt am Institut

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

A primer on Numerical methods for elasticity

A primer on Numerical methods for elasticity A primer on Numerical methods for elasticity Douglas N. Arnold, University of Minnesota Complex materials: Mathematical models and numerical methods Oslo, June 10 12, 2015 One has to resort to the indignity

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods A MIXED DG METHOD FOR LINEARIZED INCOMPRESSIBLE MAGNETOHYDRODYNAMICS PAUL HOUSTON, DOMINIK SCHÖTZAU, AND XIAOXI WEI Journal of Scientific Computing, vol. 40, pp. 8 34, 009 Abstract. We introduce and analyze

More information

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de 2016-05-05, Pittsburgh Weierstrass Institute for Applied Analysis and Stochastics Towards pressure-robust mixed methods for

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi 1, Paul F. Fischer 2 and C. Ross Ethier 1 1 University of Toronto and 2 Argonne National

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

arxiv: v1 [math.na] 15 Nov 2017

arxiv: v1 [math.na] 15 Nov 2017 Noname manuscript No. (will be inserted by the editor) An HDG method with orthogonal projections in facet integrals Issei Oikawa arxiv:1711.05396v1 [math.na] 15 Nov 2017 Received: date / Accepted: date

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Multiscale Analysis of Vibrations of Streamers

Multiscale Analysis of Vibrations of Streamers Multiscale Analysis of Vibrations of Streamers Leszek Demkowicz Joint work with S. Prudhomme, W. Rachowicz, W. Qiu and L. Chamoin Institute for Computational Engineering and Sciences (ICES) The University

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Hybrid (DG) Methods for the Helmholtz Equation

Hybrid (DG) Methods for the Helmholtz Equation Hybrid (DG) Methods for the Helmholtz Equation Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology Contributions by

More information

Computations with Discontinuous Basis Functions

Computations with Discontinuous Basis Functions Computations with Discontinuous Basis Functions Carl Sovinec University of Wisconsin-Madison NIMROD Team Meeting November 12, 2011 Salt Lake City, Utah Motivation The objective of this work is to make

More information

Some remarks on grad-div stabilization of incompressible flow simulations

Some remarks on grad-div stabilization of incompressible flow simulations Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University Göttingen M. Stynes Workshop Numerical Analysis

More information

Model Reduction via Discretization : Elasticity and Boltzmann

Model Reduction via Discretization : Elasticity and Boltzmann Model Reduction via Discretization : Elasticity and Boltzmann Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology IMA

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (https://github.com/ngsxfem/ngsxfem)

ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (https://github.com/ngsxfem/ngsxfem) ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (https://github.com/ngsxfem/ngsxfem) Christoph Lehrenfeld (with contributions from F. Heimann, J. Preuß, M. Hochsteger,...) lehrenfeld@math.uni-goettingen.de

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR THE NAVIER-STOKES EQUATIONS USING SOLENOIDAL APPROXIMATIONS

A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR THE NAVIER-STOKES EQUATIONS USING SOLENOIDAL APPROXIMATIONS 7th Workshop on Numerical Methods in Applied Science and Engineering (NMASE 8) Vall de Núria, 9 a de enero de 28 c LaCàN, www.lacan-upc.es A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 UNCORRECTED PROOF

A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 UNCORRECTED PROOF 1 A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 Herbert Egger 1 and Christian Waluga 2 4 1 Center of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 5 Garching

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE Proceedings of the Czech Japanese Seminar in Applied Mathematics 2005 Kuju Training Center, Oita, Japan, September 15-18, 2005 pp. 69 76 NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems.

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Stefan Girke WWU Münster Institut für Numerische und Angewandte Mathematik 10th

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations Basic hydrodynamics David Gurarie 1 Newtonian fluids: Euler and Navier-Stokes equations The basic hydrodynamic equations in the Eulerian form consist of conservation of mass, momentum and energy. We denote

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

An Implementation of Hybrid Discontinuous Galerkin Methods in DUNE

An Implementation of Hybrid Discontinuous Galerkin Methods in DUNE Aachen Institute for Advanced Study in Computational Engineering Science Preprint: AICES-2010/12-1 15/December/2010 An Implementation of Hybrid Discontinuous Galerkin Methods in DUNE C. Waluga and H. Egger

More information

Solving the curl-div system using divergence-free or curl-free finite elements

Solving the curl-div system using divergence-free or curl-free finite elements Solving the curl-div system using divergence-free or curl-free finite elements Alberto Valli Dipartimento di Matematica, Università di Trento, Italy or: Why I say to my students that divergence-free finite

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations 1 / 16 Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 2 / 16 Ludwig Boltzmann and His Kinetic Theory of Gases The Boltzmann Transport

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS RAYTCHO LAZAROV AND XIU YE Abstract. In this paper, we derive two stabilized discontinuous finite element formulations, symmetric

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

A MIXED FINITE ELEMENT METHOD WITH EXACTLY DIVERGENCE-FREE VELOCITIES FOR INCOMPRESSIBLE MAGNETOHYDRODYNAMICS

A MIXED FINITE ELEMENT METHOD WITH EXACTLY DIVERGENCE-FREE VELOCITIES FOR INCOMPRESSIBLE MAGNETOHYDRODYNAMICS A MIXED FINITE ELEMENT METHOD WITH EXACTLY DIVERGENCE-FREE VELOCITIES FOR INCOMPRESSIBLE MAGNETOHYDRODYNAMICS CHEN GREIF, DAN LI, DOMINIK SCHÖTZAU, AND XIAOXI WEI Abstract. We introduce and analyze a mixed

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

Divergence-free or curl-free finite elements for solving the curl-div system

Divergence-free or curl-free finite elements for solving the curl-div system Divergence-free or curl-free finite elements for solving the curl-div system Alberto Valli Dipartimento di Matematica, Università di Trento, Italy Joint papers with: Ana Alonso Rodríguez Dipartimento di

More information

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990 Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339 351 1 A NEW STRATEGY FOR FINITE ELEMENT COMPUTATIONS INVOLVING MOVING BOUNDARIES AND INTERFACES THE DEFORMING-SPATIAL-DOMAIN/SPACE-TIME

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

A DG-based incompressible Navier-Stokes solver

A DG-based incompressible Navier-Stokes solver A DG-based incompressible Navier-Stokes solver Higer-order DG metods and finite element software for modern arcitectures - Bat 2016 Marian Piatkowski 1 Peter Bastian 1 1 Interdisciplinary Center for Scientific

More information

Transient flow and heat equations - the Rayleigh-Benard instability

Transient flow and heat equations - the Rayleigh-Benard instability Transient flow and heat equations - the Rayleigh-Benard instability Directory: RayleighBenard Solvers: HeatSolve, FlowSolve Tools: ElmerGUI Dimensions: 2D, Transient Case definition This tutorial is about

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS FREE BOUNDARY PROBLEMS IN FLUID MECHANICS ANA MARIA SOANE AND ROUBEN ROSTAMIAN We consider a class of free boundary problems governed by the incompressible Navier-Stokes equations. Our objective is to

More information

Finite Element Exterior Calculus and Applications Part V

Finite Element Exterior Calculus and Applications Part V Finite Element Exterior Calculus and Applications Part V Douglas N. Arnold, University of Minnesota Peking University/BICMR August 15 18, 2015 De Rham complex 0 H 1 (Ω) grad H(curl, Ω) curl H(div, Ω) div

More information

Key words. Parallel iterative solvers, saddle-point linear systems, preconditioners, timeharmonic

Key words. Parallel iterative solvers, saddle-point linear systems, preconditioners, timeharmonic PARALLEL NUMERICAL SOLUTION OF THE TIME-HARMONIC MAXWELL EQUATIONS IN MIXED FORM DAN LI, CHEN GREIF, AND DOMINIK SCHÖTZAU Numer. Linear Algebra Appl., Vol. 19, pp. 525 539, 2012 Abstract. We develop a

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

Finite element exterior calculus: A new approach to the stability of finite elements

Finite element exterior calculus: A new approach to the stability of finite elements Finite element exterior calculus: A new approach to the stability of finite elements Douglas N. Arnold joint with R. Falk and R. Winther Institute for Mathematics and its Applications University of Minnesota

More information

A monolithic FEM solver for fluid structure

A monolithic FEM solver for fluid structure A monolithic FEM solver for fluid structure interaction p. 1/1 A monolithic FEM solver for fluid structure interaction Stefan Turek, Jaroslav Hron jaroslav.hron@mathematik.uni-dortmund.de Department of

More information

Mixed Finite Elements Method

Mixed Finite Elements Method Mixed Finite Elements Method A. Ratnani 34, E. Sonnendrücker 34 3 Max-Planck Institut für Plasmaphysik, Garching, Germany 4 Technische Universität München, Garching, Germany Contents Introduction 2. Notations.....................................

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport

Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport Christoph Lehrenfeld and Arnold Reusken Preprint No. 413 December 2014 Key words: Two-phase flow, mass transport,

More information

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS CHI-WANG SHU Abstract. In these lectures we give a general survey on discontinuous Galerkin methods for solving

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIII, Number 1, March 2008 HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IOAN TELEAGA AND JENS

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

An Extended Finite Element Method for a Two-Phase Stokes problem

An Extended Finite Element Method for a Two-Phase Stokes problem XFEM project An Extended Finite Element Method for a Two-Phase Stokes problem P. Lederer, C. Pfeiler, C. Wintersteiger Advisor: Dr. C. Lehrenfeld August 5, 2015 Contents 1 Problem description 2 1.1 Physics.........................................

More information

On two fractional step finite volume and finite element schemes for reactive low Mach number flows

On two fractional step finite volume and finite element schemes for reactive low Mach number flows Fourth International Symposium on Finite Volumes for Complex Applications - Problems and Perspectives - July 4-8, 2005 / Marrakech, Morocco On two fractional step finite volume and finite element schemes

More information

A connection between grad-div stabilized FE solutions and pointwise divergence-free FE solutions on general meshes

A connection between grad-div stabilized FE solutions and pointwise divergence-free FE solutions on general meshes A connection between grad-div stabilized FE solutions and pointwise divergence-free FE solutions on general meshes Sarah E. Malick Sponsor: Leo G. Rebholz Abstract We prove, for Stokes, Oseen, and Boussinesq

More information

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, Germany,

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, Germany, Volker John On the numerical simulation of population balance systems Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany, Free University of Berlin, Department

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres ANZIAM J. 50 (CTAC2008) pp.c90 C106, 2008 C90 Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres M. Ganesh 1 Q. T. Le Gia 2 (Received 14 August 2008; revised 03

More information

Minimal stabilization techniques for incompressible flows

Minimal stabilization techniques for incompressible flows Minimal stabilization tecniques for incompressible flows G. Lube 1, L. Röe 1 and T. Knopp 2 1 Numerical and Applied Matematics Georg-August-University of Göttingen D-37083 Göttingen, Germany 2 German Aerospace

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi,a Paul F. Fischer b C. Ross Ethier a a University of Toronto, Department of Mechanical

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 2198-5855 On the divergence constraint in mixed finite element methods for incompressible

More information

A MULTIGRID METHOD FOR THE PSEUDOSTRESS FORMULATION OF STOKES PROBLEMS

A MULTIGRID METHOD FOR THE PSEUDOSTRESS FORMULATION OF STOKES PROBLEMS SIAM J. SCI. COMPUT. Vol. 29, No. 5, pp. 2078 2095 c 2007 Society for Industrial and Applied Mathematics A MULTIGRID METHOD FOR THE PSEUDOSTRESS FORMULATION OF STOKES PROBLEMS ZHIQIANG CAI AND YANQIU WANG

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

BEM for compressible fluid dynamics

BEM for compressible fluid dynamics BEM for compressible fluid dynamics L. gkerget & N. Samec Faculty of Mechanical Engineering, Institute of Power, Process and Environmental Engineering, University of Maribor, Slovenia Abstract The fully

More information