A re-appraisal of fixed effect(s) meta-analysis

Size: px
Start display at page:

Download "A re-appraisal of fixed effect(s) meta-analysis"

Transcription

1 A re-appraisal of fixed effect(s) meta-analysis Ken Rice, Julian Higgins & Thomas Lumley Universities of Washington, Bristol & Auckland

2 tl;dr Fixed-effectS meta-analysis answers a sensible question regardless of heterogeneity Other questions can also be sensible Fixed-effectS methods extend to useful measures of heterogeneity and meta-regression, small-sample corrections and Bayesian inference Knowing what question you re answering helps determine whether it s sensible has these slides and more. 1

3 Generic example Meta-analyzing trials to estimate some overall effect; Zinc Placebo Zinc Placebo Study N Mean SD N Mean SD better better Mean Difference, 95% CI Douglas [ 0.45, 9.25 ] Petrus [ 1.57, 0.17 ] Prasad [ 4.57, 2.63 ] Prasad [ 3.76, 2.48 ] Turner 2000b [ 1.88, 0.56 ] Turner 2000c [ 1.00, 1.70 ] Fixed effects, precision weighted average (PWA) estimator Random effects, DerSimonian Laird estimator 2.04 [ 2.45, 1.64 ] 1.21 [ 2.69, 0.28 ] Generic Q: Which average? Why? Mean Difference (days) * from Zinc for the Common Cold (2011) Cochrane review of zinc acetate lozenges for reducing duration of cold symptoms (days) 2

4 Fixed effect (singular)... based on the assumption that the results of each trial represents a statistical fluctuation around some common effect Steve Goodman Controlled Clinical Trials, 1989 In the fixed effect model for k studies we assume ˆβ i N(β i, σi 2 ), 1 i k, by the CLT, where β i = β 0, 1 i k and noise in σ i is negligible. Obvious (and optimal) estimate is the inverse variance-weighted or precision-weighted average: ˆβ F = k i=1 1 σ 2 i 1 σ 2 i ˆβ i, with Var[ ˆβ F ] = 1 1 σ 2 i. 3

5 Fixed effects (plural) But assuming β i exactly homogeneous is silly in (most) practice, as effects are not identical Environments & adherence differ (and much else) In my applied work, genetic ancestry differs But but but note that if ˆβ i N(β i, σi 2 ), 1 i k, by the CLT, and noise in σ i is negligible, then can still define ˆβ F = k i=1 1 σ 2 i 1 σ 2 i ˆβ i, with Var[ ˆβ F ] = 1 1 σ 2 i. The fixed effects estimate provides valid statistical inference on an average of the β i, regardless of their homogeneity/heterogeneity 4

6 Fixed effects: what average? First, consider possible data from three studies; Outcomes, Y Zn Pbo Study #1 Study #2 Study #3 Sample size n 1 Sample size n 2 Sample size n 3 Information n 1 /σ 1 2 Information n 2 /σ 2 2 Information n 3 /σ 3 2 β^1 Zn Pbo Study #1 Study #2 Study #3 Sample size n 1 Sample size n 2 Sample size n 3 Information n 1 /σ 1 2 Information n 2 /σ 2 2 Information n 3 /σ 3 2 β^2 Zn Pbo Study #1 Study #2 Study #3 Sample size n 1 Sample size n 2 Sample size n 3 Information n 1 /σ 1 2 Information n 2 /σ 2 2 Information n 3 /σ 3 2 β^3 Each n i = 200 here. We assume all σ 2 i known, for simplicity. 5

7 Fixed effects: what average? Population parameters those 3 studies are estimating; Density of outcomes, Y β 1 β 2 β 3 Zn Pbo Zn Pbo Zn Pbo Pop'n #1 Pop'n #2 Pop'n #3 Information φ 1 Information φ 2 Information φ 3 Parameters are differences in means (β i ) and information per observation (φ i ). 6

8 Fixed effects: what average? One overall population we might learn about; Density of outcomes, Y β combine Zn Combining #1 and #2 and #3 Pbo β combine is the mean difference (zinc vs placebo) with each subpopulation represented equally, i.e. weighted 1/1/1. 7

9 Fixed effects: what average? Another overall population we might learn about; Density of outcomes, Y β 1 β 2 β 3 Zn Pbo Zn Pbo Zn Pbo Proportion η 1 Proportion η 2 Proportion η 3 Information φ 1 Information φ 2 Information φ 3 Weights here are 2/7/1, not 1/1/1 as before. 8

10 Fixed effects: what average? Another overall population we might learn about; Density of outcomes, Y β combine Zn Pbo Combining #1 and #2 and #3, in proportions η 1,η 2,η 3 Still an average effect, but closer to β 2 than before. 8

11 Fixed effects: what average? And another; (obviously, there are unlimited possibilities) Density of outcomes, Y β 1 β 2 β 3 Zn Pbo Zn Pbo Zn Pbo Proportion η 1 Proportion η 2 Proportion η 3 Information φ 1 Information φ 2 Information φ 3 Weights here are 7/1/2. 9

12 Weights here are 7/1/2 smaller average effect, closer to β 1 10 Fixed effects: what average? And another; (obviously, there are unlimited possibilities) Density of outcomes, Y β combine Zn Pbo Combining #1 and #2 and #3, in proportions η 1,η 2,η 3

13 Fixed effects: general case Upweighting studies which are larger and more informative about their corresponding β i, we can estimate population parameter β F = η i φ i β i η i φ i = 1 σi 2 β i, 1 σi 2 by ˆβ F = 1 σ 2 i 1 σ 2 i ˆβ i, with Var[ ˆβ F ] = 1 1 σ 2 i. ˆβ F is the precision-weighted average, a.k.a. inverse-variance weighted average a.k.a. fixed effects estimator note the plural! ˆβ F is consistent for average effect β F under regime where all n i in fixed proportion Homogeneity, or tests for heterogeneity are not required to use ˆβ F and its inference 11

14 Fixed effects: general case Homogeneity, or tests for heterogeneity are not required to use ˆβ F and its inference Users who have only seen the fixed effect (singular) motivation tend to view it as the only reason for ever using ˆβ F. This is specious... If I see you buy eggs, should I think the only reason is that you re making an omelet? 12

15 Fixed effects: general case The basic ideas here are not new: Same average-effect argument already supports e.g. the Mantel-Haenszel estimate Fixed effects arguments presented by e.g. Peto (1987), Fleiss (1993) and Hedges (various, e.g. Handbook of Research Synthesis), all noting the validity of β F and inference using ˆβ F under heterogeneity Also Can still motivate ˆβ F when σ i are estimated, though Var[ ˆβ F ] requires more care (Domínguez-Islas & Rice 2018) Can use them in Bayesian work, with exchangeable priors (Domínguez-Islas & Rice, under review) much less sensitive than default methods 13

16 But what about heterogeneity? We all know the flaw of averages ; Average effect β F answers one question This does not mean other questions aren t interesting! 14

17 But what about heterogeneity? A weighted variance of effects: ζ 2 = 1 η i φ i And an empirical estimate of it: k i=1 η i φ i (β i β F ) 2. ˆζ 2 = σ 2 i (ˆβ i ˆβ F ) 2 (k 1) σ 2 i = Q (k 1) σ 2 i where Q is Cochran s Q and I 2 = 1 (k 1)/Q (truncated at zero) are standard statistics for assessing homogeneity. (Weighted) standard deviation ζ measure on the β scale is easier to interpret than Q or I 2 Inference on ζ far more stable than mean of (hypothetical) random effects distributions 15

18 But what about heterogeneity? Meta-regression essentially weighted linear regression of the ˆβ i on known study-specific covariates x i also tells us about differences from zero, beyond the overall effect ˆβ F. Using extensions of the arguments for ˆβ F, the standard linear meta-regression slope estimate can be written ˆβ MR = w i (x i ˆx F ) 2 ˆβ i ˆβ F x i ˆx F ki =1 w i (x i ˆx F ) 2, where ˆx F = w i x i ki =1 w i and w i = 1 σ 2 i, which with no further assumptions estimates β MR = η i φ i (x i x F ) 2 β i β x i x F ki =1 η i φ i (x i x)2, where x F = η i φ i x i ki =1 η i φ i. Var[ ˆβ MR ] also available ANOVA/ANCOVA breakdowns of total signal:noise available to accompany ζ 2 and ˆβ MR analysis 16

19 Are you going to stop now? Summary, under standard conditions; Assumptions: Name: Common effect Fixed effects All β i = β 0 β i unrestricted Plausible? Rarely Often! ˆβ F estimates: Single β 0 Sensible average, β F Valid estimate? Yes Yes StdErr[ ˆβ F ] valid? Yes Yes Estimate heterogeneity? Makes no sense Yes, via ζ 2, Q, I 2 Meta regression? Makes no sense Yes, via ˆβ MR *... if we can ignore uncertainty about the σ 2 i 17

20 Acknowledgements Thanks to: Clara Thomas Julian Dominguez- Lumley Higgins Islas Reminder: for slides & more. 18

Previous lecture. Single variant association. Use genome-wide SNPs to account for confounding (population substructure)

Previous lecture. Single variant association. Use genome-wide SNPs to account for confounding (population substructure) Previous lecture Single variant association Use genome-wide SNPs to account for confounding (population substructure) Estimation of effect size and winner s curse Meta-Analysis Today s outline P-value

More information

EPSE 594: Meta-Analysis: Quantitative Research Synthesis

EPSE 594: Meta-Analysis: Quantitative Research Synthesis EPSE 594: Meta-Analysis: Quantitative Research Synthesis Ed Kroc University of British Columbia ed.kroc@ubc.ca January 24, 2019 Ed Kroc (UBC) EPSE 594 January 24, 2019 1 / 37 Last time Composite effect

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

BIOS 6649: Handout Exercise Solution

BIOS 6649: Handout Exercise Solution BIOS 6649: Handout Exercise Solution NOTE: I encourage you to work together, but the work you submit must be your own. Any plagiarism will result in loss of all marks. This assignment is based on weight-loss

More information

Bios 6648: Design & conduct of clinical research

Bios 6648: Design & conduct of clinical research Bios 6648: Design & conduct of clinical research Section 2 - Formulating the scientific and statistical design designs 2.5(b) Binary 2.5(c) Skewed baseline (a) Time-to-event (revisited) (b) Binary (revisited)

More information

Biostat Methods STAT 5820/6910 Handout #9a: Intro. to Meta-Analysis Methods

Biostat Methods STAT 5820/6910 Handout #9a: Intro. to Meta-Analysis Methods Biostat Methods STAT 5820/6910 Handout #9a: Intro. to Meta-Analysis Methods Meta-analysis describes statistical approach to systematically combine results from multiple studies [identified follong an exhaustive

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

A new strategy for meta-analysis of continuous covariates in observational studies with IPD. Willi Sauerbrei & Patrick Royston

A new strategy for meta-analysis of continuous covariates in observational studies with IPD. Willi Sauerbrei & Patrick Royston A new strategy for meta-analysis of continuous covariates in observational studies with IPD Willi Sauerbrei & Patrick Royston Overview Motivation Continuous variables functional form Fractional polynomials

More information

POL 681 Lecture Notes: Statistical Interactions

POL 681 Lecture Notes: Statistical Interactions POL 681 Lecture Notes: Statistical Interactions 1 Preliminaries To this point, the linear models we have considered have all been interpreted in terms of additive relationships. That is, the relationship

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2011 Individual Patient-Level Data Meta- Analysis: A Comparison of Methods for the Diverse Populations

More information

An accurate test for homogeneity of odds ratios based on Cochran s Q-statistic

An accurate test for homogeneity of odds ratios based on Cochran s Q-statistic Kulinskaya and Dollinger TECHNICAL ADVANCE An accurate test for homogeneity of odds ratios based on Cochran s Q-statistic Elena Kulinskaya 1* and Michael B Dollinger 2 * Correspondence: e.kulinskaya@uea.ac.uk

More information

Meta-analysis. 21 May Per Kragh Andersen, Biostatistics, Dept. Public Health

Meta-analysis. 21 May Per Kragh Andersen, Biostatistics, Dept. Public Health Meta-analysis 21 May 2014 www.biostat.ku.dk/~pka Per Kragh Andersen, Biostatistics, Dept. Public Health pka@biostat.ku.dk 1 Meta-analysis Background: each single study cannot stand alone. This leads to

More information

Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee

Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee Lecture - 04 Basic Statistics Part-1 (Refer Slide Time: 00:33)

More information

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression 1/37 The linear regression model Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression Ken Rice Department of Biostatistics University of Washington 2/37 The linear regression model

More information

Causal Mechanisms Short Course Part II:

Causal Mechanisms Short Course Part II: Causal Mechanisms Short Course Part II: Analyzing Mechanisms with Experimental and Observational Data Teppei Yamamoto Massachusetts Institute of Technology March 24, 2012 Frontiers in the Analysis of Causal

More information

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc.

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc. Chapter 24 Comparing Means Copyright 2010 Pearson Education, Inc. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side. For example:

More information

Sample Size Calculations

Sample Size Calculations Sample Size Calculations Analyses rely on means rather than individual values Means are more precise Precision measured by σ n So precision depends on n This can be used, directly or indirectly, as a basis

More information

Multiple Regression Analysis: The Problem of Inference

Multiple Regression Analysis: The Problem of Inference Multiple Regression Analysis: The Problem of Inference Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Multiple Regression Analysis: Inference POLS 7014 1 / 10

More information

Addressing multiple treatments II: multiple-treatments meta-analysis basic methods

Addressing multiple treatments II: multiple-treatments meta-analysis basic methods Georgia Salanti and Deborah Caldwell Addressing multiple treatments II: multiple-treatments meta-analysis basic methods Maths Warning! University of Ioannina Why use Bayesian statistics for MTM? Bayesian

More information

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation. Daniel Almirall

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation. Daniel Almirall 1 Structural Nested Mean Models for Assessing Time-Varying Effect Moderation Daniel Almirall Center for Health Services Research, Durham VAMC & Dept. of Biostatistics, Duke University Medical Joint work

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Design of Multiregional Clinical Trials (MRCT) Theory and Practice

Design of Multiregional Clinical Trials (MRCT) Theory and Practice Design of Multiregional Clinical Trials (MRCT) Theory and Practice Gordon Lan Janssen R&D, Johnson & Johnson BASS 2015, Rockville, Maryland Collaborators: Fei Chen and Gang Li, Johnson & Johnson BASS 2015_LAN

More information

Assessing Time-Varying Causal Effect. Moderation

Assessing Time-Varying Causal Effect. Moderation Assessing Time-Varying Causal Effect JITAIs Moderation HeartSteps JITAI JITAIs Susan Murphy 11.07.16 JITAIs Outline Introduction to mobile health Causal Treatment Effects (aka Causal Excursions) (A wonderfully

More information

Time-Varying Causal. Treatment Effects

Time-Varying Causal. Treatment Effects Time-Varying Causal JOOLHEALTH Treatment Effects Bar-Fit Susan A Murphy 12.14.17 HeartSteps SARA Sense 2 Stop Disclosures Consulted with Sanofi on mobile health engagement and adherence. 2 Outline Introduction

More information

review session gov 2000 gov 2000 () review session 1 / 38

review session gov 2000 gov 2000 () review session 1 / 38 review session gov 2000 gov 2000 () review session 1 / 38 Overview Random Variables and Probability Univariate Statistics Bivariate Statistics Multivariate Statistics Causal Inference gov 2000 () review

More information

Discussion: Can We Get More Out of Experiments?

Discussion: Can We Get More Out of Experiments? Discussion: Can We Get More Out of Experiments? Kosuke Imai Princeton University September 4, 2010 Kosuke Imai (Princeton) Discussion APSA 2010 (Washington D.C.) 1 / 9 Keele, McConnaughy, and White Question:

More information

Effect and shrinkage estimation in meta-analyses of two studies

Effect and shrinkage estimation in meta-analyses of two studies Effect and shrinkage estimation in meta-analyses of two studies Christian Röver Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany December 2, 2016 This project has

More information

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

Sampling: A Brief Review. Workshop on Respondent-driven Sampling Analyst Software

Sampling: A Brief Review. Workshop on Respondent-driven Sampling Analyst Software Sampling: A Brief Review Workshop on Respondent-driven Sampling Analyst Software 201 1 Purpose To review some of the influences on estimates in design-based inference in classic survey sampling methods

More information

Lecture 15 (Part 2): Logistic Regression & Common Odds Ratio, (With Simulations)

Lecture 15 (Part 2): Logistic Regression & Common Odds Ratio, (With Simulations) Lecture 15 (Part 2): Logistic Regression & Common Odds Ratio, (With Simulations) Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

Lecture 3: Statistical sampling uncertainty

Lecture 3: Statistical sampling uncertainty Lecture 3: Statistical sampling uncertainty c Christopher S. Bretherton Winter 2015 3.1 Central limit theorem (CLT) Let X 1,..., X N be a sequence of N independent identically-distributed (IID) random

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

DIAGNOSTICS FOR STRATIFIED CLINICAL TRIALS IN PROPORTIONAL ODDS MODELS

DIAGNOSTICS FOR STRATIFIED CLINICAL TRIALS IN PROPORTIONAL ODDS MODELS DIAGNOSTICS FOR STRATIFIED CLINICAL TRIALS IN PROPORTIONAL ODDS MODELS Ivy Liu and Dong Q. Wang School of Mathematics, Statistics and Computer Science Victoria University of Wellington New Zealand Corresponding

More information

Inference for correlated effect sizes using multiple univariate meta-analyses

Inference for correlated effect sizes using multiple univariate meta-analyses Europe PMC Funders Group Author Manuscript Published in final edited form as: Stat Med. 2016 April 30; 35(9): 1405 1422. doi:10.1002/sim.6789. Inference for correlated effect sizes using multiple univariate

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

Reconstruction of individual patient data for meta analysis via Bayesian approach

Reconstruction of individual patient data for meta analysis via Bayesian approach Reconstruction of individual patient data for meta analysis via Bayesian approach Yusuke Yamaguchi, Wataru Sakamoto and Shingo Shirahata Graduate School of Engineering Science, Osaka University Masashi

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Analysis of Longitudinal Data. Patrick J. Heagerty PhD Department of Biostatistics University of Washington

Analysis of Longitudinal Data. Patrick J. Heagerty PhD Department of Biostatistics University of Washington Analsis of Longitudinal Data Patrick J. Heagert PhD Department of Biostatistics Universit of Washington 1 Auckland 2008 Session Three Outline Role of correlation Impact proper standard errors Used to weight

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Principles of Statistical Inference Recap of statistical models Statistical inference (frequentist) Parametric vs. semiparametric

More information

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation Patrick Breheny February 8 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/27 Introduction Basic idea Standardization Large-scale testing is, of course, a big area and we could keep talking

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 y 1 2 3 4 5 6 7 x Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 32 Suhasini Subba Rao Previous lecture We are interested in whether a dependent

More information

Section B. The Theoretical Sampling Distribution of the Sample Mean and Its Estimate Based on a Single Sample

Section B. The Theoretical Sampling Distribution of the Sample Mean and Its Estimate Based on a Single Sample This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

MATH 1070 Introductory Statistics Lecture notes Relationships: Correlation and Simple Regression

MATH 1070 Introductory Statistics Lecture notes Relationships: Correlation and Simple Regression MATH 1070 Introductory Statistics Lecture notes Relationships: Correlation and Simple Regression Objectives: 1. Learn the concepts of independent and dependent variables 2. Learn the concept of a scatterplot

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Managing Uncertainty

Managing Uncertainty Managing Uncertainty Bayesian Linear Regression and Kalman Filter December 4, 2017 Objectives The goal of this lab is multiple: 1. First it is a reminder of some central elementary notions of Bayesian

More information

From last time... The equations

From last time... The equations This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Incorporating published univariable associations in diagnostic and prognostic modeling

Incorporating published univariable associations in diagnostic and prognostic modeling Incorporating published univariable associations in diagnostic and prognostic modeling Thomas Debray Julius Center for Health Sciences and Primary Care University Medical Center Utrecht The Netherlands

More information

Example name. Subgroups analysis, Regression. Synopsis

Example name. Subgroups analysis, Regression. Synopsis 589 Example name Effect size Analysis type Level BCG Risk ratio Subgroups analysis, Regression Advanced Synopsis This analysis includes studies where patients were randomized to receive either a vaccine

More information

Growth Mixture Model

Growth Mixture Model Growth Mixture Model Latent Variable Modeling and Measurement Biostatistics Program Harvard Catalyst The Harvard Clinical & Translational Science Center Short course, October 28, 2016 Slides contributed

More information

Evidence synthesis for a single randomized controlled trial and observational data in small populations

Evidence synthesis for a single randomized controlled trial and observational data in small populations Evidence synthesis for a single randomized controlled trial and observational data in small populations Steffen Unkel, Christian Röver and Tim Friede Department of Medical Statistics University Medical

More information

Answer to exercise: Blood pressure lowering drugs

Answer to exercise: Blood pressure lowering drugs Answer to exercise: Blood pressure lowering drugs The data set bloodpressure.txt contains data from a cross-over trial, involving three different formulations of a drug for lowering of blood pressure:

More information

Missing Data in Longitudinal Studies: Mixed-effects Pattern-Mixture and Selection Models

Missing Data in Longitudinal Studies: Mixed-effects Pattern-Mixture and Selection Models Missing Data in Longitudinal Studies: Mixed-effects Pattern-Mixture and Selection Models Hedeker D & Gibbons RD (1997). Application of random-effects pattern-mixture models for missing data in longitudinal

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

EMERGING MARKETS - Lecture 2: Methodology refresher

EMERGING MARKETS - Lecture 2: Methodology refresher EMERGING MARKETS - Lecture 2: Methodology refresher Maria Perrotta April 4, 2013 SITE http://www.hhs.se/site/pages/default.aspx My contact: maria.perrotta@hhs.se Aim of this class There are many different

More information

Introduction to Design of Experiments

Introduction to Design of Experiments Introduction to Design of Experiments Jean-Marc Vincent and Arnaud Legrand Laboratory ID-IMAG MESCAL Project Universities of Grenoble {Jean-Marc.Vincent,Arnaud.Legrand}@imag.fr November 20, 2011 J.-M.

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Lecture 1 Introduction to Multi-level Models

Lecture 1 Introduction to Multi-level Models Lecture 1 Introduction to Multi-level Models Course Website: http://www.biostat.jhsph.edu/~ejohnson/multilevel.htm All lecture materials extracted and further developed from the Multilevel Model course

More information

Simple linear regression

Simple linear regression Simple linear regression Biometry 755 Spring 2008 Simple linear regression p. 1/40 Overview of regression analysis Evaluate relationship between one or more independent variables (X 1,...,X k ) and a single

More information

Using Power Tables to Compute Statistical Power in Multilevel Experimental Designs

Using Power Tables to Compute Statistical Power in Multilevel Experimental Designs A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to

More information

Standard RE Model. Critique of the RE Model 2016/08/12

Standard RE Model. Critique of the RE Model 2016/08/12 Standard RE Model Alternative weighting schemes in the random-effects model to reduce the impact of publication bias Wolfgang Viechtbauer Maastricht University The Netherlands http://www.wvbauer.com y

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

A framework for developing, implementing and evaluating clinical prediction models in an individual participant data meta-analysis

A framework for developing, implementing and evaluating clinical prediction models in an individual participant data meta-analysis A framework for developing, implementing and evaluating clinical prediction models in an individual participant data meta-analysis Thomas Debray Moons KGM, Ahmed I, Koffijberg H, Riley RD Supported by

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Regression techniques provide statistical analysis of relationships. Research designs may be classified as experimental or observational; regression

Regression techniques provide statistical analysis of relationships. Research designs may be classified as experimental or observational; regression LOGISTIC REGRESSION Regression techniques provide statistical analysis of relationships. Research designs may be classified as eperimental or observational; regression analyses are applicable to both types.

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

Accounting for Baseline Observations in Randomized Clinical Trials

Accounting for Baseline Observations in Randomized Clinical Trials Accounting for Baseline Observations in Randomized Clinical Trials Scott S Emerson, MD, PhD Department of Biostatistics, University of Washington, Seattle, WA 9895, USA October 6, 0 Abstract In clinical

More information

Stat 587: Key points and formulae Week 15

Stat 587: Key points and formulae Week 15 Odds ratios to compare two proportions: Difference, p 1 p 2, has issues when applied to many populations Vit. C: P[cold Placebo] = 0.82, P[cold Vit. C] = 0.74, Estimated diff. is 8% What if a year or place

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Structural Equation Modeling An Econometrician s Introduction

Structural Equation Modeling An Econometrician s Introduction S Structural Equation Modeling An Econometrician s Introduction PD Dr. Stefan Klößner Winter Term 2016/17 U N I V E R S I T A S A R A V I E N I S S Overview NOT: easy to digest introduction for practitioners

More information

Mantel-Haenszel Test Statistics. for Correlated Binary Data. Department of Statistics, North Carolina State University. Raleigh, NC

Mantel-Haenszel Test Statistics. for Correlated Binary Data. Department of Statistics, North Carolina State University. Raleigh, NC Mantel-Haenszel Test Statistics for Correlated Binary Data by Jie Zhang and Dennis D. Boos Department of Statistics, North Carolina State University Raleigh, NC 27695-8203 tel: (919) 515-1918 fax: (919)

More information

A Note on Cochran Test for Homogeneity in Two Ways ANOVA and Meta-Analysis

A Note on Cochran Test for Homogeneity in Two Ways ANOVA and Meta-Analysis Open Journal of Statistics, 05, 5, 787-796 Published Online December 05 in SciRes. http://www.scirp.org/journal/ojs http://dx.doi.org/0.436/ojs.05.57078 A Note on Cochran Test for Homogeneity in Two Ways

More information

2 Describing Contingency Tables

2 Describing Contingency Tables 2 Describing Contingency Tables I. Probability structure of a 2-way contingency table I.1 Contingency Tables X, Y : cat. var. Y usually random (except in a case-control study), response; X can be random

More information

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean

Confidence Intervals. Confidence interval for sample mean. Confidence interval for sample mean. Confidence interval for sample mean Confidence Intervals Confidence interval for sample mean The CLT tells us: as the sample size n increases, the sample mean is approximately Normal with mean and standard deviation Thus, we have a standard

More information

Regression M&M 2.3 and 10. Uses Curve fitting Summarization ('model') Description Prediction Explanation Adjustment for 'confounding' variables

Regression M&M 2.3 and 10. Uses Curve fitting Summarization ('model') Description Prediction Explanation Adjustment for 'confounding' variables Uses Curve fitting Summarization ('model') Description Prediction Explanation Adjustment for 'confounding' variables MALES FEMALES Age. Tot. %-ile; weight,g Tot. %-ile; weight,g wk N. 0th 50th 90th No.

More information

Personalized Treatment Selection Based on Randomized Clinical Trials. Tianxi Cai Department of Biostatistics Harvard School of Public Health

Personalized Treatment Selection Based on Randomized Clinical Trials. Tianxi Cai Department of Biostatistics Harvard School of Public Health Personalized Treatment Selection Based on Randomized Clinical Trials Tianxi Cai Department of Biostatistics Harvard School of Public Health Outline Motivation A systematic approach to separating subpopulations

More information

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary

The t-distribution. Patrick Breheny. October 13. z tests The χ 2 -distribution The t-distribution Summary Patrick Breheny October 13 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction Introduction What s wrong with z-tests? So far we ve (thoroughly!) discussed how to carry out hypothesis

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

Rerandomization to Balance Covariates

Rerandomization to Balance Covariates Rerandomization to Balance Covariates Kari Lock Morgan Department of Statistics Penn State University Joint work with Don Rubin University of Minnesota Biostatistics 4/27/16 The Gold Standard Randomized

More information

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness

A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A Bayesian Nonparametric Approach to Monotone Missing Data in Longitudinal Studies with Informative Missingness A. Linero and M. Daniels UF, UT-Austin SRC 2014, Galveston, TX 1 Background 2 Working model

More information

df=degrees of freedom = n - 1

df=degrees of freedom = n - 1 One sample t-test test of the mean Assumptions: Independent, random samples Approximately normal distribution (from intro class: σ is unknown, need to calculate and use s (sample standard deviation)) Hypotheses:

More information

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model

Linear Regression. In this lecture we will study a particular type of regression model: the linear regression model 1 Linear Regression 2 Linear Regression In this lecture we will study a particular type of regression model: the linear regression model We will first consider the case of the model with one predictor

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Adaptive Trial Designs

Adaptive Trial Designs Adaptive Trial Designs Wenjing Zheng, Ph.D. Methods Core Seminar Center for AIDS Prevention Studies University of California, San Francisco Nov. 17 th, 2015 Trial Design! Ethical:!eg.! Safety!! Efficacy!

More information

Selection on Observables: Propensity Score Matching.

Selection on Observables: Propensity Score Matching. Selection on Observables: Propensity Score Matching. Department of Economics and Management Irene Brunetti ireneb@ec.unipi.it 24/10/2017 I. Brunetti Labour Economics in an European Perspective 24/10/2017

More information

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean Interval estimation October 3, 2018 STAT 151 Class 7 Slide 1 Pandemic data Treatment outcome, X, from n = 100 patients in a pandemic: 1 = recovered and 0 = not recovered 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Thursday Morning. Growth Modelling in Mplus. Using a set of repeated continuous measures of bodyweight

Thursday Morning. Growth Modelling in Mplus. Using a set of repeated continuous measures of bodyweight Thursday Morning Growth Modelling in Mplus Using a set of repeated continuous measures of bodyweight 1 Growth modelling Continuous Data Mplus model syntax refresher ALSPAC Confirmatory Factor Analysis

More information

Estimating Optimal Dynamic Treatment Regimes from Clustered Data

Estimating Optimal Dynamic Treatment Regimes from Clustered Data Estimating Optimal Dynamic Treatment Regimes from Clustered Data Bibhas Chakraborty Department of Biostatistics, Columbia University bc2425@columbia.edu Society for Clinical Trials Annual Meetings Boston,

More information

8. Instrumental variables regression

8. Instrumental variables regression 8. Instrumental variables regression Recall: In Section 5 we analyzed five sources of estimation bias arising because the regressor is correlated with the error term Violation of the first OLS assumption

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

Analysing longitudinal data when the visit times are informative

Analysing longitudinal data when the visit times are informative Analysing longitudinal data when the visit times are informative Eleanor Pullenayegum, PhD Scientist, Hospital for Sick Children Associate Professor, University of Toronto eleanor.pullenayegum@sickkids.ca

More information

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 GLS and FGLS Econ 671 Purdue University Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 In this lecture we continue to discuss properties associated with the GLS estimator. In addition we discuss the practical

More information

Flexible Estimation of Treatment Effect Parameters

Flexible Estimation of Treatment Effect Parameters Flexible Estimation of Treatment Effect Parameters Thomas MaCurdy a and Xiaohong Chen b and Han Hong c Introduction Many empirical studies of program evaluations are complicated by the presence of both

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 8 P-values When reporting results, we usually report p-values in place of reporting whether or

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information