Biostat Methods STAT 5820/6910 Handout #9a: Intro. to Meta-Analysis Methods

Size: px
Start display at page:

Download "Biostat Methods STAT 5820/6910 Handout #9a: Intro. to Meta-Analysis Methods"

Transcription

1 Biostat Methods STAT 5820/6910 Handout #9a: Intro. to Meta-Analysis Methods Meta-analysis describes statistical approach to systematically combine results from multiple studies [identified follong an exhaustive literature review] that have addressed the same research question. Why multiple studies? If question has been clearly settled, may be unethical to conduct more RCTs But sometimes RCTs: run concurrently have inadequate sample size to detect evidence of treatment effect don t get published due to non-significance get lost in the literature address different sub-populations An exhaustive literature review [non-trivial!] can often identify similar studies, and systematically combining their results can [meta-analysis objective]: RCTs have clear protocols, often requiring such a literature review and research synthesis (meta-analysis) to justify a new RCT. Meta-Analysis Methods (presented in this handout) 1. Combining p-values Fisher s method Stouffer s method 2. Combining effect sizes Fixed Effects Random Effects Hierarchical Bayes

2 Approach 1: simplest & oldest use only p-values Fisher s composite testing method p 1,..., p k from k independent studies th common H 0 ( 2 log p i ) χ 2 2k Fishers null: the null in each study is true Fishers alternative: the null is false in at least one study Fishers known to be highly sensitive to very small (or very large) p-values Another way: Stouffer s method (based on a marginal note in 1949 issue of The American Soldier) Transform p-value p i to a standard normal deviate Z i (assume one-tailed test) Z S = Z i k Z i k Focuses on consensus test of nulls from multiple studies If p-values p 1,..., p k all correspond to true nulls, their distribution (and average) ll be: If some (enough) p-values correspond to (sufficiently) false nulls, their distribution (and average) ll be: Not as sensitive to very small (or very large) p-values

3 Effect Sizes: focus on magnitude of treatment effect Let θ i be true effect size (a standardized treatment effect) in study i, estimated by ˆθ i. Example: Two-sample mean comparison H 0 : µ 2 = µ 1 Define: θ i = µ 2,i µ 1,i σ i ˆθi = c i Ȳ2,i Ȳ1,i S p,i c i a bias correction factor such that E[ˆθ i ] = (exact form involves Γ function) c i 1 3 4(n 1 + n 2 ) 9 This ˆθ i is often referred to as d (or adjusted Hedges g); not the same as Cohen s d Example: Difference of proportions H 0 : p 1 = p 0 Let p j = P {Y = 1 T rt = j} Need a useful standardized treatment effect Y 0 1 Trt 1 a b Trt 0 c d Consider treatment effect in terms of odds ratio OR = Estimate this OR: ( ) p1 1 p ( 1 ) p0 1 p 0

4 But what if a or d are 0? Or b or c if we stch to odds of Y = 0? Could add 1/2 to allow for this and reduce bias: ˆθ i = log ( ) (bi + 1/2)(c i + 1/2) (a i + 1/2)(d i + 1/2) Other approaches exist, such as the Peto Method (later) Use ˆθ = log of ÔR (possibly adjusted for zero counts) do odds ratio on log scale so distribution of ˆθ is closer to normal Approach 2: Combine effect sizes Simplest way: Fixed Effects Model (weighted averages) ˆθ = ˆθi V ar[ˆθ] = 1 Choose weights to minimize V ar[ˆθ]: If ˆθ i are iid normal, then θ V ar[ˆθ] N(0, 1) and approximate 95% CI for θ is Example: Two-sample mean comparison ˆθ i = c i Ȳ2,i Ȳ1,i S p,i V ar[ˆθ i ] c 2 i (Derivation of variance involves noncentral t distribution) ( ˆθ 2 ) i + n 1 n 2 2(n 1 + n 2 ) 3.94 Example: Difference of proportions (odds ratio comparison) ˆθ i = log (ÔR i ) V ar[ˆθ i ] 1 a i + 1/2 + 1 b i + 1/2 + 1 c i + 1/2 + 1 d i + 1/2 (Derivation of variance involves delta method: V ar[g(x)] (f (X)) 2 V ar[x])

5 Example (Steroid therapy): Look at this fixed effects model: ˆθ i = θ i + ɛ i = θ + ɛ i ɛ i N(0, σi 2 ) This is the homogeneity assumption: w i = 1/ˆσ 2 i = ( V ar[ˆθ i ] ) 1 All studies examined and provided estimates of the same parameter θ, and any differences between estimates are attributable to sample error ɛ alone. Test H 0 : θ 1 = = θ k Q = w i (ˆθi ˆθ ) 2 χ 2 k 1 In practice, this test has low power, so even if it s not significant, maybe can t safely assume homogeneity Instead, allow for slight (& unaccountable) differences among study results random effects model The Random Effects Model: ˆθ i = θ i + ɛ i = θ + δ i + ɛ i ɛ i N(0, σi 2 ) δ i N(0, τ 2 ) δ i is the between-study random effect Test of heterogeneity (above) equivalent to H 0 : Estimate τ 2 and proceed as before: w i = 1/ (ˆσ 2 i + ˆτ 2) = ( V ar[ˆθ i ] ) 1

6 DerSimonian-Laird approach to estimate τ 2 : the method of moments (uses quantity Q above) Q = w i (ˆθi ˆθ ) 2 χ 2 k 1 E[Q] = τ 2 ( w 2 i ) + (k 1) (get this from expected value of a quadratic form) τ 2 E[Q] (k 1) = w 2 i ˆτ 2 Q (k 1) = max w 2, 0 i A third model class is becoming more common: Hierarchical Bayes Model ˆθ i = θ i + ɛ i = θ + δ i + ɛ i ɛ i N(0, σi 2 ) δ i N(0, τ 2 ) τ π(τ) This model is particularly powerful when also accounting for dependence among study results (R package metahdep) In all three models (Fixed, Random, Hierarchical Bayes), can also account for covariates (fundamental differences between studies), coded as numeric predictor variables X i,l = predictor variable l in study i, l = 1,..., j θ i = β 0 + β 1 X i,1 + β 2 X i, β j X i,j

EPSE 594: Meta-Analysis: Quantitative Research Synthesis

EPSE 594: Meta-Analysis: Quantitative Research Synthesis EPSE 594: Meta-Analysis: Quantitative Research Synthesis Ed Kroc University of British Columbia ed.kroc@ubc.ca January 24, 2019 Ed Kroc (UBC) EPSE 594 January 24, 2019 1 / 37 Last time Composite effect

More information

Answer Key for STAT 200B HW No. 8

Answer Key for STAT 200B HW No. 8 Answer Key for STAT 200B HW No. 8 May 8, 2007 Problem 3.42 p. 708 The values of Ȳ for x 00, 0, 20, 30 are 5/40, 0, 20/50, and, respectively. From Corollary 3.5 it follows that MLE exists i G is identiable

More information

Regression #3: Properties of OLS Estimator

Regression #3: Properties of OLS Estimator Regression #3: Properties of OLS Estimator Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #3 1 / 20 Introduction In this lecture, we establish some desirable properties associated with

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Poisson regression: Further topics

Poisson regression: Further topics Poisson regression: Further topics April 21 Overdispersion One of the defining characteristics of Poisson regression is its lack of a scale parameter: E(Y ) = Var(Y ), and no parameter is available to

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

A new strategy for meta-analysis of continuous covariates in observational studies with IPD. Willi Sauerbrei & Patrick Royston

A new strategy for meta-analysis of continuous covariates in observational studies with IPD. Willi Sauerbrei & Patrick Royston A new strategy for meta-analysis of continuous covariates in observational studies with IPD Willi Sauerbrei & Patrick Royston Overview Motivation Continuous variables functional form Fractional polynomials

More information

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure)

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) STAT 52 Completely Randomized Designs COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) Completely randomized means no restrictions on the randomization

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Response) Logistic Regression

Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Response) Logistic Regression Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Resonse) Logistic Regression Recall general χ 2 test setu: Y 0 1 Trt 0 a b Trt 1 c d I. Basic logistic regression Previously (Handout

More information

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data Combining Data IB/NRES 509 Statistical Modeling What is a? A quantitative synthesis of previous research Studies as individual observations, weighted by n, σ 2, quality, etc. Can combine heterogeneous

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

Statistics and Econometrics I

Statistics and Econometrics I Statistics and Econometrics I Point Estimation Shiu-Sheng Chen Department of Economics National Taiwan University September 13, 2016 Shiu-Sheng Chen (NTU Econ) Statistics and Econometrics I September 13,

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2011 Individual Patient-Level Data Meta- Analysis: A Comparison of Methods for the Diverse Populations

More information

Previous lecture. Single variant association. Use genome-wide SNPs to account for confounding (population substructure)

Previous lecture. Single variant association. Use genome-wide SNPs to account for confounding (population substructure) Previous lecture Single variant association Use genome-wide SNPs to account for confounding (population substructure) Estimation of effect size and winner s curse Meta-Analysis Today s outline P-value

More information

Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression

Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression Biostat Methods STAT 5820/6910 Handout #5a: Misc. Issues in Logistic Regression Recall general χ 2 test setu: Y 0 1 Trt 0 a b Trt 1 c d I. Basic logistic regression Previously (Handout 4a): χ 2 test of

More information

STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons (Ch. 4-5)

STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons (Ch. 4-5) STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons Ch. 4-5) Recall CRD means and effects models: Y ij = µ i + ϵ ij = µ + α i + ϵ ij i = 1,..., g ; j = 1,..., n ; ϵ ij s iid N0, σ 2 ) If we reject

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments

STAT 135 Lab 3 Asymptotic MLE and the Method of Moments STAT 135 Lab 3 Asymptotic MLE and the Method of Moments Rebecca Barter February 9, 2015 Maximum likelihood estimation (a reminder) Maximum likelihood estimation Suppose that we have a sample, X 1, X 2,...,

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Some Curiosities Arising in Objective Bayesian Analysis

Some Curiosities Arising in Objective Bayesian Analysis . Some Curiosities Arising in Objective Bayesian Analysis Jim Berger Duke University Statistical and Applied Mathematical Institute Yale University May 15, 2009 1 Three vignettes related to John s work

More information

STAT 525 Fall Final exam. Tuesday December 14, 2010

STAT 525 Fall Final exam. Tuesday December 14, 2010 STAT 525 Fall 2010 Final exam Tuesday December 14, 2010 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points will

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Practical Meta-Analysis -- Lipsey & Wilson

Practical Meta-Analysis -- Lipsey & Wilson Overview of Meta-Analytic Data Analysis Transformations, Adjustments and Outliers The Inverse Variance Weight The Mean Effect Size and Associated Statistics Homogeneity Analysis Fixed Effects Analysis

More information

STAT 430 (Fall 2017): Tutorial 8

STAT 430 (Fall 2017): Tutorial 8 STAT 430 (Fall 2017): Tutorial 8 Balanced Incomplete Block Design Luyao Lin November 7th/9th, 2017 Department Statistics and Actuarial Science, Simon Fraser University Block Design Complete Random Complete

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Statistical Data Analysis Stat 3: p-values, parameter estimation

Statistical Data Analysis Stat 3: p-values, parameter estimation Statistical Data Analysis Stat 3: p-values, parameter estimation London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway,

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Statistics 135 Fall 2007 Midterm Exam

Statistics 135 Fall 2007 Midterm Exam Name: Student ID Number: Statistics 135 Fall 007 Midterm Exam Ignore the finite population correction in all relevant problems. The exam is closed book, but some possibly useful facts about probability

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

BTRY 4090: Spring 2009 Theory of Statistics

BTRY 4090: Spring 2009 Theory of Statistics BTRY 4090: Spring 2009 Theory of Statistics Guozhang Wang September 25, 2010 1 Review of Probability We begin with a real example of using probability to solve computationally intensive (or infeasible)

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Replicability and meta-analysis in systematic reviews for medical research

Replicability and meta-analysis in systematic reviews for medical research Tel-Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences Replicability and meta-analysis in systematic reviews for medical research Thesis submitted in partial fulfillment of the requirements

More information

Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities

Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities Joshua R. Loftus Outline 1 Intro and background 2 Framework: quadratic model selection events

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study

Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study Bakbergenuly and Kulinskaya BMC Medical Research Methodology 2018 18:70 https://doi.org/10.1186/s12874-018-0531-9 RESEARCH ARTICLE Open Access Meta-analysis of binary outcomes via generalized linear mixed

More information

The outline for Unit 3

The outline for Unit 3 The outline for Unit 3 Unit 1. Introduction: The regression model. Unit 2. Estimation principles. Unit 3: Hypothesis testing principles. 3.1 Wald test. 3.2 Lagrange Multiplier. 3.3 Likelihood Ratio Test.

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Much of the material we will be covering for a while has to do with designing an experimental study that concerns some phenomenon of interest.

Much of the material we will be covering for a while has to do with designing an experimental study that concerns some phenomenon of interest. Experimental Design: Much of the material we will be covering for a while has to do with designing an experimental study that concerns some phenomenon of interest We wish to use our subjects in the best

More information

STAT215: Solutions for Homework 2

STAT215: Solutions for Homework 2 STAT25: Solutions for Homework 2 Due: Wednesday, Feb 4. (0 pt) Suppose we take one observation, X, from the discrete distribution, x 2 0 2 Pr(X x θ) ( θ)/4 θ/2 /2 (3 θ)/2 θ/4, 0 θ Find an unbiased estimator

More information

One-way ANOVA (Single-Factor CRD)

One-way ANOVA (Single-Factor CRD) One-way ANOVA (Single-Factor CRD) STAT:5201 Week 3: Lecture 3 1 / 23 One-way ANOVA We have already described a completed randomized design (CRD) where treatments are randomly assigned to EUs. There is

More information

Chapter 2: Simple Random Sampling and a Brief Review of Probability

Chapter 2: Simple Random Sampling and a Brief Review of Probability Chapter 2: Simple Random Sampling and a Brief Review of Probability Forest Before the Trees Chapters 2-6 primarily investigate survey analysis. We begin with the basic analyses: Those that differ according

More information

1 One-way analysis of variance

1 One-way analysis of variance LIST OF FORMULAS (Version from 21. November 2014) STK2120 1 One-way analysis of variance Assume X ij = µ+α i +ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; where ɛ ij -s are independent and N(0, σ 2 ) distributed.

More information

Workshop on Statistical Applications in Meta-Analysis

Workshop on Statistical Applications in Meta-Analysis Workshop on Statistical Applications in Meta-Analysis Robert M. Bernard & Phil C. Abrami Centre for the Study of Learning and Performance and CanKnow Concordia University May 16, 2007 Two Main Purposes

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

CAMPBELL COLLABORATION

CAMPBELL COLLABORATION CAMPBELL COLLABORATION Random and Mixed-effects Modeling C Training Materials 1 Overview Effect-size estimates Random-effects model Mixed model C Training Materials Effect sizes Suppose we have computed

More information

The Multilevel Logit Model for Binary Dependent Variables Marco R. Steenbergen

The Multilevel Logit Model for Binary Dependent Variables Marco R. Steenbergen The Multilevel Logit Model for Binary Dependent Variables Marco R. Steenbergen January 23-24, 2012 Page 1 Part I The Single Level Logit Model: A Review Motivating Example Imagine we are interested in voting

More information

A re-appraisal of fixed effect(s) meta-analysis

A re-appraisal of fixed effect(s) meta-analysis A re-appraisal of fixed effect(s) meta-analysis Ken Rice, Julian Higgins & Thomas Lumley Universities of Washington, Bristol & Auckland tl;dr Fixed-effectS meta-analysis answers a sensible question regardless

More information

Statistical Models with Uncertain Error Parameters (G. Cowan, arxiv: )

Statistical Models with Uncertain Error Parameters (G. Cowan, arxiv: ) Statistical Models with Uncertain Error Parameters (G. Cowan, arxiv:1809.05778) Workshop on Advanced Statistics for Physics Discovery aspd.stat.unipd.it Department of Statistical Sciences, University of

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

arxiv: v1 [stat.me] 16 Jun 2009

arxiv: v1 [stat.me] 16 Jun 2009 Testing for Homogeneity in Meta-Analysis I. The One Parameter Case: Standardized Mean Difference Elena Kulinskaya, Michael B. Dollinger and Kirsten Bjørkestøl arxiv:0906.2999v1 [stat.me] 16 Jun 2009 14

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

A Significance Test for the Lasso

A Significance Test for the Lasso A Significance Test for the Lasso Lockhart R, Taylor J, Tibshirani R, and Tibshirani R Ashley Petersen May 14, 2013 1 Last time Problem: Many clinical covariates which are important to a certain medical

More information

Generating the Sample

Generating the Sample STAT 80: Mathematical Statistics Monte Carlo Suppose you are given random variables X,..., X n whose joint density f (or distribution) is specified and a statistic T (X,..., X n ) whose distribution you

More information

arxiv: v2 [stat.me] 1 Aug 2009

arxiv: v2 [stat.me] 1 Aug 2009 Testing for Homogeneity in Meta-Analysis I. The One Parameter Case: Standardized Mean Difference Elena Kulinskaya, Michael B. Dollinger and Kirsten Bjørkestøl arxiv:0906.2999v2 [stat.me] 1 Aug 2009 1 August

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Ling 289 Contingency Table Statistics

Ling 289 Contingency Table Statistics Ling 289 Contingency Table Statistics Roger Levy and Christopher Manning This is a summary of the material that we ve covered on contingency tables. Contingency tables: introduction Odds ratios Counting,

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Meta-analysis. 21 May Per Kragh Andersen, Biostatistics, Dept. Public Health

Meta-analysis. 21 May Per Kragh Andersen, Biostatistics, Dept. Public Health Meta-analysis 21 May 2014 www.biostat.ku.dk/~pka Per Kragh Andersen, Biostatistics, Dept. Public Health pka@biostat.ku.dk 1 Meta-analysis Background: each single study cannot stand alone. This leads to

More information

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 25 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University November 24, 2015 1 2 3 4 5 6 7 8 9 10 11 1 Hypothesis s of homgeneity 2 Estimating risk

More information

STAT 526 Spring Midterm 1. Wednesday February 2, 2011

STAT 526 Spring Midterm 1. Wednesday February 2, 2011 STAT 526 Spring 2011 Midterm 1 Wednesday February 2, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Prediction intervals for random-effects meta-analysis: a confidence distribution approach

Prediction intervals for random-effects meta-analysis: a confidence distribution approach Statistical Methods in Medical Research 2018. In press. DOI: 10.1177/0962280218773520 Prediction intervals for random-effects meta-analysis: a confidence distribution approach Kengo Nagashima 1 *, Hisashi

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Bayesian Linear Models

Bayesian Linear Models Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 03/07/2018 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β 1 +... + x pi β p + ɛ i, x 1i,..., x pi are predictors

More information

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May

Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May Cluster investigations using Disease mapping methods International workshop on Risk Factors for Childhood Leukemia Berlin May 5-7 2008 Peter Schlattmann Institut für Biometrie und Klinische Epidemiologie

More information

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009 EAMINERS REPORT & SOLUTIONS STATISTICS (MATH 400) May-June 2009 Examiners Report A. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong one. Generally candidates

More information

Lecture 3 September 1

Lecture 3 September 1 STAT 383C: Statistical Modeling I Fall 2016 Lecture 3 September 1 Lecturer: Purnamrita Sarkar Scribe: Giorgio Paulon, Carlos Zanini Disclaimer: These scribe notes have been slightly proofread and may have

More information

Fin285a:Computer Simulations and Risk Assessment Section 2.3.2:Hypothesis testing, and Confidence Intervals

Fin285a:Computer Simulations and Risk Assessment Section 2.3.2:Hypothesis testing, and Confidence Intervals Fin285a:Computer Simulations and Risk Assessment Section 2.3.2:Hypothesis testing, and Confidence Intervals Overview Hypothesis testing terms Testing a die Testing issues Estimating means Confidence intervals

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Effect and shrinkage estimation in meta-analyses of two studies

Effect and shrinkage estimation in meta-analyses of two studies Effect and shrinkage estimation in meta-analyses of two studies Christian Röver Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany December 2, 2016 This project has

More information

Estimation, Inference, and Hypothesis Testing

Estimation, Inference, and Hypothesis Testing Chapter 2 Estimation, Inference, and Hypothesis Testing Note: The primary reference for these notes is Ch. 7 and 8 of Casella & Berger 2. This text may be challenging if new to this topic and Ch. 7 of

More information

More on nuisance parameters

More on nuisance parameters BS2 Statistical Inference, Lecture 3, Hilary Term 2009 January 30, 2009 Suppose that there is a minimal sufficient statistic T = t(x ) partitioned as T = (S, C) = (s(x ), c(x )) where: C1: the distribution

More information

18.05 Practice Final Exam

18.05 Practice Final Exam No calculators. 18.05 Practice Final Exam Number of problems 16 concept questions, 16 problems. Simplifying expressions Unless asked to explicitly, you don t need to simplify complicated expressions. For

More information

Small Area Confidence Bounds on Small Cell Proportions in Survey Populations

Small Area Confidence Bounds on Small Cell Proportions in Survey Populations Small Area Confidence Bounds on Small Cell Proportions in Survey Populations Aaron Gilary, Jerry Maples, U.S. Census Bureau U.S. Census Bureau Eric V. Slud, U.S. Census Bureau Univ. Maryland College Park

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression Rebecca Barter April 20, 2015 Fisher s Exact Test Fisher s Exact Test

More information

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is Stat 501 Solutions and Comments on Exam 1 Spring 005-4 0-4 1. (a) (5 points) Y ~ N, -1-4 34 (b) (5 points) X (X,X ) = (5,8) ~ N ( 11.5, 0.9375 ) 3 1 (c) (10 points, for each part) (i), (ii), and (v) are

More information

A simulation study comparing properties of heterogeneity measures in meta-analyses

A simulation study comparing properties of heterogeneity measures in meta-analyses STATISTICS IN MEDICINE Statist. Med. 2006; 25:4321 4333 Published online 21 September 2006 in Wiley InterScience (www.interscience.wiley.com).2692 A simulation study comparing properties of heterogeneity

More information

Diagnostics can identify two possible areas of failure of assumptions when fitting linear models.

Diagnostics can identify two possible areas of failure of assumptions when fitting linear models. 1 Transformations 1.1 Introduction Diagnostics can identify two possible areas of failure of assumptions when fitting linear models. (i) lack of Normality (ii) heterogeneity of variances It is important

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

META ANALYSIS OF BINARY OUTCOMES DATA IN CLINICAL TRIALS

META ANALYSIS OF BINARY OUTCOMES DATA IN CLINICAL TRIALS META ANALYSIS OF BINARY OUTCOMES DATA IN CLINICAL TRIALS PERLA SUBBAIAH AND AVISHEK MALLICK Department of Mathematics & Statistics, Oakland University, Rochester, MI 48309, USA E-mail: perla@oakland.edu,

More information

Introduction to Survey Data Integration

Introduction to Survey Data Integration Introduction to Survey Data Integration Jae-Kwang Kim Iowa State University May 20, 2014 Outline 1 Introduction 2 Survey Integration Examples 3 Basic Theory for Survey Integration 4 NASS application 5

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

Evidence synthesis for a single randomized controlled trial and observational data in small populations

Evidence synthesis for a single randomized controlled trial and observational data in small populations Evidence synthesis for a single randomized controlled trial and observational data in small populations Steffen Unkel, Christian Röver and Tim Friede Department of Medical Statistics University Medical

More information

Categorical Variables and Contingency Tables: Description and Inference

Categorical Variables and Contingency Tables: Description and Inference Categorical Variables and Contingency Tables: Description and Inference STAT 526 Professor Olga Vitek March 3, 2011 Reading: Agresti Ch. 1, 2 and 3 Faraway Ch. 4 3 Univariate Binomial and Multinomial Measurements

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Linear Regression Models

Linear Regression Models Linear Regression Models Model Description and Model Parameters Modelling is a central theme in these notes. The idea is to develop and continuously improve a library of predictive models for hazards,

More information