Calculation of proton stopping power in the region of its maximum value for several organic materials and water

Size: px
Start display at page:

Download "Calculation of proton stopping power in the region of its maximum value for several organic materials and water"

Transcription

1 28 December, 2000 Calculation of proton stopping power in the region of its maximum value for several organic materials and water A. Akkerman a, A. Breskin a, R. Chechik a and Y. Lifshitz b a The Weizmann Institute of Sciences, P.O. Box 26, 76100, Rehovot, Israel b Soreq Nuclear Research Center, 80100, Yavneh, Israel ABSTRACT The stopping powers for 10 solid organic materials and water have been calculated in the range of proton energies kev. Most of the presented results are new and are in good agreement with existing experimental data.the calculated data might be useful for applications in radiobiology and space research. Keywords: proton stopping power, organic materials, dielectric approach Author responsible for further correspondence: Dr. Rachel Chechik The Weizmann Institute of Sciences P.O.Box 26, 76100, Rehovot ISRAEL Tel: (+972) Fax: (+972) fnchecik@wis .weizmann.ac.il 1

2 INTRODUCTION AND DESCRIPTION OF THE MODEL Knowledge of proton stopping power (SP) in the region of its maximum value for a given medium is required in radiobiology for studies of radiation damage to tissue and for other applications. Therefore attempts have been made to estimate the SP both theoretically and experimentally. In the low energy range (Ep<50 kev), Lindhard s theory (Lindhard and Scharff, 1953) and its further modifications successfully account for the SP proportional relation to the proton velocity. At the high-energy range (Ep>300 kev) Bethe s theory (Bethe and Ashkin, 1953) adequately describes the SP versus Ep. In the peak region the mechanisms of proton-electron interactions change, which makes it difficult for self-consistent theoretical treatment. In addition, available experimental data in this energy interval, even for monatomic substances, fluctuate in value significantly. This prevents the use of fitting parameters for these data and in extrapolating them to complex organic molecules. A review of the subject is found in Semrand and Bauer (1985) and references therein and in ICRU Report-49 (1993). Many of the SP theories in the considered energy range are based on the dielectric response model (Ritchie, 1959). This approach was used successfully for calculating mean free paths (mfp) and SP for low energy electrons. As an instance, in Ashley (1991) this model was used to calculate the SP for protons. The model does not require experimentally determined mean ionization potentials and it includes, in a self-consistent way, the shell correction term. In this article we have extended Ashley's approach (Ashley, 1991) and calculated the proton SP in 10 organic compounds and in water, these being important materials for radiobiology and for other applications as insulating and resistive materials. For all of these materials experimentally derived Optical Energy Loss Functions (OELF) exist. The dielectric approach was recently used (Akkerman and Akkerman, 1999) to calculate the mfp and SPs of electrons at energies below 10 kev for the same organic materials, results being in good agreement with existing experimental values. For most of these materials the proton SP are presented here for the first time. We calculate the proton SP as a sum of terms SP=SP v +SP c +SP s that represent various processes: SP v is the valence electron excitation, SP c the core-electron ionization, and SP s the second order (in Z) correction term. According to the linear dielectric response theory the stopping power of a medium for a proton is expressed by the energy-loss function (ELF) Im(-1/ε(ω,q)) (Ritchie, 1959): E m SP v = dω ω dq 1/q Im(-1/ε(ω,q)), (1) 0 ω/v where E m =2V 2, V being the proton velocity and ħ = e = m 0 = 1. The ELF used in (1) is obtained from the optical energy-loss function (OELF) Im(-1/ε(ω,0)) by the quadratic extension for the momentum transfer q. For the core ionization SP c, induced by ions, we used Gryzinski's binary encounter theory (Gryzinski, 1965), which is a good approximation for light atomic mass materials. The dielectric response theory does not include ab initio the higher order in Z corrections to the SP, i.e. the Barkas- effect ( Z 3 ) (Ashley et al, 1972) and Bloch's term ( Z 4 ) 2

3 (Bloch, 1933), though these terms may play a significant role at relatively low proton energies, in the vicinity of the SP maximum and below. Ashley (Ashley, 1991) has given analytical expressions for these terms. The calculation of SP s requires the minimal impact parameter a, which distinguishes distant collisions from close impacts. Two different choices of this parameter are available, from Jackson and McCarthy (1972) and Lindhard (1976). RESULTS AND DISCUSSION First we fit the OELF by a sum of Drude-like functions with quadratic extension for the momentum transfer. When extrapolated to the first core-ionization level, this sum shows reasonable agreement with the OELF calculated from the photoionization cross sections (Biggs and Lighthill (1990). The major sum-rules, including the mean ionization potentials as in Akkerman and Akkerman (1999), were found to be in close agreement with experimental values. We have also obtained a good agreement between our calculated SP s for C, Al and Cu, the experimental SP's of Semrad and Bauer (1985) and calculated values of Ashley (1991). Minor differences, still observed in the vicinity of the SP maximum and above, could be due to differences in the ELF tails. At energies below the SP maximum (Ep<50 kev) the deviation of our calculated SP's from experimental data become significantly larger: our data decrease much faster than expected from proportionality of the SP to the proton velocity. Hence for these energies Lindhard's SP theory and its further improvements are preferable. Using the scheme described above we have calculated the valence and core parts of the SP and the high order correction terms for all materials listed in Table 1. It follows that the treatment of Jackson and McCarthy (1972) for the Barkas-effect yields better agreement than Lindhard's. For Polyethylene and PMMA excellent agreement is found with ICRU-49 (1993) in the vicinity of the SP maximum (see figure 1). For water (figure 2) the values for our data are somewhat below those of ICRU-49 (1993), being possibly explained by differences in the OELF data. In our SP calculations for all the organic materials listed in Table 1, the a's were taken from Jackson and McCarthy (1972). We note that the model may seem fragmentary, as it treats separately contributions to the SP from different excitation terms. Such division could be eliminated if the OELF was known up to very large energy losses, including the core-excitation part. However, such division is unavoidable for the high-order in Z correction terms, which do not follow directly from the dielectric response function. We conclude that the calculated SP's are practically uninfluenced by the method chosen for the momentum transfer extension (q>0), as opposed to that adopted by Planes et al, (1996). The same is concluded from comparison of our electron mfp calculation (Akkerman et al 1999) with those obtained by Tanuma et al (1993), using Lindhard's function for the q-extension of the OELF. 3

4 REFERENCES Akkerman A. and Akkerman E., (1999) Characteristics of electron inelastic interactions in organic compounds and water over the energy range ev, J. Appl. Phys. 86, Ashley J.C., Ritchie R.H. and Brandt W., (1972) Z 3 effect in stopping power of matter for charged particles, Phys. Rev. B 5, Ashley J.C., (1991) Optical data model for stopping power of condensed matter for protons and antiprotons, J. Phys. Condens. Matter 3, Bethe H.A. and Ashkin J., (1953) Passage of radiation through Matter in: Experimental Nuclear Physics, Vol. I, ed. E. Segre (Wiley, New York), Bloch F., (1933) Zur bremsung rasch bewegter teilchen beim durgang durch die materie, Ann. Phys. 16, Biggs F. and Lighthill R., (1990) Analytical approximation for X-ray cross sections III, Sandia National Lab. Report SAND Gryzinski M., (1965) Classical theory of atomic collisions I: Theory of inelastic collisions, Phys. Rev. A 138, ICRU (International Commission on Radiation Units and Measures), (1993) Stopping powers and ranges for protons and alpha particles, Report No 49 ICRU, Bethesda MD. Jackson J.D. and McCarthy R.L., (1972) Z 3 Corrections to energy loss and range, Phys. Rev. B 6, Lindhard J. and Scharff M., (1953) Energy loss in matter by fast particles of low charge, Kgl. Danske Videnscab. Selskab. Mat-Fys. Medd. 27 (15) (full issue). Lindhard J., (1976) The Barkas effect - or Z 3, Z 4 corrections to stopping of swift charged particles, Nucl. Instrum. Meth. B 2, 1-5. Planes D.J., Garcia-Molina R., Abril I. and Arista N.R., (1996) Wavenumber dependence of the energy loss function of graphite and aluminum, J. Electr. Spectrosc. Relat. Phenomena 82, Ritchie R.H., (1959) Interaction of charged particles with a degenerate Fermi-Dirac electron gas, Phys. Rev. 114, Semrad D. and Bauer P., (1985) Formulae and theories to predict proton stopping powers around the maximum, Nucl. Instrum. Meth. B 12, Tanuma S, Powell C.J, and Penn D.R., (1993) Calculations of the electron inelastic mean free paths V: Data for 14 organic compounds over the energy range ev, Surf. Interface Anal. 21,

5 Table 1. The calculated SP (in ev/å) for: 1-Polyethylene, 2-Guanine, 3-Poly(2-vinylpyridine), 4-Diphenyl-hexatriene, 5- β-carotene, 6-Polystyrene, 7-PMMA, 8-Paraffin, 9-Polyacetelene, 10-PBS, 11-Water. E[keV] Polyethylene SP, ev/a o Proton energy, kev Figure 1. Proton stopping power in Polyethylene. Open squares are our calculations, solid circles are ICRU-49 data. 5

6 8 Water SP, ev/a o Proton energy, kev Figure 2. Proton stopping power for water. Open squares are our calculations, solid squares are ICRU-49 data. 6

Calculation of the Stopping Power for Intermediate Energy Positrons. Önder Kabaday, and M. Çaǧatay Tufan

Calculation of the Stopping Power for Intermediate Energy Positrons. Önder Kabaday, and M. Çaǧatay Tufan CHINESE JOURNAL OF PHYSICS VOL. 44, NO. 4 AUGUST 006 Calculation of the Stopping Power for Intermediate Energy Positrons Hasan Gümüş, Önder Kabaday, and M. Çaǧatay Tufan Department of Physics, Faculty

More information

A NEW TECHNIQUE FOR STUDYING THE FANO FACTOR AND THE MEAN ENERGY PER ION PAIR IN COUNTING GASES

A NEW TECHNIQUE FOR STUDYING THE FANO FACTOR AND THE MEAN ENERGY PER ION PAIR IN COUNTING GASES SLAC-PUB-16217 A NEW TECHNIQUE FOR STUDYING THE FANO FACTOR AND THE MEAN ENERGY PER ION PAIR IN COUNTING GASES A. Pansky, A. Breskin and R. Chechik Particle Physics Department, The Weizmann Inst. of Science

More information

Ion and electron track-structure and its effects in silicon: model and calculations.

Ion and electron track-structure and its effects in silicon: model and calculations. Ion and electron track-structure and its effects in silicon: model and calculations. A. Akkerman, a J. Barak, a and D. Emfietzoglou b a Soreq NRC, Yavne 81800, Israel b Dept. Med. Phys., Univ. Ioannina

More information

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper Research Journal of Recent Sciences ISSN 2277-22 Vol. 1(6), 7-76, June (212) Res.J.Recent Sci. Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon,

More information

Wake Potential of penetrating Ionsin Amorphous Carbon Target using Quantum Harmonic Oscillator (QHO) Model

Wake Potential of penetrating Ionsin Amorphous Carbon Target using Quantum Harmonic Oscillator (QHO) Model Wake Potential of penetrating Ionsin Amorphous Carbon Target using Quantum Harmonic Oscillator (QHO) Model Nabil janan Al-Bahnam 1, Khalid A. Ahmad 2 and Abdulla Ahmad Rasheed 3 1 Department of physics,college

More information

Title Stopping Powers of Al, Ni, Cu, Ag, Alpha Particles Author(s) Ishiwari, Ryutaro; Shiomi, Naoko; K Fumiko Citation Bulletin of the Institute for Chemi University (1977), 55(1): 68-73 Issue Date 1977-03-31

More information

Electron inelastic mean free paths in solids: A theoretical approach

Electron inelastic mean free paths in solids: A theoretical approach Electron inelastic mean free paths in solids: A theoretical approach Siddharth H. Pandya a), B. G. Vaishnav b), and K. N. Joshipura a) a) Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120

More information

Effects of Electron Backscattering in Auger Electron Spectroscopy: Recent Developments

Effects of Electron Backscattering in Auger Electron Spectroscopy: Recent Developments Journal of Surface Analysis Vol.15, No. 2 (28) pp. 139 149 Review Effects of Electron Backscattering in Auger Electron Spectroscopy: Recent Developments A. Jablonski a,* and C. J. Powell b a Institute

More information

Electron momentum spectroscopy of metals

Electron momentum spectroscopy of metals Electron momentum spectroscopy of metals M. Vos, A.S. Kheifets and E. Weigold Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Australian, National University

More information

Monte Carlo study of medium-energy electron penetration in aluminium and silver

Monte Carlo study of medium-energy electron penetration in aluminium and silver NUKLEONIKA 015;60():361366 doi: 10.1515/nuka-015-0035 ORIGINAL PAPER Monte Carlo study of medium-energy electron penetration in aluminium and silver Asuman Aydın, Ali Peker Abstract. Monte Carlo simulations

More information

Heavy charged particle passage through matter

Heavy charged particle passage through matter Heavy charged particle passage through matter Peter H. Hansen University of Copenhagen Content Bohrs argument The Bethe-Bloch formula The Landau distribution Penetration range Biological effects Bohrs

More information

Ranges of Electrons for Human Body Substances

Ranges of Electrons for Human Body Substances Abstract Research Journal of Chemical Sciences ISSN 2231-606X Ranges of Electrons for Human Body Substances Singh Hemlata 1, Rathi S.K. 1,2 and Verma A.S. 3 1 Department of physics, B. S. A. College, Mathura

More information

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Chapter II: Interactions of ions with matter

Chapter II: Interactions of ions with matter Chapter II: Interactions of ions with matter 1 Trajectories of α particles of 5.5 MeV Source: SRIM www.srim.org 2 Incident proton on Al: Bohr model v=v 0 E p =0.025 MeV relativistic effect E p =938 MeV

More information

Interazioni delle particelle cariche. G. Battistoni INFN Milano

Interazioni delle particelle cariche. G. Battistoni INFN Milano Interazioni delle particelle cariche G. Battistoni INFN Milano Collisional de/dx of heavy charged particles A particle is heavy if m part >>m electron. The energy loss is due to collision with atomic electrons.

More information

ENERGY LOSS OF PROTONS AND He 2+ BEAMS IN PLASMAS

ENERGY LOSS OF PROTONS AND He 2+ BEAMS IN PLASMAS Global NEST Journal, Vol 16, No 6, pp 1085-1090, 014 Copyright 014 Global NEST Printed in Greece. All rights reserved ENERGY LOSS OF PROTONS AND He + BEAMS IN PLASMAS CASAS D. * BARRIGA-CARRASCO M.D. RUBIO

More information

Stopping Power for Ions and Clusters in Crystalline Solids

Stopping Power for Ions and Clusters in Crystalline Solids UNIVERSITY OF HELSINKI REPORT SERIES IN PHYSICS HU-P-D108 Stopping Power for Ions and Clusters in Crystalline Solids Jarkko Peltola Accelerator Laboratory Department of Physics Faculty of Science University

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2 September 1999 GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS V.N. Ivanchenko Budker Institute for Nuclear Physics, Novosibirsk, Russia S. Giani, M.G. Pia

More information

M.Dapor, R.C.Masters, I.Ross, D.Lidzey, A.Pearson, I.Abril, R.Garcia-Molina, J.Sharp, M.Unčovský, T.Vystavel, C.Rodenburg

M.Dapor, R.C.Masters, I.Ross, D.Lidzey, A.Pearson, I.Abril, R.Garcia-Molina, J.Sharp, M.Unčovský, T.Vystavel, C.Rodenburg Comparison between Experimental Measurement and Monte Carlo Simulation of the Secondary Electron Energy Spectrum of Poly methylmethacrylate (PMMA) and Poly(3- hexylthiophene-2,5-diyl) M.Dapor, R.C.Masters,

More information

Doping of Silicon with Phosphorus Using the 30 Si(p, g) 31 P Resonant Nuclear Reaction

Doping of Silicon with Phosphorus Using the 30 Si(p, g) 31 P Resonant Nuclear Reaction S. Heredia-Avalos et al.: Doping of Silicon with Phosphorus 867 phys. stat. sol. (a) 176, 867 (1999) Subject classification: 61.72.Tt; 61.80.Jh; S5.11 Doping of Silicon with Phosphorus Using the 30 Si(p,

More information

The Dielectric Formalism for Inelastic Processes in High-Energy Ion Matter Collisions

The Dielectric Formalism for Inelastic Processes in High-Energy Ion Matter Collisions CHAPTER SEVEN The Dielectric Formalism for Inelastic Processes in High-Energy Ion Matter Collisions Instituto de Astronomía y Física del Espacio, CONICET and Universidad de Buenos Aires, casilla de correo

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization 22.101 Applied Nuclear Physics (Fall 2006) Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization References: R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York,

More information

Particle Detectors. How to See the Invisible

Particle Detectors. How to See the Invisible Particle Detectors How to See the Invisible Which Subatomic Particles are Seen? Which particles live long enough to be visible in a detector? 2 Which Subatomic Particles are Seen? Protons Which particles

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

He, Target = H. 'Uber Eine Methode Zur Direkten Bestimmung der Reichweite von Alpha-Strahlen in Festen Korpern'

He, Target = H. 'Uber Eine Methode Zur Direkten Bestimmung der Reichweite von Alpha-Strahlen in Festen Korpern' s for Ion = 1909 Year Authors, Title, Journal and Comments Taylor, T. S. 'On the Retardation of Alpha Rays by Metals and Gases' Phil. Mag., 18, 604-619 (1909) Comment : S. 7.7 MeV He -> Au, Sn, Pb, Al,

More information

Assembly and test runs of decay detector for ISGMR study. J. Button, R. Polis, C. Canahui, Krishichayan, Y. -W. Lui, and D. H.

Assembly and test runs of decay detector for ISGMR study. J. Button, R. Polis, C. Canahui, Krishichayan, Y. -W. Lui, and D. H. Assembly and test runs of decay detector for ISGMR study J. Button, R. Polis, C. Canahui, Krishichayan, Y. -W. Lui, and D. H. Youngblood 1. ΔE- ΔE - E Plastic Scintillator Array Decay Detector In order

More information

DETERMINATION OF INELASTIC MEAN FREE PATH OF ELECTRONS IN NOBLE METALS

DETERMINATION OF INELASTIC MEAN FREE PATH OF ELECTRONS IN NOBLE METALS Vol. 81 (1992) ACTA PHYSICA POLONICA A No 2 Proceedings of the 15th International Seminar on Surface Physics, Przesieka 1991 DETERMINATION OF INELASTIC MEAN FREE PATH OF ELECTRONS IN NOBLE METALS W. DOLIŃSKI,

More information

High-Intensity Laser Interactions with Solid Targets and Implications for Fast-Ignition Experiments on OMEGA EP

High-Intensity Laser Interactions with Solid Targets and Implications for Fast-Ignition Experiments on OMEGA EP n n High-Intensity Laser Interactions with Solid Targets and Implications for Fast-Ignition Experiments on OMEGA EP a n n n n J. Myatt University of Rochester Laboratory for Laser Energetics 48th Annual

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield arxiv:1207.2913v1 [astro-ph.im] 12 Jul 2012 On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield J. Rosado, P. Gallego, D. García-Pinto, F. Blanco and

More information

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School

Physics of particles. H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Physics of particles H. Paganetti PhD Massachusetts General Hospital & Harvard Medical School Introduction Dose The ideal dose distribution ideal Dose: Energy deposited Energy/Mass Depth [J/kg] [Gy] Introduction

More information

Ion, electron and photon interactions with solids: Energy deposition, sputtering and desorption

Ion, electron and photon interactions with solids: Energy deposition, sputtering and desorption Ion, electron and photon interactions with solids: Energy deposition, sputtering and desorption Jørgen Schou Department of Optics and Plasma Research, Risø National Laboratory, DK-4000 Roskilde, Denmark.

More information

Passage of Charged Particles in matter. Abstract:

Passage of Charged Particles in matter. Abstract: Passage of Charged Particles in matter Submitted by: Sasmita Behera, Advisor: Dr. Tania Moulik School of Physical Sciences NATIONAL INSTITUTE OF SCIENCE EDUCATION AND RESEARCH Abstract: In this report,

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Analysis of Ion Implantation Profiles for Accurate Process/Device Simulation: Analysis Based on Quasi-Crystal Extended LSS Theory

Analysis of Ion Implantation Profiles for Accurate Process/Device Simulation: Analysis Based on Quasi-Crystal Extended LSS Theory Analysis of Ion Implantation Profiles for Accurate Process/Device Simulation: Analysis Based on Quasi-Crystal xtended LSS Theory Kunihiro Suzuki (Manuscript received December 8, 9) Ion implantation profiles

More information

Sputtering by Particle Bombardment

Sputtering by Particle Bombardment Rainer Behrisch, Wolfgang Eckstein (Eds.) Sputtering by Particle Bombardment Experiments and Computer Calculations from Threshold to MeV Energies With 201 Figures e1 Springer Contents Introduction and

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

A collective model for inner shell ionization of very heavy targets

A collective model for inner shell ionization of very heavy targets Radiation Effects & Defects in Solids Vol. 166, No. 5, May 2011, 338 345 A collective model for inner shell ionization of very heavy targets C.C. Montanari a,b *, D.M. Mitnik a,b and J.E. Miraglia a,b

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

arxiv: v1 [astro-ph] 30 Jul 2008

arxiv: v1 [astro-ph] 30 Jul 2008 arxiv:0807.4824v1 [astro-ph] 30 Jul 2008 THE AIR-FLUORESCENCE YIELD F. Arqueros, F. Blanco, D. Garcia-Pinto, M. Ortiz and J. Rosado Departmento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias

More information

de dx where the stopping powers with subscript n and e represent nuclear and electronic stopping power respectively.

de dx where the stopping powers with subscript n and e represent nuclear and electronic stopping power respectively. CHAPTER 3 ION IMPLANTATION When an energetic ion penetrates a material it loses energy until it comes to rest inside the material. The energy is lost via inelastic and elastic collisions with the target

More information

Experimental and theoretical determination of the stopping power of ZrO 2 films for protons and α-particles

Experimental and theoretical determination of the stopping power of ZrO 2 films for protons and α-particles Eur. Phys. J. D 59, 209 213 (2010) DOI: 10.1140/epjd/e2010-00164-x Experimental and theoretical determination of the stopping power of ZrO 2 films for protons and α-particles M. Behar, C.D. Denton, R.C.

More information

Simulation of low energy nuclear recoils using Geant4

Simulation of low energy nuclear recoils using Geant4 Simulation of low energy nuclear recoils using Geant4 [ heavy ions, T < 1 kev/amu ] Ricardo Pinho ricardo@lipc.fis.uc.pt 12th Geant4 Collaboration Workshop LIP - Coimbra Hebden Bridge 14 Set 2007 Outline

More information

Interaction of Particles with Matter

Interaction of Particles with Matter Chapter 10 Interaction of Particles with Matter A scattering process at an experimental particle physics facility is called an event. Stable particles emerging from an event are identified and their momenta

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor

Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor ECLOUD 18 - Elba Island- 3-7 June 2018 OUTLINE Description of the Monte

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

The Influence of Elastic and Inelastic Scattering on Electron Momentum Spectroscopy data

The Influence of Elastic and Inelastic Scattering on Electron Momentum Spectroscopy data The Influence of Elastic and Inelastic Scattering on Electron Momentum Spectroscopy data M. Vos,C. Bowles, A.S. Kheifets and M. R. Went Atomic and Molecular Physics Laboratory, Research School of Physical

More information

The Stopping Power of Matter for Positive Ions

The Stopping Power of Matter for Positive Ions 7 The Stopping Power of Matter for Positive Ions Helmut Paul Johannes Kepler University Linz, Austria 1. Introduction When a fast positive ion travels through matter, it excites and ionizes atomic electrons,

More information

LATTICE DYNAMICS OF METALLIC GLASS M.M. SHUKLA

LATTICE DYNAMICS OF METALLIC GLASS M.M. SHUKLA Vol. 94 (1998) ACTA PHYSICA POLONICA A No. 4 LATTICE DYNAMICS OF METALLIC GLASS Ca70 Μg30 ON THE MODEL OF BHATIA AND SINGH M.M. SHUKLA Departamento de Fisica, UNESP, Bauru, C.P. 473, 17033-360, Bauru,

More information

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE Jay D. Bourke Postdoctoral Fellow in X-ray Science! School of Physics,! University

More information

Particle-Matter Interactions

Particle-Matter Interactions Particle-Matter Interactions to best detect radiations and particles we must know how they behave inside the materials 8/30/2010 PHYS6314 Prof. Lou 1 Stable Particles Visible to a Detector Hadrons (Baryon/Meson)

More information

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Session 3: Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Michael Dingfelder Department of Physics, East Carolina University Mailstop #563

More information

Advances in the Micro-Hole & Strip Plate gaseous detector

Advances in the Micro-Hole & Strip Plate gaseous detector Nuclear Instruments and Methods in Physics Research A 504 (2003) 364 368 Advances in the Micro-Hole & Strip Plate gaseous detector J.M. Maia a,b,c, *, J.F.C.A. Veloso a, J.M.F. dos Santos a, A. Breskin

More information

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION Chapter NP-4 Nuclear Physics Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION 2.0 ALPHA PARTICLE INTERACTIONS 3.0 BETA INTERACTIONS 4.0 GAMMA INTERACTIONS

More information

A quantitative kinetic model for Al 2 O 3 :C: TL response to UV-illumination

A quantitative kinetic model for Al 2 O 3 :C: TL response to UV-illumination Radiation Measurements 43 (2008) 175 179 www.elsevier.com/locate/radmeas A quantitative kinetic model for Al 2 O 3 :C: TL response to UV-illumination V. Pagonis a,, R. Chen b, J.L. Lawless c a Physics

More information

The limits of volume reflection in bent crystals

The limits of volume reflection in bent crystals The limits of volume reflection in bent crystals V.M. Biryukov Institute for High Energy Physics, Protvino, 142281, Russia Abstract We show that theory predictions for volume reflection in bent crystals

More information

Electronuclear Interactions in FLUKA

Electronuclear Interactions in FLUKA Electronuclear Interactions in FLUKA Pavel Degtiarenko Jefferson Lab Contents What are the inelastic direct electronuclear (ea) reactions Why ea reactions important/critical for JLab s needs What is our

More information

Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra

Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra H. Xu, 1 B. Da, 1 J. Tóth 3, K. Tőkési 3,4 and Z.J. Ding1,2 a) 1 Hefei National Laboratory

More information

Hans-Herbert Fischer and Klaus Thiel

Hans-Herbert Fischer and Klaus Thiel A simulation tool for the calculation of NIEL in arbitrary materials using GEANT4 - Some new results - Hans-Herbert Fischer and Klaus Thiel Nuclear Chemistry Dept. University of Köln, FRG ESA GSP 2005

More information

Interaction of Electrons with Matter and Comparison of the Obtained Results with Experimental Measurements

Interaction of Electrons with Matter and Comparison of the Obtained Results with Experimental Measurements Australian Journal of Basic and Applied Sciences, 5(): 83-80, 0 ISSN 99-878 Interaction of Electrons with Matter and Comparison of the Obtained Results with Experimental Measurements Somayeh Almasi Bigdelo,

More information

Monte Carlo model for the deposition of electronic energy in solid argon thin films by kev electrons

Monte Carlo model for the deposition of electronic energy in solid argon thin films by kev electrons Monte Carlo model for the deposition of electronic energy in solid argon thin films by kev electrons R. Vidal a),b) and R. A. Baragiola University of Virginia, Engineering Physics, Thornton Hall, Charlottesville,

More information

D. M. Ritson Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

D. M. Ritson Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-295 July 1982 (T/E) FERMI-TELLER THEORY OF LOW VELOCITY IONIZATION LOSSES APPLIED TO MONOPOLES* D. M. Ritson Stanford Linear Accelerator Center Stanford University, Stanford, California 9435 Recently

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

Electron impact ionization of diatomic molecules

Electron impact ionization of diatomic molecules Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- Electron impact ionization of diatomic molecules I. Tóth, R.I. Campeanu, V. Chiş and L. Nagy Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- THE EUROPEAN PHYSICAL

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield EPJ Web of Conferences 53, 10001 (2013) DOI: 10.1051/epjconf/20135310001 C Owned by the authors, published by EDP Sciences, 2013 On the energy deposition by electrons in air and the accurate determination

More information

Dynamics of fast molecular ions in solids and plasmas

Dynamics of fast molecular ions in solids and plasmas Dynamics of fast molecular ions in solids and plasmas Z.L. Miskovic Department of Applied Mathematics, University of Waterloo, Ontario, Canada & Y.-N. Wang and Y.-H. Song Department of Physics, Dalian

More information

Calculation of Ion Implantation Profiles for Two-Dimensional Process Modeling

Calculation of Ion Implantation Profiles for Two-Dimensional Process Modeling 233 Calculation of Ion Implantation Profiles for Two-Dimensional Process Modeling Martin D. Giles AT&T Bell Laboratories Murray Hill, New Jersey 07974 ABSTRACT Advanced integrated circuit processing requires

More information

Auger decay of excited Ar projectiles emerging from carbon foils

Auger decay of excited Ar projectiles emerging from carbon foils J. Phys. B: Atom. Molec. Phys., Vol. 9, No. 15, 1976. Printed in Great Britain. @ 1976 LETTER TO THE EDITOR Auger decay of excited Ar projectiles emerging from carbon foils R A Baragiola?, P Ziem and N

More information

Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers

Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers A. Calloni,*, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò Dipartimento

More information

Past searches for kev neutrinos in beta-ray spectra

Past searches for kev neutrinos in beta-ray spectra Past searches for kev neutrinos in beta-ray spectra Otokar Dragoun Nuclear Physics Institute of the ASCR Rez near Prague dragoun@ujf.cas.cz supported by GAČR, P203/12/1896 The ν-dark 2015 Workshop TUM

More information

Cross sections for K-shell ionisation by electron impact?

Cross sections for K-shell ionisation by electron impact? J. Phys. B: At. Mol. Opt. Phys. 23 (1990) 2117-2130. Printed in the UK Cross sections for K-shell ionisation by electron impact? Ricardo Mayo1 and Francesc Salvat Facultat de Fisica (ECM), Universitat

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

DETERMINATION OF ENERGY LOSS, RANGE AND STOPPING POWER OF LIGHT IONS USING SILICON SURFACE BARRIER DETECTOR

DETERMINATION OF ENERGY LOSS, RANGE AND STOPPING POWER OF LIGHT IONS USING SILICON SURFACE BARRIER DETECTOR DETERMINATION OF ENERGY LOSS, RANGE AND STOPPING POWER OF LIGHT IONS USING SILICON SURFACE BARRIER DETECTOR Mahalesh Devendrappa 1, R D Mathad 2 and Basavaraja Sannakki 3 1,3 Department of Post Graduate

More information

Interactions of particles and radiation with matter

Interactions of particles and radiation with matter 1 Interactions of particles and radiation with matter When the intervals, passages, connections, weights, impulses, collisions, movement, order, and position of the atoms interchange, so also must the

More information

1. Introduction High-resolution medium energy ion scattering (MEIS) has been developed as a powerful tool to investigate the structures of solid surfa

1. Introduction High-resolution medium energy ion scattering (MEIS) has been developed as a powerful tool to investigate the structures of solid surfa Charge distributions of medium energy He ions scattered from metal surfaces Kei Mitsuhara, Akihiro Mizutani and Masaru Takizawa Department of Physical Sciences, Factory of Science and Engineering, Ritsumeikan

More information

Neutron Interactions with Matter

Neutron Interactions with Matter Radioactivity - Radionuclides - Radiation 8 th Multi-Media Training Course with Nuclides.net (Institute Josžef Stefan, Ljubljana, 13th - 15th September 2006) Thursday, 14 th September 2006 Neutron Interactions

More information

Experimental and theoretical study of the energy loss of Be and B ions in Zn

Experimental and theoretical study of the energy loss of Be and B ions in Zn Experimental and theoretical study of the energy loss of Be and B ions in Zn E. D. Cantero, 1 R. C. Fadanelli, 2 C. C. Montanari, 3,4 M. Behar, 2 J. C. Eckardt, 1 G. H. Lantschner, 1 J. E. Miraglia, 3,4

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

Approximate Formulas for the Stopping Power of Charged Particles in an Electron Gas

Approximate Formulas for the Stopping Power of Charged Particles in an Electron Gas SSN 2224-3186 (Paper) SSN 2225-921 (Online) Vol.6, No.3, 216 Approximate Formulas for the Stopping Power of Charged Particles in an Electron Gas SANAA THAMER KADHUM Thi - Qar University, raq, College of

More information

Electronic excitation in atomic collision cascades

Electronic excitation in atomic collision cascades Nuclear Instruments and Methods in Physics Research B 8 (5) 35 39 www.elsevier.com/locate/nimb Electronic excitation in atomic collision cascades A. Duvenbeck a, Z. Sroubek b, A. Wucher a, * a Department

More information

Explicit expression for Lindhard dielectric function at finite temperature

Explicit expression for Lindhard dielectric function at finite temperature arxiv:1412.5705v1 [cond-mat.mtrl-sci] 18 Dec 2014 Explicit expression for Lindhard dielectric function at finite temperature A. V. Andrade-Neto Departamento de Física, Universidade Estadual de Feira de

More information

Charge Accumulation on Metal Strip-detector Sensors Under Ion Beam Irradiation: Experiment and Modeling

Charge Accumulation on Metal Strip-detector Sensors Under Ion Beam Irradiation: Experiment and Modeling WDS'12 Proceedings of Contributed Papers, Part II, 146 15, 212. ISBN 978-8-7378-225-2 MATFYZPRESS Charge Accumulation on Metal Strip-detector Sensors Under Ion Beam Irradiation: Experiment and Modeling

More information

4.1b - Cavity Theory Lecture 2 Peter R Al mond 2011 Overview of Lecture Exposure (W/e)air Exposure Exposure and and and Air Air Kerma

4.1b - Cavity Theory Lecture 2 Peter R Al mond 2011 Overview of Lecture Exposure (W/e)air Exposure Exposure and and and Air Air Kerma 4.1b - Cavity Theory Lecture 2 Peter R Almond 2011 Overview of Lecture Exposure (W/e) air Exposure and Air Kerma Exposure Exposure is symbolized as X and defined by the ICRU as the quotient of dq by dm,

More information

Introduction to Ionizing Radiation

Introduction to Ionizing Radiation Introduction to Ionizing Radiation Bob Curtis OSHA Salt Lake Technical Center Supplement to Lecture Outline V. 10.02 Basic Model of a Neutral Atom Electrons(-) orbiting nucleus of protons(+) and neutrons.

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions New theoretical insights on the physics of compound nuclei from laser-nucleus reactions Adriana Pálffy Max Planck Institute for Nuclear Physics, Heidelberg, Germany Laser-Driven Radiation Sources for Nuclear

More information

Determination of Hot-Electron Conversion Efficiencies and Isochoric Heating of Low-Mass Targets Irradiated by the Multi-Terawatt Laser

Determination of Hot-Electron Conversion Efficiencies and Isochoric Heating of Low-Mass Targets Irradiated by the Multi-Terawatt Laser Determination of Hot-Electron Conversion Efficiencies and Isochoric Heating of Low-Mass Targets Irradiated by the Multi-Terawatt Laser 1.2 Total energy K a /laser energy 1 3 1 4 Refluxing No refluxing

More information

Comprehensive model of electron energy deposition*

Comprehensive model of electron energy deposition* Comprehensive model of electron energy deposition* Geng Han, Mumit Khan, Yanghua Fang, and Franco Cerrina a) Electrical and Computer Engineering and Center for NanoTechnology, University of Wisconsin Madison,

More information

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter Charge Particle Interaction Energetic charged particles interact with matter by electrical forces and lose kinetic energy

More information

Substance Detection using mono-energetic neutrons

Substance Detection using mono-energetic neutrons Substance Detection using mono-energetic neutrons August 4, 2004 Abstract A method and apparatus for determining the nitrogen and oxygen composition of an arbitrary object in a non-evasive manner is presented.

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

Modern Physics Departmental Exam Last updated November 2013

Modern Physics Departmental Exam Last updated November 2013 Modern Physics Departmental Exam Last updated November 213 87 1. Recently, 2 rubidium atoms ( 37 Rb ), which had been compressed to a density of 113 atoms/cm 3, were observed to undergo a Bose-Einstein

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

More information

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber

Digital imaging of charged particle track structures with a low-pressure optical time projection chamber Digital imaging of charged particle track structures with a low-pressure optical time projection chamber U. Titt *, V. Dangendorf, H. Schuhmacher Physikalisch-Technische Bundesanstalt, Bundesallee 1, 38116

More information

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS

CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS CHARACTERIZATION OF A RADIATION DETECTOR FOR AIRCRAFT MEASUREMENTS Leonardo de Holanda Mencarini 1,2, Claudio A. Federico 1,2 and Linda V. E. Caldas 1 1 Instituto de Pesquisas Energéticas e Nucleares IPEN,

More information