Tight-binding model of graphene with Coulomb interactions

Size: px
Start display at page:

Download "Tight-binding model of graphene with Coulomb interactions"

Transcription

1 Tight-binding model of graphene with Coulomb interactions Dominik Smith Lorenz von Smekal Dedicated to the memory of Professor Mikhail Polikarpov 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 1

2 Introduction Many properties of graphene are well understood in etreme weak coupling limit. H = ( κ)(a,s a y,s + a y,s a,s), {a µ, a ν } = {a µ, a ν} = 0, {a µ, a ν} = δ µν,y,s Well described by tight-binding theory. Conical dispersion at low energies. Low energy effective Dirac theory. Van Hove singularity at saddle points. Semi-metallic behavior (no band gap).... Include electromagnetic interaction: Low energy theory becomes QED 2+1. Simulated with staggered Fermions. Drut, Lähde, Phys.Rev.Lett. 102, (2009) Armour, Hands, Strouthos, Phys.Rev.B81:125105, 2010 Presently: Go beyond low energies. Simulate heagons directly. 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 2 Buividovich et al. (ITEP), Phys. Rev. B 86 (2012),

3 Introduction First derivation of path-integral for heagonal lattice: Currently: Tight-binding with gauge-links. Tight-binding with instantaneous interactions. Our goal: Investigate effect of interactions on Van Hove singularity. Dietz,Smekal et al. arxiv: Status: CUDA code operational and producing. Plausibility checks (find α c ) and cross-checks (ITEP) van Hove singularity van Hove singularity Dirac frequency Brower,Rebbi,Schaich, PoS(Lattice 2011)056 Buividovich, Polikarpov, Phys. Rev. B 86 (2012) Ulybyshev et al. (ITEP), arxiv: k y k 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 3

4 Outline Interacting tight-binding model with normal-ordering terms (non-compact Hubbard field). Introducing the compact Hubbard field results. Improved Fermion discretization (ITEP) comparison. 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 4

5 Interacting tight-binding theory Since v F c/300 c, model interactions by non-local potential (Brower et al.): H = ( κ)(a,s a y,s + a y,s a,s) + e 2 q V y q y, q = a,1 a,1 + a, 1 a, 1 1,y,s Introduce hole operators b, b for spin 1 particles:,y b = a, 1, b = a, 1, a = a,+1, a = a,+1 q = a a b b. Apply normal ordering etra term from potential. Flip sign of b, b on one sub-lattice. H = ( κ)(a a y + b y b + h.c.) + e 2 :q V y q y : + e 2 V (a a + b b ),y,s Add staggered mass to break-sublattice symmetry:,y H H + m S (a a + b b ) (m S ± m, A, B) 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 5

6 Functional-integral for interacting theory Factor the eponential: e βh e δh e δh... e δh δ = β/n t. Epress partition function using coherent states ψ t,η t, ψ t,η t : Tr e βh = [ ] Nt 1 dψ,t dψ,t dη,t dη,t e (ψ,t+1 ψ,t+1+η,t+1 η,t+1) ψ t+1,η t+1 e δh ψ t,η t. Using ξ F (a λ, a λ) ξ = F (ξλ,ξ λ) e λ ξ λ ξ λ, obtain Nt [ ] 1 { [ Tr e βh = dψ,t dψ,t dη,t dη,t ep δ e 2 Q,t+1,t V yq y,t+1,t,y κ(ψ,t+1ψ y,t +ψy,t+1ψ,t +ηy,t+1η,t +η,t+1η y,t ) + m S (ψ,t+1ψ,t +η,t+1η,t ) ] + e 2 V (ψ,t+1ψ,t +η,t+1η,t ),y [ ψ,t+1(ψ,t+1 ψ,t ) +η,t+1(η,t+1 η,t ) ]}. where Q,t,t = ψ,tψ,t η,tη,t. Antiperiodic in time! Leading error iso(δ). 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 6

7 The Hubbard field Hubbard-Stratonovich transformation eliminates fourth powers: ( ) ep δe 2 Q,t+1,t V yq y,t+1,t = [det(...)] 1/2,y [ Nt 1 ] ( dφ,t ep δ 4 N t 1,y φ,t V 1 y φ y,t i eδ N t 1 Gaussian integral can be carried out to obtain Fermion determinant Tr e βh = [ N t 1 ] { dφ,t ep δ 4 N t 1,y φ,t Q,t+1,t ). } ( φ,t V 1 y φ y,t det M + ie β ) 2 φ,tδ yδ t 1,t N t M (,t)(y,t ) = δ y (δ tt δ t 1,t ) β N t κ n δ y,+ n δ t 1,t + β N t m S δ yδ t 1,t + β N t e 2 V δ yδ t 1,t Suitable for HMC simulations! No sign problem! 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 7

8 Hybrid Monte-Carlo for non-compact Hubbard field Force terms for Hubbard field φ and momentum p: d φ,t = p,t, dτ d dτ p,t = β (V 1 φ),t 2 β ) e Im (χ,t+1(b 1 χ),t 2N t N t Order parameter for sub-lattice symmetry breaking ( chiral condensate ) ] ( N = Tr [ Ne βh B = M + ie β ) φ,tδ yδ t 1,t N t = 1 DψDψ DηDη [ ( ) ψ,t+1ψ,t +η,t+1η,t ZN t X A,t X B,t = 1 [ ( Dφ βz m det BB )] e S[φ] = 2 ( Dφ det BB ) Re Tr βz = 2 N t N t 1 A B 1 (,t+1)(,t) B(,t+1)(,t) 1 B Doesn t work (no symmetry breaking)! Why?? ( ψ,t+1ψ,t +η,t+1η,t ) ] e βh ( ) B 1 db e S[φ] dm 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 8

9 The compact Hubbard field No sub-lattice symmetry breaking observed. Possible reason: Non-compact Hubbard field φ in Fermion determinant (thanks Maksim Ulybyshev!) ( ) The determinant of M + ie β N t φ,t δ y δ t 1,t is φ V uncontrollable errors from floating point rounding. Solution: Use compact Hubbard field instead! Replacement: ( ) β N t e 2 V δ y δ t 1,t + ie β N t φ,t δ y δ t 1,t ep Changes Fermion force term: d dτ p,t = β 2N t (V 1 φ),t 2 β N t e Im Sub-lattice symmetry breaks! Brower,Rebbi,Schaich, PoS(Lattice 2011)056 (ie βnt φ,t ) δ y δ t 1,t ( ) ) χ,t+1 ep (ie βnt φ,t (B 1 χ),t 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 9

10 The potential Constructed piecewise: Constrained random phase approimation (crpa) at short distances (Wehling et al. PRL 106, (2011)), Coulomb otherwise. Corrected for periodic boundary (one image in each direction). Differs from ITEP. { V00, e 2 V 01, V 02, V 03 : r 2a V (r) = e 2 /r : r > 2a standard periodic (1st) Ulybyshev et al. (ITEP), arxiv: V(r) V(r), ev r [nm] 1 Non-compact gauge field Screened potentials Coulomb r, nm 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 10

11 Results Simulating at β = 2.0 on N = 6. Etrapolating N t from N t = 8, 10, 12, 14, 16. Several hundreds of independent measurements for each set (N t,α, m). < n> m = 0.1 m = 0.2 m = 0.3 m = 0.4 m = α < n> α = 4.36 α = 3.94 α = 3.61 α = 2.55 α = 1.87 α = m Limit m 0 from N = a 0 + a 1 m + a 2 m 2. Probably large finite-volume errors! (In progress: Improve Vy 1 computation larger N will be feasible.) 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 11

12 Improved discretization Error of standard Fermion operator is O(δ). Strategy for improvement: split Hamiltonian (ITEP). [ ] [ ] 2N t 1 Tr e βh Tr e βh TB e βh C = dψ,t dψ,t dη,t dη,t { N t 1 e (ψ,2t ψ,2t +η,2t η,2t +ψ,2t+1 ψ,2t+1+η,2t+1 η,2t+1) } ψ 2t,η 2t e δh TB ψ 2t+1,η 2t+1 ψ 2t+1,η 2t+1 e δh C ψ 2t+2,η 2t+2. Leads to 2nd-order Fermion action: [ N t 1 S F [φ] = ψ,2t (ψ,2t ψ,2t+1) δκ + ψ,2t+1 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 12 <,y> (ψ,2t+1 e iδeφ,t ψ,2t+2 ) + δ ( ψ,2tψ y,2t+1 +ψ y,2tψ,2t+1 ) ±mψ,2tψ,2t+1 ].

13 Improved discretization (II) Improved Fermion matri: δ y (δ tt δ t+1,t ) β N t κ δ y,+ n δ t+1,t + β N t m S δ yδ t+1,t M (,t)(y,t ) = n δ yδ tt δ yδ t+1,t ep( i β N t eφ,(t 1)/2 ) : t even : t odd Hubbard field only on odd timeslices! ( ) ) HMC force: d dτ p,k = β 2N t (V 1 φ),k 2β N t e Im χ,2k+1 ep (i βnt eφ,k (M 1 χ),2k+2 Order parameter: N DψDψ DηDη [ ( ) ( )] ψ,2tψ,2t+1 +η,2tη,2t+1 ψ,2tψ,2t+1 +η,2tη βh,2t+1 e = 1 βz X A,t [ ( Dφ m det MM )] e S[φ] = 2 N t 1 N t A Operator inserted only on even timeslices! Perhaps a problem... X B,t M 1 (,2t)(,2t+1) M(,2t)(,2t+1) 1 B 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 13

14 Comparison N t etrapolation for naive and improved Fermion operators. < n> β = 2. α = 1.87 m = 0.3 < n> = a*(1/n 0.22 t )+b : a = / b = / : a = / b = / < n> β = 2. α = 1.87 m = 0.5 < n> = a*(1/n t )+b : a = / b = / : a = / b = / /N t 1/N t Within errors no difference. O(δ) behavior in both cases. Reason currently unknown. Coulomb energy shows similar behavior. 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 14

15 Comparison (II) Similar results for different α. Self-consistency is confirmed, but no improvement... < n> β = 2. α = 2.18 m = 0.5 < n> = a*(1/n t )+b : a = / b = / : a = / b = / < n> β = 2. α = 2.55 m = 0.5 < n> = a*(1/n t )+b : a = / b = / : a = / b = / /N t 1/N t Conclusion: Much work ahead. 1. August 2013 IKP TUD / SFB 634-D4 D. Smith, L. Smekal 15

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Dominik Smith Lorenz von Smekal smith@theorie.ikp.physik.tu-darmstadt.de 1. August 2013 IKP TUD / SFB

More information

Hybrid-Monte-Carlo simulations at the van Hove singularity in monolayer graphene

Hybrid-Monte-Carlo simulations at the van Hove singularity in monolayer graphene Hybrid-Monte-Carlo simulations at the van Hove singularity in monolayer graphene Michael Körner Institut für Theoretische Physik, Justus Liebig Universität Gießen Lunch Club Seminar January 24, 2018 Outline

More information

arxiv: v1 [cond-mat.str-el] 11 Nov 2013

arxiv: v1 [cond-mat.str-el] 11 Nov 2013 arxiv:1311.2420v1 [cond-mat.str-el] 11 Nov 2013 Monte-Carlo simulation of graphene in terms of occupation numbers for the ecitonic order parameter at heagonal lattice. Institute for Theoretical Problems

More information

Lattice Monte Carlo for carbon nanostructures. Timo A. Lähde. In collaboration with Thomas Luu (FZ Jülich)

Lattice Monte Carlo for carbon nanostructures. Timo A. Lähde. In collaboration with Thomas Luu (FZ Jülich) Lattice Monte Carlo for carbon nanostructures Timo A. Lähde In collaboration with Thomas Luu (FZ Jülich) Institute for Advanced Simulation and Institut für Kernphysik Forschungszentrum Jülich GmbH, D-52425

More information

arxiv: v2 [cond-mat.str-el] 4 Dec 2014

arxiv: v2 [cond-mat.str-el] 4 Dec 2014 Monte-Carlo study of the phase transition in the AA-stacked bilayer graphene arxiv:141.1359v [cond-mat.str-el] 4 Dec 014 School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950 Russia

More information

Interaction of static charges in graphene

Interaction of static charges in graphene Journal of Physics: Conference Series PAPER OPEN ACCESS Interaction of static charges in graphene To cite this article: V V Braguta et al 5 J. Phys.: Conf. Ser. 67 7 Related content - Radiative Properties

More information

arxiv: v2 [cond-mat.str-el] 26 Mar 2014

arxiv: v2 [cond-mat.str-el] 26 Mar 2014 arxiv:10.1711v [cond-mat.str-el] 6 Mar 01 Velocity renormalization in graphene from lattice Monte Carlo Joaquín E. Drut a and b a Department of Physics and Astronomy, University of North Carolina, Chapel

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

From the honeycomb lattice to the square lattice: a new look at graphene. Timo A. Lähde

From the honeycomb lattice to the square lattice: a new look at graphene. Timo A. Lähde From the honeycomb lattice to the square lattice: a new look at graphene Timo A. Lähde Helsinki Institute of Physics / Department of Applied Physics, Aalto University (ex HUT), FI-02150 Espoo, Finland

More information

Unitary Fermi Gas: Quarky Methods

Unitary Fermi Gas: Quarky Methods Unitary Fermi Gas: Quarky Methods Matthew Wingate DAMTP, U. of Cambridge Outline Fermion Lagrangian Monte Carlo calculation of Tc Superfluid EFT Random matrix theory Fermion L Dilute Fermi gas, 2 spins

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Charge-Carrier Transport in Graphene

Charge-Carrier Transport in Graphene Charge-Carrier Transport in Graphene P.V. Buividovich, O.V. Pavlovsky, M.V. Ulybyshev, E.V. Luschevskaya, M.A. Zubkov, V.V. Braguta, M.I. Polikarpov ArXiv:1204.0921; ArXiv:1206.0619 Introduction: QCD and

More information

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU Theory of carbon-based based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

arxiv: v2 [cond-mat.str-el] 9 Jun 2016

arxiv: v2 [cond-mat.str-el] 9 Jun 2016 Quantum Monte Carlo Calculations for Carbon Nanotubes Thomas Luu and Timo A. Lähde Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, arxiv:1511.04918v2 [cond-mat.str-el]

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

The Fermion Bag Approach

The Fermion Bag Approach The Fermion Bag Approach Anyi Li Duke University In collaboration with Shailesh Chandrasekharan 1 Motivation Monte Carlo simulation Sign problem Fermion sign problem Solutions to the sign problem Fermion

More information

Emergent spin. Michael Creutz BNL. On a lattice no relativity can consider spinless fermions hopping around

Emergent spin. Michael Creutz BNL. On a lattice no relativity can consider spinless fermions hopping around Emergent spin Michael Creutz BNL Introduction quantum mechanics + relativity spin statistics connection fermions have half integer spin On a lattice no relativity can consider spinless fermions hopping

More information

3.14. The model of Haldane on a honeycomb lattice

3.14. The model of Haldane on a honeycomb lattice 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity.

More information

New approaches to strongly interacting Fermi gases

New approaches to strongly interacting Fermi gases New approaches to strongly interacting Fermi gases Joaquín E. Drut The Ohio State University INT Program Simulations and Symmetries Seattle, March 2010 In collaboration with Timo A. Lähde Aalto University,

More information

2. The interaction between an electron gas and the potential field is given by

2. The interaction between an electron gas and the potential field is given by 68A. Solutions to Exercises II. April 5. Carry out a Hubbard Stratonovich transformation for the following interaction Hamiltonians, factorizing the terms in brackets, and write one or two sentences interpreting

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Cocoyoc 2012 Something about graphene and microwave billiards Dirac spectrum in a photonic crystal Experimental

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method

Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method Maksim Ulybyshev 1,, Christopher Winterowd 2, and Savvas Zafeiropoulos 3,4,5 1 Institut für Theoretische Physik,

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Introduction Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms Yoram Alhassid (Yale University) Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem and good-sign

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. NOV 23, 2015 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209] Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. November 23, 2015 Magnetic

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Critical behaviour of Four-Fermi-Theories in 3 dimensions

Critical behaviour of Four-Fermi-Theories in 3 dimensions Critical behaviour of Four-Fermi-Theories in 3 dimensions Björn H. Wellegehausen with Daniel Schmidt and Andreas Wipf Institut für Theoretische Physik, JLU Giessen Workshop on Strongly-Interacting Field

More information

Phase transitions in strong QED3

Phase transitions in strong QED3 Phase transitions in strong QED3 Christian S. Fischer Justus Liebig Universität Gießen SFB 634 30. November 2012 Christian Fischer (University of Gießen) Phase transitions in strong QED3 1 / 32 Overview

More information

Stability of semi-metals : (partial) classification of semi-metals

Stability of semi-metals : (partial) classification of semi-metals : (partial) classification of semi-metals Eun-Gook Moon Department of Physics, UCSB EQPCM 2013 at ISSP, Jun 20, 2013 Collaborators Cenke Xu, UCSB Yong Baek, Kim Univ. of Toronto Leon Balents, KITP B.J.

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

arxiv: v1 [hep-lat] 23 Dec 2010

arxiv: v1 [hep-lat] 23 Dec 2010 arxiv:2.568v [hep-lat] 23 Dec 2 C. Alexandrou Department of Physics, University of Cyprus, P.O. Box 2537, 678 Nicosia, Cyprus and Computation-based Science and Technology Research Center, Cyprus Institute,

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

arxiv: v4 [hep-lat] 3 Sep 2014

arxiv: v4 [hep-lat] 3 Sep 2014 OU-HET 779 September 4, 2014 Position space formulation for Dirac fermions on honeycomb lattice arxiv:1303.2886v4 [hep-lat] 3 Sep 2014 Masaki Hirotsu 1 a, Tetsuya Onogi 1 b, and Eigo Shintani 2,3 c 1 Department

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Relativistic Dirac fermions on one-dimensional lattice

Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa DUE, 211-1-2 Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa Universität Duisburg-Essen & Ralf Schützhold Plan: 2 Jan 211 Discretized relativistic Dirac fermions (in an external

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Entanglement spectrum of the 2D Bose-Hubbard model

Entanglement spectrum of the 2D Bose-Hubbard model of the D Bose-Hubbard model V. Alba,M. Haque, A. Läuchli 3 Ludwig-Maximilians Universität, München Max Planck Institute for the Physics of Complex Systems, Dresden 3 University of Innsbruck, Innsbruck

More information

Heisenberg-Euler effective lagrangians

Heisenberg-Euler effective lagrangians Heisenberg-Euler effective lagrangians Appunti per il corso di Fisica eorica 7/8 3.5.8 Fiorenzo Bastianelli We derive here effective lagrangians for the electromagnetic field induced by a loop of charged

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Black hole entropy of gauge fields

Black hole entropy of gauge fields Black hole entropy of gauge fields William Donnelly (University of Waterloo) with Aron Wall (UC Santa Barbara) September 29 th, 2012 William Donnelly (UW) Black hole entropy of gauge fields September 29

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Edge states in strained honeycomb lattices : a microwave experiment

Edge states in strained honeycomb lattices : a microwave experiment Edge states in strained honeycomb lattices : a microwave experiment Matthieu Bellec 1, Ulrich Kuhl 1, Gilles Montambaux 2 and Fabrice Mortessagne 1 1 Laboratoire de Physique de la Matière Condensée, CNRS

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

The Polyakov Loop and the Eigenvalues of the Dirac Operator

The Polyakov Loop and the Eigenvalues of the Dirac Operator The Polyakov Loop and the Eigenvalues of the Dirac Operator Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: soeldner@bnl.gov Aiming at the link between confinement and

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

Domain Wall Fermion Simulations with the Exact One-Flavor Algorithm

Domain Wall Fermion Simulations with the Exact One-Flavor Algorithm Domain Wall Fermion Simulations with the Exact One-Flavor Algorithm David Murphy Columbia University The 34th International Symposium on Lattice Field Theory (Southampton, UK) July 27th, 2016 D. Murphy

More information

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks David Scheffler, Christian Schmidt, Dominik Smith, Lorenz von Smekal Motivation Effective Polyakov loop potential

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Román Orús University of Mainz (Germany) K. Zapp, RO, Phys. Rev. D 95, 114508 (2017) Goal of this

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

Implications of Poincaré symmetry for thermal field theories

Implications of Poincaré symmetry for thermal field theories L. Giusti STRONGnet 23 Graz - September 23 p. /27 Implications of Poincaré symmetry for thermal field theories Leonardo Giusti University of Milano-Bicocca Based on: L. G. and H. B. Meyer JHEP 3 (23) 4,

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016 Journal of the Physical Society of Japan LETTERS Entanglement Chern Number of the ane Mele Model with Ferromagnetism Hiromu Araki, Toshikaze ariyado,, Takahiro Fukui 3, and Yasuhiro Hatsugai, Graduate

More information

6. Auxiliary field continuous time quantum Monte Carlo

6. Auxiliary field continuous time quantum Monte Carlo 6. Auxiliary field continuous time quantum Monte Carlo The purpose of the auxiliary field continuous time quantum Monte Carlo method 1 is to calculate the full Greens function of the Anderson impurity

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Universality of transport coefficients in the Haldane-Hubbard model

Universality of transport coefficients in the Haldane-Hubbard model Universality of transport coefficients in the Haldane-Hubbard model Alessandro Giuliani, Univ. Roma Tre Joint work with V. Mastropietro, M. Porta and I. Jauslin QMath13, Atlanta, October 8, 2016 Outline

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Topological defects in graphene nanostructures

Topological defects in graphene nanostructures J. Smotlacha International Conference and Exhibition on Mesoscopic & Condensed Matter Physics June 22-24, 2015, Boston, USA Jan Smotlacha (BLTP JINR, Dubna, Russia) Topological defects in graphene nanostructures

More information

Introduction to Supersymmetric Quantum Mechanics and Lattice Regularization

Introduction to Supersymmetric Quantum Mechanics and Lattice Regularization Introduction to Supersymmetric Quantum Mechanics and Lattice Regularization Christian Wozar Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz, 07743 Jena, Germany

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

Chiral Fermions on the Lattice:

Chiral Fermions on the Lattice: Chiral Fermions on the Lattice: A Flatlander s Ascent into Five Dimensions (ETH Zürich) with R. Edwards (JLab), B. Joó (JLab), A. D. Kennedy (Edinburgh), K. Orginos (JLab) LHP06, Jefferson Lab, Newport

More information

Remarks about weak-interaction processes

Remarks about weak-interaction processes Remarks about weak-interaction processes K. Langanke GSI Darmstadt and TUD, Darmstadt March 9, 2006 K. Langanke (GSI and TUD, Darmstadt)Remarks about weak-interaction processes March 9, 2006 1 / 35 Nuclear

More information

Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background

Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background Nikos Irges, Wuppertal U. Based on N.I. & F. Knechtli, arxiv:0905.2757 to appear in NPB + work in progress Corfu,

More information

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons H. Reinhardt Tübingen Collaborators: G. Burgio, M. Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, J. Heffner,

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Gapless Dirac Spectrum at High Temperature

Gapless Dirac Spectrum at High Temperature Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6. E-mail: kgt@fizika.ttk.pte.hu Using the overlap Dirac operator I show that, contrary to some expectations, even well above the critical

More information

4-Space Dirac Theory and LENR

4-Space Dirac Theory and LENR J. Condensed Matter Nucl. Sci. 2 (2009) 7 12 Research Article 4-Space Dirac Theory and LENR A. B. Evans Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Interband effects and orbital suceptibility of multiband tight-binding models

Interband effects and orbital suceptibility of multiband tight-binding models Interband effects and orbital suceptibility of multiband tight-binding models Frédéric Piéchon LPS (Orsay) with A. Raoux, J-N. Fuchs and G. Montambaux Orbital suceptibility Berry curvature ky? kx GDR Modmat,

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information