Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background

Size: px
Start display at page:

Download "Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background"

Transcription

1 Possible string effects in 4D from a 5D anisotropic gauge theory in a mean-field background Nikos Irges, Wuppertal U. Based on N.I. & F. Knechtli, arxiv: to appear in NPB + work in progress Corfu, Sept. 2009

2 Background. J. M. Drouffe and J. B. Zuber, Phys. Rept. 02 (983) 2. J. Zinn-Justin, Quantum Field Theories and Critical Phenomena 3. I. Montvay and G. Muenster, Quantum Fields on a Lattice 4. M. Creutz, Phys. Rev. Lett. 43 (979), B. Svetitsky and L.G. Yaffe, Nucl. Phys. B20 (982) Y.K. Fu and H.B. Nielsen, Nucl. Phys. B236 (984), S. Ejiri, J. Kubo and M. Murata, Phys. Rev. D62 (2000), M. Luscher and P. Weisz, JHEP 0407:04, 2204

3 In 5 Dimensions... M 5 = E 4 S A M {A µ,a 5 } 5D gauge field SU(2) +φ(y +2πR) Z: 4D gauge field h: 4D Hi#s S S +ψ(y +2πR) φ(y) = n φ n e iny/r ψ(y) = n ψ x e iny/r 4D Georgi-Glashow (G-G) model + KK

4 The Anisotropic Lattice 4D slice U(n M,µ) - L β 5 β 4 N 5 U(n M, 5) β 4 = β N β 5 = βγ 5 γ L = 2πR γ l γ = anisotropy parameter

5 The mean-field expansion L, β, γ parameters: (we keep ) N 5 = L Z = DU DV DHe (/N )Re[trH(U V ) ]e S G[V ] Z = DV DHe Seff[V,H], Seff = S G [V ]+u(h) + (/N )RetrHV e u(h) = DUe (/N )RetrUH

6 To 0 th order The background is determined by V = u H H H = S G[V ] V V The free energy F (0) = N ln(z[v,h]) = S eff[v,h] N

7 To st order H = H + h V = V + v Seff = Seff[ V, H]+ 2 ( δ 2 Seff δh 2 h 2 +2 δ2 Seff V,H δhδv hv + δ2 Seff V,H δv 2 ) v 2 V,H δ 2 Seff δh 2 δ 2 Seff δv 2 δ 2 Seff δv δh h 2 = h i K (hh) ij h j = h T K (hh) h V,H v 2 = v i K (vv) ij v j = v T K (vv) v V,H v 2 = v i K (vh) ij h j = v T K (vh) h V,H

8 The Gaussian fluctuations z = Dv Dhe S(2) [v,h] S (2) [v, h] = 2 ( ) h T K (hh) h +2v T K (vh) h + v T K (vv) v z = (2π) h /2 (2π) v /2 det[( + K (hh) K (vv) )] Z () = Z[V,H] z = e S eff [V,H] z The free energy to first order F () = F (0) N ln(z) =F (0) + [ ( 2N ln det + K (hh) K (vv)) ] 2 FP

9 Observables O[V ]=O[V ]+ δo δv O = Z = O[V ]+ 2 Dv δ 2 O δv 2 <v i v j >= z v + δ 2 O V 2 δv 2 v V Dv Dhv 2 e S(2) [v,h] z V Dh ( O[V ]+ 2 Dv δ 2 O δv 2 ) v 2 V e (Seff[V,H]+S (2) [v,h]) Dh v i v j e S(2) [v,h] =(K ) ij K = K (vh) K (hh) K (vh) + K (vv) < O >= O[V ]+ 2 tr { δ 2 O δv 2 } K V st order master formula

10 Correlators C(t) =< O(t 0 + t)o(t 0 ) > < O(t 0 + t) >< O(t 0 ) >= C (0) (t)+c () (t)+ C (0) (t) = 0 < O(t 0 + t)o(t 0 ) >= O (0) (t 0 + t)o (0) (t 0 )+ 2 tr { δ 2 (O(t 0 + t)o(t 0 )) δ 2 v K } + C () (t) = 2 tr { δ (,) (O(t 0 + t)o(t 0 )) δ 2 v K } = 2 tr { δ(,) (O(t 0 + t)o(t 0 )) δ 2 v K } C () (t) = λ c λ e E λt E 0 = m H, E = m H,

11 To 2nd order S eff = S eff [V,H] ( δ 3 S eff δh 3 h3 + δ3 S eff δv 3 ( δ 2 S eff δh 2 h2 +2 δ2 S eff δhδv hv + δ2 S eff δv 2 v3 ) + 24 v2 ) ( δ 4 S eff δh 4 h4 + δ4 S eff δv 4 v4 ) + O[V ]=O[V ]+ δo δv v + 2 δ 2 O δv 2 v2 + 6 ( δ 2 ) O δ 3 O δv 3 v δ 4 O δv 4 v4 + 2nd order master formula < O >= O[V ] ( δ 4 ) O i,j,l,m δv 4 ijlm δv 2 ij ( K ) ij ((K ) ij (K ) lm +(K ) il (K ) jm +(K ) im (K ) jl ) C (2) (t) = 24 ( δ 4 O c ) (t) ) ((K ) ij (K ) lm +(K ) il (K ) jm +(K ) im (K ) jl i,j,l,m δv 4 ijlm

12 Lattice Observables (Polyakov loops) The scalar The vector t0+t t0+t t! A n5 t0 k t0! A m = lim t ln C () (t) C () (t ) n5=0 n5=n5 m = lim t ln C (2) (t) C (2) (t )

13 The Wilson loop x or x 5 t t t : e Vt < O W >

14 Mean-field parametrization The SU(2) model U(n, M) =u 0 (n, M) + i k u k (n, M)σ k u α R,u α u α = V (n, M) =v 0 (n, M) + i k H(n, M) =h 0 (n, M) i k v k (n, M)σ k, h k (n, M)σ k, v α C h α C The propagator (in momentum space) K(p,M, α ; p,m, α )=δ p p δ α α C M M (p, α ) C M M (p, α ) = [Aδ M M + B M M ( δ M M )] [ A = ( δ α 0)+ ] δ α 0 2βv 2 0 cos (p b 2 b N)+ ξ sin2 (p M /2) N M ( ) ( ) ( ) ( p B M M = 4βv 0 [δ 2 α 0 cos M p cos M p +( δ α 0) sin M p sin M ( I2 (h 0 ) b = (I 2 )) 2 (h 0 ) h 0 h 0 I (h 0 ) I (h 0 ) I 3(h 0 ) b 2 = v 0 h 0 )]

15 The static potential V (r) = 2 log(v 0 ) +3 p M 0,p 0 =0 4 2v 2 0 L 3 N 5 p M 0,p 0 =0 (2 cos(p Nr) 2) N 0 4 (2 cos(p N r) + 2) C00 (p, 0) N 0 C 00 (p, ) The scalar mass C () H (t) = N (P (0) 0 ) 2 p 0 cos (p 0t) p 5 ( ) (N5) (p 5) 2 K (p 0, 0,p 5), 5, 0; (p 0, 0,p 5), 5, 0 (m 5) (n 5 )= m 5 r=0 δ n5 r, ˆr = r +/2 v 0 (ˆr)

16 The vector mass C (2) V (0) (t) =2304(P N 2 0 ) 4 (v 0 (0)) 4 p k sin 2 (p k) ( ) 2 K (t, p, ) K ((p 0, p ), 5, α) = p 5,p 5 (N 5) (p 5) (N 5) ( p 5)K (p, 5, α; p, 5, α) K (t, p, α) = p 0 e ip 0 t K ((p 0, p ), 5, α) The free energy F () = F (0) + 2N p ln [ ( det + K (hh) α =0 ) ( (vv) K α =0 det + K (hh) α 0 K (vv) α 0 ) 3 ] 2 FP

17 A few remarks on the calculation. We fix the Lorentz gauge; We pick up a Fadeev-Popov determinant but no ghost loops at this order; Gauge dependent free energy but no worries 2. Torons appear always as 0/0 --> 0/0=0 regularization 3. Formulas are generalized to the anisotropic lattice --> 2 independent Wilson loops since the background is different along 4D and the 5th dimension 4. Analytical formulas are computed numerically 5. Our working assumption: whenever non-trivial, physical Keep this in mind

18 The phase diagram the mean-field background compact 4D x µ v 0 4 D E C v 05 x confined (v 0 = v 05 = 0) O N non-compact 5D F I N (v 0 0, v 05 0) d-compact 4D E D layered 4D (v 0 0, v 05 = 0)

19 compact 4D The d-compact phase is stable: 4 D E C!=2.3, "= confined O N non-compact 5D F I N d-compact 4D E D 0 layered 4D F () v 5 v The compact phase (for small ) is unstable to this order β

20 compact 4D The W is massless or perhaps exponentially light: confined D E C O N non-compact 5D F I N 0.4!=2.36, "=0.25 layered 4D d-compact 4D E D a 4 m W mf data linear fit a 4 m W (0)=0.000(5) /L

21 compact 4D The d-compact phase is separated from the layered phase by a 2nd order phase transition: "=/ confined D E C O N non-compact 5D F I N E D d-compact 4D.6 layered 4D am H ν =/2 agrees with Svetitski & Yaffe: dim reduction to 4d Ising mf data fit #= !

22 The Static Potential

23 The static potential on the isotropic lattice: 0.66!=2.36, "=, L=N 5 = av(r) mf data 4d Coulomb 5d Coulomb r/a

24 The static potential (Wilson loop) in the d-compact phase along the extra dimension:. 0.9 Potential along the extra dimension,!=2.36, "=0.25 L=32, N 5 =32 L=64, N 5 =64 L=64, N =32 5 It doesn t scale with L: a 4 V(r) r/a 5 0 2!=0.55, "=0.625 The 5D force vanishes in the infinite volumecontinuum limit: F 5 (r)/f 4 (r) L=00 L= L=50 L=200 L=250 L= r/l

25 We are looking at an array of non-interacting 4D hyperplanes 4D Wilson loop - 5D Force --> 0

26 The short distance static potential in the d-compact phase along the 4d hyperplanes: β 4 large and β 5 small 0.65!=2.36, "=0.25, L=N 5 = a 4 V(r) mf data 4d Coulomb 5d Coulomb r/a 4 In the stability region r= the potential is clearly 4d Coulomb, large Yukawa excluded dimensional reduction in the d-compact phase

27 We are looking at an array of non-interacting 4D hyperplanes where gauge interactions are localized. 4D Georgi-Glashow on each of the branes 4D Wilson loop - G G G G G G G G G G 5D Force --> 0 The localization is perfect in the infinite L limit

28 compact 4D Remember: 4D Georgi-Glashow model + KK confined D E C O N non-compact 5D F I N d-compact 4D E D layered 4D Higgs Gauge coupling Confined phase We are somewhere around here Higgs coupling

29 We are looking at an array of non-interacting 4D hyperplanes where gauge interactions are localized. 4D G-G on each of the branes. The 4D Wilson loop at large r must describe a string 4D Wilson loop - 5D Force --> 0

30 What are we trying to do (preliminary analysis)? In the Luescher & Weisz paper: Our formalism: # ' & '-./02345*6."7!"##6.#7!"8%# 97$!! 97$%8 97$#! 97%!! 97%#! 97&!!.!+(,* % %! $ c(r)!!"$ d'('%!!$.!!"!#!"$!"$#!"%!"%#!"& ()*!!"&!!"% ' ,9!:!"##9":!")%# d'(')!!"%%!!"%!!"%'!!"%)!!"# $ r [fm] V (r) =µ + σr + c r + d r 2 + l log(r) -.*/!!"%(!!"& ;:$!!!!"&% ;:$%)!!"&' ;:$#! ;:%!!!!"&) ;:%#! ;:&!!!!"&( ;<5=->5*'0 ;<5=->5*#0!!"'!!"!#!"$!"$#!"%!"%#!"& *+,

31 Systematics are not under control yet... e.g. if the /r^2 or the log term is not included in the ansatz:!!!"!'!!"#!!"#' /0(2*3.#.456 /0(2*3.$.456 #)$.( %.78,(-)7( 925:+;5(.&7 925:+;5(.'7. ' & %./(0*2-#-345./(0*2-$ ,(-!!"$!+(,* $ $!!"$' #!!"%!!"%'!!!"&.!!"#!"$!"%!"&!"' ()*!# -!!"#!"$!"%!"&!"' ()* also, if we move along the line of the phase transition,...the value of the Luescher term shifts a bit...

32 Conclusions. The non-perturbative regime of 4d gauge theories can be probed analytically by the mean-field expansion in 5d 2. The phase diagram has a 2nd order phase transition where the system reduces dimensionally to an array of non-interacting 3-branes and where the continuum limit can be taken 3. In a dimensionally reduced phase there are effects of confinement and of the associated string 4. Controlling the systematics is in progress I would like to thank the Alexander von Humboldt Foundation for finacial supportx

33 compact 4D The continuum limit can be taken:!=0.25, "= confined D E C O N non-compact 5D F I N d-compact 4D E D layered 4D q /L 2 The physical charge at fixed ρ = m W m H

34 The long distance static potential in the d-compact phase along the 4d hyperplanes: !=2.36, "=0.25, L=N 5 =200 mf data linear + log linear + log + /r L(x) x=r/a 4 Luescher term L(x) =a 4 [V (r)+π/(8r)] and fit to σx + µ + c 2 ln(x)

35 Comparison Mean-Field vs Monte Carlo: (sample) 0.48!=2.3, L=N 5 = a 4 V(r) MC data, "=4 mf data, "=2 mf data, "= Comparison Mean-Field vs Monte Carlo: (sample) r/a 4 MC data generated by M. Luz

36 The raw data

37 Yes, it scales with the lattice size Potential in the 4d hyperplanes,!=2.36, "= a 4 V(r) L=32, N 5 =32 L=64, N 5 =64 L=64, N 5 = r/a 4

38 No, it can not be 5D Coulomb or Yukawa: 0 Potential in the 4d hyperplanes c 5d (r) L=00 L=25 L=50 L= r/a 4

Mean-field Gauge Interactions in Five Dimensions I (The Torus)

Mean-field Gauge Interactions in Five Dimensions I (The Torus) Mean-field Gauge Interactions in Five Dimensions I (The Torus) Nikos Irges, Wuppertal U. Based on N.I. & F. Knechtli, arxiv:0905.2757 [hep-lat] 5th RMST, Kolymbari, June 2009 Background. J. M. Drouffe

More information

Progress in Gauge-Higgs Unification on the Lattice

Progress in Gauge-Higgs Unification on the Lattice Progress in Gauge-Higgs Unification on the Lattice Kyoko Yoneyama (Wuppertal University) in collaboration with Francesco Knechtli(Wuppertal University) ikos Irges(ational Technical University of Athens)

More information

A non-perturbative view of the Higgs hierarchy problem

A non-perturbative view of the Higgs hierarchy problem A non-perturbative view of the Higgs hierarchy problem Corfu Workshop on SM and Beyond, 31 Aug. - 11 Sept. 2013 Nikos Irges National Technical University of Athens Based on N.I. and F. Knechtli Nucl. Phys.

More information

Progress in Gauge-Higgs Unification on the Lattice

Progress in Gauge-Higgs Unification on the Lattice Progress in Gauge-Higgs Unification on the Lattice Francesco Knechtli, Kyoko Yoneyama, Peter Dziennik Department of Physics, Bergische Universität Wuppertal Gaussstr., D-49 Wuppertal, Germany E-mail: knechtli@physik.uni-wuppertal.de,

More information

The SU(2) quark-antiquark potential in the pseudoparticle approach

The SU(2) quark-antiquark potential in the pseudoparticle approach The SU(2) quark-antiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle

More information

Gauge theories on a five-dimensional orbifold

Gauge theories on a five-dimensional orbifold arxiv:hep-lat/0509071v1 21 Sep 2005 and Burkhard Bunk Institut für Physik, Humboldt Universität, Newtonstr. 15, 12489 Berlin, Germany E-mail: knechtli@physik.hu-berlin.de, bunk@physik.hu-berlin.de Nikos

More information

A Lattice Study of the Glueball Spectrum

A Lattice Study of the Glueball Spectrum Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 288 292 c International Academic Publishers Vol. 35, No. 3, March 15, 2001 A Lattice Study of the Glueball Spectrum LIU Chuan Department of Physics,

More information

On the behaviour of the flux tube thickness near the deconfinement transition.

On the behaviour of the flux tube thickness near the deconfinement transition. On the behaviour of the flux tube thickness near the deconfinement transition. M. Caselle Bari, September 2008 Plan of the Talk Effective string models in Lattice Gauge Theories zero temperature results:

More information

String Dynamics in Yang-Mills Theory

String Dynamics in Yang-Mills Theory String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Workshop on Strongly Interacting Field Theories Jena,

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

arxiv:hep-lat/ v1 6 Oct 2000

arxiv:hep-lat/ v1 6 Oct 2000 1 Scalar and Tensor Glueballs on Asymmetric Coarse Lattices C. Liu a, a Department of Physics, Peking University, Beijing 100871, P. R. China arxiv:hep-lat/0010007v1 6 Oct 2000 Scalar and tensor glueball

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE SLAC-PUB-2572 July 1980 CT) A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE TEMPERATURE* Larry D. McLerran and Benjamin Svetitsky Stanford Linear Accelerator Center Stanford University, Stanford,

More information

arxiv:hep-lat/ v2 13 Oct 1998

arxiv:hep-lat/ v2 13 Oct 1998 Preprint numbers: BI-TP 98/15 UUHEP 98/3 String Breaking in Lattice Quantum Chromodynamics Carleton DeTar Department of Physics, University of Utah Salt Lake City, UT 84112, USA arxiv:hep-lat/9808028v2

More information

Orientifold planar equivalence.

Orientifold planar equivalence. Orientifold planar equivalence. An overview and some hints from the lattice**. Agostino Patella* Scuola Normale Superiore, Pisa INFN, Pisa 21/3/2007 * PhD advisor: Adriano Di Giacomo ** Based on: - A.

More information

A construction of the Glashow-Weinberg-Salam model on the lattice with exact gauge invariance

A construction of the Glashow-Weinberg-Salam model on the lattice with exact gauge invariance A construction of the Glashow-Weinberg-Salam model on the lattice with exact gauge invariance Y. Kikukawa Institute of Physics, University of Tokyo based on : D. Kadoh and Y.K., JHEP 0805:095 (2008), 0802:063

More information

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea Thick Brane World Seyen Kouwn Korea Astronomy and Space Science Institute Korea Introduction - Multidimensional theory 1 Why are the physically observed dimensions of our Universe = 3 + 1 (space + time)?

More information

Nobuhito Maru (Kobe)

Nobuhito Maru (Kobe) Calculable One-Loop Contributions to S and T Parameters in the Gauge-Higgs Unification Nobuhito Maru Kobe with C.S.Lim Kobe PRD75 007 50 [hep-ph/07007] 8/6/007 String theory & QFT @Kinki Univ. Introduction

More information

The lattice gluon propagator in numerical stochastic perturbation theory

The lattice gluon propagator in numerical stochastic perturbation theory The lattice gluon propagator in numerical stochastic perturbation theory E.-M. Ilgenfritz 1, H. Perlt 2 and A. Schiller 2 1 Humboldt-Universität zu Berlin, 2 Universität Leipzig 8th Leipzig Workshop on

More information

Excited states of the QCD flux tube

Excited states of the QCD flux tube Excited states of the QCD flux tube Bastian Brandt Forschungsseminar Quantenfeldtheorie 19.11.2007 Contents 1 Why flux tubes? 2 Flux tubes and Wilson loops 3 Effective stringtheories Nambu-Goto Lüscher-Weisz

More information

LATTICE PREDICTIONS FOR THE INTERQUARK POTENTIAL* Eve Kovacs Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

LATTICE PREDICTIONS FOR THE INTERQUARK POTENTIAL* Eve Kovacs Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-2756 June 1981 (T/E) LATTICE PREDICTIONS FOR THE INTERQUARK POTENTIAL* Eve Kovacs Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 Abstract: The measured values

More information

I. Introduction: General

I. Introduction: General xford hysics TM Particle Theory Journal Club k-strings in S U(N) gauge theories Andreas Athenodorou St. John s College University of Oxford Mostly based on: AA, Barak Brigoltz and Mike Teper: arxiv:0709.069

More information

The ξ/ξ 2nd ratio as a test for Effective Polyakov Loop Actions

The ξ/ξ 2nd ratio as a test for Effective Polyakov Loop Actions The ξ/ξ 2nd ratio as a test for Effective Polyakov Loop Actions Michele Caselle 1,2, and Alessandro Nada 1 1 Department of Physics, University of Turin & INFN, V. Giuria 1 10125 Torino (Italy) 2 Arnold-Regge

More information

Beta function of three-dimensional QED

Beta function of three-dimensional QED Beta function of three-dimensional QED, Ohad Raviv, and Yigal Shamir Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: bqs@julian.tau.ac.il We have

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

PoS(Confinement X)058

PoS(Confinement X)058 Confining gauge theories with adjoint scalars on R 3 S 1 University of Bielefeld E-mail: nishimura@physik.uni-bielefeld.de Michael Ogilvie Washington University, St. Louis E-mail: mco@physics.wustl.edu

More information

Orthogonal Wilson loops in flavor backreacted confining gauge/gravity duality

Orthogonal Wilson loops in flavor backreacted confining gauge/gravity duality Orthogonal Wilson loops in flavor backreacted confining gauge/gravity duality National Institute for Theoretical Physics, School of Physics and Centre for Theoretical Physics, University of the Witwatersrand,

More information

Implications of Poincaré symmetry for thermal field theories

Implications of Poincaré symmetry for thermal field theories L. Giusti STRONGnet 23 Graz - September 23 p. /27 Implications of Poincaré symmetry for thermal field theories Leonardo Giusti University of Milano-Bicocca Based on: L. G. and H. B. Meyer JHEP 3 (23) 4,

More information

Large N reduction in deformed Yang-Mills theories

Large N reduction in deformed Yang-Mills theories Large N reduction in deformed Yang-Mills theories Centro de Física do Porto, Universidade do Porto, Porto, Portugal E-mail: hvairinhos@fc.up.pt We explore, at the nonperturbative level, the large N equivalence

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

arxiv: v2 [hep-th] 21 Sep 2017

arxiv: v2 [hep-th] 21 Sep 2017 , a quantum and bosonic mechanism of spontaneous gauge symmetry breaking arxiv:1611.00157v2 [hep-th] 21 Sep 2017 Department of Physics National Technical University of Athens Zografou Campus, GR-15780

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

String calculation of the long range Q Q potential

String calculation of the long range Q Q potential String calculation of the long range Q Q potential Héctor Martínez in collaboration with N. Brambilla, M. Groher (ETH) and A. Vairo April 4, 13 Outline 1 Motivation The String Hypothesis 3 O(1/m ) corrections

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD arxiv:hep-lat/51127v1 15 Nov 25 Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD Institute for Theoretical Physics, Kanazawa University, Kanazawa 92-1192, Japan and RIKEN, Radiation

More information

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Nikolai Zerf in collaboration with M. Baker, A. Penin, D. Seidel Department of Physics University of Alberta Radcor-Loopfest,

More information

Fit to Gluon Propagator and Gribov Formula

Fit to Gluon Propagator and Gribov Formula arxiv:hep-lat/0012024v3 12 Nov 2001 Fit to Gluon Propagator and Gribov Formula Attilio Cucchieri and Daniel Zwanziger IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil Physics Department, New

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Mass of Heavy Mesons from Lattice QCD

Mass of Heavy Mesons from Lattice QCD Mass of Heavy Mesons from Lattice QCD David Richards Jefferson Laboratory/Hadron Spectrum Collaboration Temple, March 2016 Outline Heavy Mesons Lattice QCD Spectroscopy Recipe Book Results and insight

More information

Properties of canonical fermion determinants with a fixed quark number

Properties of canonical fermion determinants with a fixed quark number Properties of canonical fermion determinants with a fixed uark number Julia Danzer Institute of Physics, University of Graz, Austria E-mail: julia.danzer@uni-graz.at Institute of Physics, University of

More information

Lattice Quantum Gravity and Asymptotic Safety

Lattice Quantum Gravity and Asymptotic Safety Lattice Quantum Gravity and Asymptotic Safety Jack Laiho (Scott Bassler, Simon Catterall, Raghav Jha, Judah Unmuth-Yockey) Syracuse University June 18, 2018 Asymptotic Safety Weinberg proposed idea that

More information

Monte Carlo Calculation of Phase Shift in Four Dimensional O(4) φ 4 Theory

Monte Carlo Calculation of Phase Shift in Four Dimensional O(4) φ 4 Theory arxiv:hep-lat/9207028v1 26 Jul 1992 Monte Carlo Calculation of Phase Shift in Four Dimensional O(4) φ 4 Theory Jun Nishimura Department of Physics, University of Tokyo Bunkyo-ku, Tokyo 113, Japan 26 July

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

t Hooft-Polyakov Monopoles on the Lattice

t Hooft-Polyakov Monopoles on the Lattice t Hooft-Polyakov Monopoles on the Lattice Davis,Kibble,Rajantie&Shanahan, JHEP11(2000) Davis,Hart,Kibble&Rajantie, PRD65(2002) Rajantie, in progress 19 May 2005 University of Wales, Swansea Introduction

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions. February 18, 2015 1 2 3 Instantons in Path Integral Formulation of mechanics is based around the propagator: x f e iht / x i In path integral formulation of quantum mechanics we relate the propagator to

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

S-CONFINING DUALITIES

S-CONFINING DUALITIES DIMENSIONAL REDUCTION of S-CONFINING DUALITIES Cornell University work in progress, in collaboration with C. Csaki, Y. Shirman, F. Tanedo and J. Terning. 1 46 3D Yang-Mills A. M. Polyakov, Quark Confinement

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Asymptotic Safety in the ADM formalism of gravity

Asymptotic Safety in the ADM formalism of gravity Asymptotic Safety in the ADM formalism of gravity Frank Saueressig Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen J. Biemans, A. Platania and F. Saueressig,

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Universality check of the overlap fermions in the Schrödinger functional

Universality check of the overlap fermions in the Schrödinger functional Universality check of the overlap fermions in the Schrödinger functional Humboldt Universitaet zu Berlin Newtonstr. 15, 12489 Berlin, Germany. E-mail: takeda@physik.hu-berlin.de HU-EP-8/29 SFB/CPP-8-57

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

Putting String Theory to the Test with AdS/CFT

Putting String Theory to the Test with AdS/CFT Putting String Theory to the Test with AdS/CFT Leopoldo A. Pando Zayas University of Iowa Department Colloquium L = 1 4g 2 Ga µνg a µν + j G a µν = µ A a ν ν A a µ + if a bc Ab µa c ν, D µ = µ + it a

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics O. Mogilevsky, N.N.Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 25243 Kiev, Ukraine

More information

A Renormalization Group Primer

A Renormalization Group Primer A Renormalization Group Primer Physics 295 2010. Independent Study. Topics in Quantum Field Theory Michael Dine Department of Physics University of California, Santa Cruz May 2010 Introduction: Some Simple

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

Spatial string tension revisited

Spatial string tension revisited Spatial string tension revisited (dimensional reduction at work) York Schröder work together with: M. Laine 1 Motivation RHIC QCD at T > (a few) 100 MeV asymptotic freedom weak coupling expansion slow

More information

Walking step by step on the lattice

Walking step by step on the lattice Walking step by step on the lattice C.-J. David Lin National Chiao-Tung University and National Centre for Theoretical Sciences, Taiwan JLab 15/06/09 Work done in collaboration with Erek Bilgici (University

More information

Spin Models and Gravity

Spin Models and Gravity Spin Models and Gravity Umut Gürsoy (CERN) 6th Regional Meeting in String Theory, Milos June 25, 2011 Spin Models and Gravity p.1 Spin systems Spin Models and Gravity p.2 Spin systems Many condensed matter

More information

Surprises in the Columbia plot

Surprises in the Columbia plot Surprises in the Columbia plot Philippe de Forcrand ETH Zürich & CERN Fire and Ice, Saariselkä, April 7, 2018 Fire and Ice Launch Audio in a New Window BY ROBERT FROST (1874-1963) Some say the world will

More information

Holographic Entanglement Entropy

Holographic Entanglement Entropy Motivation Time-dependent Multi-region Summary Holographic entanglement entropy for time dependent states and disconnected regions Durham University INT08: From Strings to Things, April 3, 2008 VH, M.

More information

arxiv: v1 [hep-lat] 31 Oct 2014

arxiv: v1 [hep-lat] 31 Oct 2014 arxiv:4.88v [hep-lat] 3 Oct 24 Zoltán Fodor University of Wuppertal, Department of Physics, Wuppertal D-4297, Germany Jülich Supercomputing Center, Forschungszentrum Jülich, Jülich D-52425, Germany Eötvös

More information

Quark Mass from Tachyon

Quark Mass from Tachyon Quark Mass from Tachyon Shigenori Seki This talk is based on O. Bergman, S.S., J. Sonnenschein, JHEP 071 (007) 07; S.S., JHEP 1007 (010) 091. 1 September 010 Crete Conference on Gauge Theories and the

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Color screening in 2+1 flavor QCD

Color screening in 2+1 flavor QCD Color screening in 2+1 flavor QCD J. H. Weber 1 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische Universität München 2 Michigan State

More information

Non-Perturbative Thermal QCD from AdS/QCD

Non-Perturbative Thermal QCD from AdS/QCD Issues Non-Perturbative Thermal QCD from AdS/QCD * Collaborators: B. Galow, M. Ilgenfritz, J. Nian, H.J. Pirner, K. Veshgini Research Fellow of the Alexander von Humboldt Foundation Institute for Theoretical

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Numerical Stochastic Perturbation Theory and The Gradient Flow

Numerical Stochastic Perturbation Theory and The Gradient Flow Numerical Stochastic Perturbation Theory and The Gradient Flow Mattia Dalla Brida Trinity College Dublin, Ireland Dirk Hesse Universita degli Studi di Parma, Italia 31st International Symposium on Lattice

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

arxiv: v1 [hep-lat] 27 Sep 2011

arxiv: v1 [hep-lat] 27 Sep 2011 HIM-011-09 Glueball masses from ratios of path integrals arxiv:1109.5974v1 [hep-lat] 7 Sep 011 Dipartimento di Fisica, Universitá di Milano-Bicocca, Piazza della Scienza 3, I-016 Milano, Italy E-mail:

More information

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model a S. Tamenaga, a H. Toki, a, b A. Haga, and a Y. Ogawa a RCNP, Osaka University b Nagoya Institute

More information

Dense but confined matter as a new state in QCD

Dense but confined matter as a new state in QCD Dense but confined matter as a new state in QCD School of Computing & Mathematics, University of Plymouth, Plymouth PL4 8AA, UK E-mail: kurt.langfeld@plymouth.ac.uk Centre sector transitions in QCD-like

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Thermodynamics for SU(2) gauge theory using gradient flow

Thermodynamics for SU(2) gauge theory using gradient flow theory using Takehiro Hirakida, Etsuko Itou,2, Hiroaki Kouno 3 Kyushu U., RCNP, Kochi U. 2, Saga U. 3 NFQCD28, YITP, 5. June, 28 arxiv:85.76 [hep-lat] / 25 2 / 25 3 / 25 SU(2) gauge theory SU(2) gauge

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaros

Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaros Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaroslavl 15, Russia Abstract In the minimal standard model

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information