Math Assignment 3 - Linear Algebra

Size: px
Start display at page:

Download "Math Assignment 3 - Linear Algebra"

Transcription

1 Math Assignment 3 - Linear Algebra Due: Tuesday, March 27. Nothing accepted after Thursday, March 29. This is worth 15 points. 10% points off for being late. You may work by yourself or in pairs. If you work in pairs it is only necessary to turn in one set of answers for each pair. Put both your names on it. Do Problems 1-12 in the discussion below. Copy and paste the input and output for each problem from the Command Window (or plot window) to a Microsoft Word file. Do this after you are satisfied with your input and output. Label the work for each problem in the Word file: Problem 1, Problem 2, etc. Print a copy of this file to hand in. Or use a Live Script. Lab 1 looked at the representation of vectors. Here we look at the representation of matrices and calculations with vectors and matrices. More about vectors To represent a row vector, one encloses the components in brackets and separates them with spaces or commas. To represent a column vector one separates the components with semicolons instead of spaces or commas. For example, the following commands assign the row vector 4 (2, - 1, 3) to p and the column vector - 6 to x. The number of components of a vector p is - 3 obtained by length(p). >> p = [2, - 1, 3]; >> x = [4; - 6; - 3]; >> length(x) 3 If one uses spaces to separate the components of a vector, then the minus sign that specifies a negative number must not be separated from the rest of the number by a space. If it is, then the rest of the number is subtracted from the preceding component. For example, 1

2 >> [2-1 3] 1 3 >> [2-1 3] The colon notation is used to create row vectors whose components are separated by a fixed amount. For example, this assigns the row vector (2, 2.5, 3, 3.5, 4) to q. >> q = 2: 0.5: 4 A single quote ' is the transpose operator. When it is applied to vectors it changes a row vector to a column vector with the same components or a column vector to a row vector with the same components. For example, the following forms the transpose of the vector stored in p and assigns it to y. >> y = p' y = Vectors can be concatenated (or joined together). If p and q are row vectors, then [p, q] or [p q] is the row vector consisting of the components of p followed by the components of q. For example, if p = (2, -1, 3) and q = (2, 2.5, 3, 3.5, 4) are as above then [p, q] = (2, -1, 3, 2, 2.5, 3, 3.5, 4) >> r = [p, q] r =

3 More than two vectors can be concatenated in this way. For example, [p q 3:-1:1] = (2, -1, 3, 2, 2.5, 3, 3.5, 4, 3, 2, 1). p(j) refers to the j th component of the vector p. This notation can be extended to create a vector of arbitrary components of another vector. If p = (p1, p2,..., pn) is a vector and if k = (k1, k2,..., km) is a vector of integers then p(k) is the vector (pk 1, pk 2,..., pk m ). For example, >> q([4, 1, 3, 5, 2]) >> q(4:-1:2) [ ] denotes the empty vector. One can delete a component of a vector by setting it equal to [ ]. For example, >> q(3) = [ ] q = Problem 1: Scalar variables are also vectors! Define a scalar variable (e.g. x = pi). Find its length? Problem 2: Assuming r = (r1, r2,..., r8) is as above, compute (r7, r2, r5). Compute (r2, r3,..., r7) using the colon notation. Compute (r8, r6, r4, r2) using the colon notation. Problem 3: Suppose p = [ ] is a vector. Compute the vector q whose components are the components of p in the reverse order without simply entering them in reverse order. Use the colon notation. 3

4 Problem 4: Create the vector p = [1, 2,..., 10, 9,..., 6, 5, 6,..., 9, 10, 9,..., 2, 1] using the colon notation and concatenation. A number of vector operations were discussed in the first Lab. In particular the product of a row vector and a column vector is formed using *. For example, here is px = p1x pnxn. >> p*x 5 Matrices A matrix is a two dimensional table of numbers, e.g. M = is a matrix with 2 rows and 6 columns. To enter a matrix, we enter the rows one at a time as row vectors and we use a semicolon between each row and enclose the whole matrix in square brackets. For example, M above would be entered by >> M = [1, 4, 1, 4, 2, 1; 2, 2, 3, 6, 0, 6] M = Commonly used matrices have shortcuts to create them. For example, zeros(2, 4) is a 2 4 matrix of all zeros, ones(3, 2) is a 3 2 matrix of all ones, eye(3) is the 3 3 identity matrix, diag([3, -2, 4]) is a 3 3 diagonal matrix with 3, -2 and 4 on the main diagonal and zeros off the main diagonal. 1 4 Problem 5: Enter the following matrices A = 2 2, B = , C = , D = , 2 0 E = 0-1 size(m) is the size of the matrix M which is a row vector with the number of rows of M and the number of columns of M. >> size(m) 4

5 2 6 M(i, j) refers to the component in the i th row and j th column of M. >> M(2, 4) 6 Problem 6: Change the component in the 2 nd row and 3 rd column of M to 40. Then add 1 to the component in the 1 st row and the 2 nd column of M. As with vectors, one can refer to more than a single component. M(i, :) is the i th row of M. M(:, j) is the j th column of M. M(i:j, m:n) is the submatrix of M consisting of the components whose row is between i and j and whose column is between m and n. When the colon is used by itself, it means "select all". For example M(3:5,:) is the submatrix of M consisting of rows 3 through 5 of M. Determine which values of M you get when you enter each of the following commands. >> M(2, :) >> M(:, 4) >> M(1, 2:4) >> M(:, 3:5) Problem 7: Compute the vector consisting of the elements of M that are in column 2. Compute the submatrix of M consisting of the elements in columns 2 through Enter the following sequence of commands which assign the matrix to A, add times the first row of A to the second, divide the third row by 2 and then interchange the second and third rows. The commands are doing row operations on the matrix A that are working toward bringing it to reduced row echelon form. 5

6 >> A = [ ; ; ] >> A(2,:) = A(2,:) + 4*A(1,:) >> A(3,:) = A(3,:)/2 >> A(2:3, :) = A(3:-1:2,:) Problem 8: After entering the above commands, enter some more commands to bring to reduced row echelon form. The commands will need to add or subtract multiples of one row to another, interchange rows and multiply rows by numbers. These operations simply imitate the things one does with the equations in a system of equations when one solves the equations using Gaussian elimination a In this case reduced row echelon form is when the matrix has the form b c where a, b and c are numbers you are to find. These numbers will be the solutions x1-2x2 + x3 = 0 to the system of equations - 4x1 + 5x2 + 9x3 = - 9? 2x2-8x3 = 8 In practice one would not solve a system of equations by doing individual row operations to bring the augmented matrix to reduced row echelon form. A faster way is to use the \ operator. To do this we put the coefficients of the unknowns in a matrix T, the right hand side of the equations in a column vector b. Then the vector of solutions is obtained by entering T\b. The solution is T -1 b, but T\b is the best way to compute this in MATLAB. >> T = [1-2 1; ; 0 2-8] >> b = [0; -9; 8] >> T\b Matrices can be concatenated in a fashion similar to vectors. If M and N are matrices with the same number of rows, then [M, N] or [M N] is the matrix whose i th row consists of the i th row of M concatenated with the i th row of N. If M and N are matrices with the same number of columns, then [M; N] or [M N] is the matrix whose j th column consists of the j th column of M concatenated with the j th column of N. For example 6

7 >> A = [1 2; 3 4]; >> B = [5 6; 7 8]; >> [A B] >> [A; B] Matrix Operations The usual matrix operations work as expected. If M and N are matrices then transpose(m) or M' is the transpose of M, inv(m) is the inverse of M, M + N and M - N are the sum and difference of M and N and M * N is the matrix product of M and N. If t is a number then t*m is the usual product of the number t times the matrix M. If t is a positive integer then M^t is the matrix obtained by multiplying M by itself t times. 1 4 Problem 9: Suppose, as in Problem 5, A = 2 2, B = , C = , D = , 2 0 E = 0-1. Compute (A I)-1 (C - 3E). Here I = 0 1 is the 2 2 identity matrix. As an illustration of matrix multiplication, let's recall some information about geometric x1 transformations. In the following x = x2 and y = y1 are points in the plane. If one obtains y y2 1 0 by reflecting x across the x1 axis then y = 0-1 x. If one obtains y by reflecting x across then x2 axis then y = 0 1 x. If one obtains y by reflecting x across the line x1 = x2 axis then 0 1 y = 1 0 x. If one obtains y by reflecting x through the origin the x2 axis then y = x. If 1 0 one obtains y by projecting onto the x across the x1 axis then y = 0 0 x. If one obtains y by rotating x counterclockwise by an angle about the origin the x2 axis then y = cos - sin sin cos x. 7

8 Suppose one obtains y from x by first doing a geometric transformation with formula z = Tx and then doing a geometric transformation with formula y = Sz. Then y = Rx where R = ST. With this in mind, suppose one obtains y from x by first rotating counterclockwise by 60, then reflecting across the line x2 = x1 and finally by rotating clockwise by 45. Find T so that y = Tx. The following sequence of commands find T. >> A = [cos(pi/3) -sin(pi/3),sin(pi/3) cos(pi/3)]; >> B = [0 1;1 0]; >> C = [cos(- pi/4) -sin(- pi/4),sin(- pi/4) cos(- pi/4)]; >> C*B*A As an illustration of raising a matrix to a positive integer power, suppose x and y are represent two physical quantities that evolve in discrete time so that xn and yn are the values of discrete xn+1 = axn + byn time n. Suppose x and y evolve in time in such a way that yn+1 = cxn + or in matrix terms dyn xn un+1 = Aun where un = yn and A = a b c d. Then xn = yn An x0. y0 With this in mind, suppose xn is the number of population of a city n years from the year 2017 and yn is the population of the suburbs. Suppose in the course of a year 5% of the city's population moves to the suburbs and 3% of the suburbs population moves back to the city. Suppose the population of the city in the year 2017 is 600,000 and the population of the suburbs is 400,000. What would this model predict the populations of the city and suburbs to be in the year 2025? The following sequence of commands can be used to answer this. >> A = [ ; ]; >> x17 = [600000; ]; >> A8 = A^8 >> A8 * x17 A8 = e+05 *

9 So according to this model the population of the city in 2025 would be about 490,470 and the population of the suburbs would be about 509,530. Note the output writes the answer as Also, after 8 years about 30.5% of the people in the city have ended up in the suburbs and about 18% of the people in the suburbs are back in the city. If M is a square matrix, then det(m) is the determinant of M. If M is a square matrix, then [V, D] = eig(m) gives a diagonal matrix D with the eigenvalues of M and a matrix V of corresponding eigenvectors. Thus M*V = V*D. For example, >> A = [1, 3; 4, 2]; >> [T, D] = eig(a) T = D = So the eigenvalues are 1 = 2 and 2 = 5. The eigenvectors for the eigenvalue 1 = 2 are the multiples of u1 = It would be equally valid to say the eigenvectors for the eigenvalue 1 1 = 2 are the multiples of v1 = - 1. The eigenvectors for the eigenvalue 2 = 5 are the multiples of u2 = 0.8. It would be equally valid to say the eigenvectors for the eigenvalue 3 2 = 2 are the multiples of v2 = - 4. If M and N are matrices which have trfhe same size then M.* N, then this is the matrix obtained by multiplying the corresponding components of M and N. This is similar to vectors. If you double-click on a vector or matrix variable such as M in the Workspace a new window opens up with a spreadsheet like table with the components of the vector or matrix stored in the variable. This table is editable. In fact, you can change the dimension of v by entering values in empty cells, or by control-clicking on a cell and deleting a row or column. Problem 10: Use the \ operator to find the solution of x1 + 3x2 + 4x3 = 1-2x1 + 2x2-3x3 = x1 - x2 = 11 9

10 Problem 11. Suppose one obtains y from x by first projecting on the x 2 axis, then rotating counterclockwise by 45, and finally reflecting across the x 1 axis. Find T so that y = Tx. Problem 12. Find the eigenvalues and eigenvectors of

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

NOTES ON LINEAR ALGEBRA CLASS HANDOUT NOTES ON LINEAR ALGEBRA CLASS HANDOUT ANTHONY S. MAIDA CONTENTS 1. Introduction 2 2. Basis Vectors 2 3. Linear Transformations 2 3.1. Example: Rotation Transformation 3 4. Matrix Multiplication and Function

More information

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns.

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. MATRICES After studying this chapter you will acquire the skills in knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. List of

More information

January 18, 2008 Steve Gu. Reference: Eta Kappa Nu, UCLA Iota Gamma Chapter, Introduction to MATLAB,

January 18, 2008 Steve Gu. Reference: Eta Kappa Nu, UCLA Iota Gamma Chapter, Introduction to MATLAB, Introduction to MATLAB January 18, 2008 Steve Gu Reference: Eta Kappa Nu, UCLA Iota Gamma Chapter, Introduction to MATLAB, Part I: Basics MATLAB Environment Getting Help Variables Vectors, Matrices, and

More information

Matlab Exercise 0 Due 1/25/06

Matlab Exercise 0 Due 1/25/06 Matlab Exercise 0 Due 1/25/06 Geop 523 Theoretical Seismology January 18, 2006 Much of our work in this class will be done using Matlab. The goal of this exercise is to get you familiar with using Matlab

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Linear Algebra Using MATLAB

Linear Algebra Using MATLAB Linear Algebra Using MATLAB MATH 5331 1 May 12, 2010 1 Selected material from the text Linear Algebra and Differential Equations Using MATLAB by Martin Golubitsky and Michael Dellnitz Contents 1 Preliminaries

More information

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero. Finite Mathematics Chapter 2 Section 2.1 Systems of Linear Equations: An Introduction Systems of Equations Recall that a system of two linear equations in two variables may be written in the general form

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

0.1 Eigenvalues and Eigenvectors

0.1 Eigenvalues and Eigenvectors 0.. EIGENVALUES AND EIGENVECTORS MATH 22AL Computer LAB for Linear Algebra Eigenvalues and Eigenvectors Dr. Daddel Please save your MATLAB Session (diary)as LAB9.text and submit. 0. Eigenvalues and Eigenvectors

More information

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Linear equations) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots

More information

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued Definition The process of solving a system of linear equations by converting the system to an augmented matrix is called Gaussian Elimination. The general strategy is as follows: Convert the system of

More information

Introduction to Matlab

Introduction to Matlab History of Matlab Starting Matlab Matrix operation Introduction to Matlab Useful commands in linear algebra Scripts-M file Use Matlab to explore the notion of span and the geometry of eigenvalues and eigenvectors.

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Mathematical Operations with Arrays) Contents Getting Started Matrices Creating Arrays Linear equations Mathematical Operations with Arrays Using Script

More information

Quiz ) Locate your 1 st order neighbors. 1) Simplify. Name Hometown. Name Hometown. Name Hometown.

Quiz ) Locate your 1 st order neighbors. 1) Simplify. Name Hometown. Name Hometown. Name Hometown. Quiz 1) Simplify 9999 999 9999 998 9999 998 2) Locate your 1 st order neighbors Name Hometown Me Name Hometown Name Hometown Name Hometown Solving Linear Algebraic Equa3ons Basic Concepts Here only real

More information

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix Pre-Calculus I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

MAT 343 Laboratory 3 The LU factorization

MAT 343 Laboratory 3 The LU factorization In this laboratory session we will learn how to MAT 343 Laboratory 3 The LU factorization 1. Find the LU factorization of a matrix using elementary matrices 2. Use the MATLAB command lu to find the LU

More information

MATLAB and Mathematical Introduction Will be discussed in class on 1/24/11

MATLAB and Mathematical Introduction Will be discussed in class on 1/24/11 MATLAB and Mathematical Introduction Will be discussed in class on 1/24/11 GEOP 523; Theoretical Seismology January 17, 2011 Much of our work in this class will be done using MATLAB. The goal of this exercise

More information

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient.

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient. ENGI 940 Lecture Notes - Matrix Algebra Page.0. Matrix Algebra A linear system of m equations in n unknowns, a x + a x + + a x b (where the a ij and i n n a x + a x + + a x b n n a x + a x + + a x b m

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE 102 Engineering Computation Phillip Wong MATLAB Vector Operations Vector Math Strings Vector Operations A vector is a list of values placed in a single row or column. Each value is called an element.

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

LINEAR SYSTEMS, MATRICES, AND VECTORS

LINEAR SYSTEMS, MATRICES, AND VECTORS ELEMENTARY LINEAR ALGEBRA WORKBOOK CREATED BY SHANNON MARTIN MYERS LINEAR SYSTEMS, MATRICES, AND VECTORS Now that I ve been teaching Linear Algebra for a few years, I thought it would be great to integrate

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

PH1105 Lecture Notes on Linear Algebra.

PH1105 Lecture Notes on Linear Algebra. PH05 Lecture Notes on Linear Algebra Joe Ó hógáin E-mail: johog@mathstcdie Main Text: Calculus for the Life Sciences by Bittenger, Brand and Quintanilla Other Text: Linear Algebra by Anton and Rorres Matrices

More information

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix Algebra & Trig. I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

L3: Review of linear algebra and MATLAB

L3: Review of linear algebra and MATLAB L3: Review of linear algebra and MATLAB Vector and matrix notation Vectors Matrices Vector spaces Linear transformations Eigenvalues and eigenvectors MATLAB primer CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

Note: The command name is upper case in the description given by help, but must be lower case in actual use. And the backslash Anb is dierent when A i

Note: The command name is upper case in the description given by help, but must be lower case in actual use. And the backslash Anb is dierent when A i MATLAB Tutorial You need a small number of basic commands to start using MATLAB. This short tutorial describes those fundamental commands. You need to create vectors and matrices, to change them, and to

More information

MOL410/510 Problem Set 1 - Linear Algebra - Due Friday Sept. 30

MOL410/510 Problem Set 1 - Linear Algebra - Due Friday Sept. 30 MOL40/50 Problem Set - Linear Algebra - Due Friday Sept. 30 Use lab notes to help solve these problems. Problems marked MUST DO are required for full credit. For the remainder of the problems, do as many

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Identity Matrix: EDU> eye(3) ans = Matrix of Ones: EDU> ones(2,3) ans =

Identity Matrix: EDU> eye(3) ans = Matrix of Ones: EDU> ones(2,3) ans = Very Basic MATLAB Peter J. Olver October, 2003 Matrices: Type your matrix as follows: Use, or space to separate entries, and ; or return after each row. EDU> [;5 0-3 6;; - 5 ] or EDU> [,5,6,-9;5,0,-3,6;7,8,5,0;-,,5,]

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Chapter 9: Systems of Equations and Inequalities

Chapter 9: Systems of Equations and Inequalities Chapter 9: Systems of Equations and Inequalities 9. Systems of Equations Solve the system of equations below. By this we mean, find pair(s) of numbers (x, y) (if possible) that satisfy both equations.

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS We want to solve the linear system a, x + + a,n x n = b a n, x + + a n,n x n = b n This will be done by the method used in beginning algebra, by successively eliminating unknowns

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

MAC Module 1 Systems of Linear Equations and Matrices I

MAC Module 1 Systems of Linear Equations and Matrices I MAC 2103 Module 1 Systems of Linear Equations and Matrices I 1 Learning Objectives Upon completing this module, you should be able to: 1. Represent a system of linear equations as an augmented matrix.

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations & Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

1 Last time: linear systems and row operations

1 Last time: linear systems and row operations 1 Last time: linear systems and row operations Here s what we did last time: a system of linear equations or linear system is a list of equations a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Relationships Between Planes

Relationships Between Planes Relationships Between Planes Definition: consistent (system of equations) A system of equations is consistent if there exists one (or more than one) solution that satisfies the system. System 1: {, System

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

CITS2401 Computer Analysis & Visualisation

CITS2401 Computer Analysis & Visualisation FACULTY OF ENGINEERING, COMPUTING AND MATHEMATICS CITS2401 Computer Analysis & Visualisation SCHOOL OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING Topic 7 Matrix Algebra Material from MATLAB for Engineers,

More information

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 220 FINAL EXAMINATION December 13, Name ID # Section # MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

More information

Introduction to SVD and Applications

Introduction to SVD and Applications Introduction to SVD and Applications Eric Kostelich and Dave Kuhl MSRI Climate Change Summer School July 18, 2008 Introduction The goal of this exercise is to familiarize you with the basics of the singular

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

SECTION 2: VECTORS AND MATRICES. ENGR 112 Introduction to Engineering Computing

SECTION 2: VECTORS AND MATRICES. ENGR 112 Introduction to Engineering Computing SECTION 2: VECTORS AND MATRICES ENGR 112 Introduction to Engineering Computing 2 Vectors and Matrices The MAT in MATLAB 3 MATLAB The MATrix (not MAThematics) LABoratory MATLAB assumes all numeric variables

More information

MATLAB BASICS. Instructor: Prof. Shahrouk Ahmadi. TA: Kartik Bulusu

MATLAB BASICS. Instructor: Prof. Shahrouk Ahmadi. TA: Kartik Bulusu MATLAB BASICS Instructor: Prof. Shahrouk Ahmadi 1. What are M-files TA: Kartik Bulusu M-files are files that contain a collection of MATLAB commands or are used to define new MATLAB functions. For the

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations Chapter Linear Equations. Systems of Linear Equations A linear equation in the n variables x, x 2,..., x n is one that can be expressed in the form a x + a 2 x 2 + + a n x n = b where a, a 2,..., a n and

More information

Example. We can represent the information on July sales more simply as

Example. We can represent the information on July sales more simply as CHAPTER 1 MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS 11 Matrices and Vectors In many occasions, we can arrange a number of values of interest into an rectangular array For example: Example We can

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Math "Matrix Approach to Solving Systems" Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25

Math Matrix Approach to Solving Systems Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25 Math 102 6.3 "Matrix Approach to Solving Systems" Bibiana Lopez Crafton Hills College November 2010 (CHC) 6.3 November 2010 1 / 25 Objectives: * Define a matrix and determine its order. * Write the augmented

More information

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved Fundamentals of Linear Algebra Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 PREFACE Linear algebra has evolved as a branch of mathematics with wide range of applications to the natural

More information

Using MATLAB. Linear Algebra

Using MATLAB. Linear Algebra Using MATLAB in Linear Algebra Edward Neuman Department of Mathematics Southern Illinois University at Carbondale One of the nice features of MATLAB is its ease of computations with vectors and matrices.

More information

An Introduction to Scilab for EE 210 Circuits Tony Richardson

An Introduction to Scilab for EE 210 Circuits Tony Richardson An Introduction to Scilab for EE 210 Circuits Tony Richardson Introduction This is a brief introduction to Scilab. It is recommended that you try the examples as you read through this introduction. What

More information

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2 We will learn how to use a matrix to solve a system of equations. College algebra Class notes Matrices and Systems of Equations (section 6.) Recall, we solved the system below in a previous section. Here,

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

CITS2401 Computer Analysis & Visualisation

CITS2401 Computer Analysis & Visualisation FACULTY OF ENGINEERING, COMPUTING AND MATHEMATICS CITS2401 Computer Analysis & Visualisation SCHOOL OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING Topic 7 Matrix Algebra Material from MATLAB for Engineers,

More information

All of my class notes can be found at

All of my class notes can be found at My name is Leon Hostetler I am currently a student at Florida State University majoring in physics as well as applied and computational mathematics Feel free to download, print, and use these class notes

More information

Solutions Problem Set 8 Math 240, Fall

Solutions Problem Set 8 Math 240, Fall Solutions Problem Set 8 Math 240, Fall 2012 5.6 T/F.2. True. If A is upper or lower diagonal, to make det(a λi) 0, we need product of the main diagonal elements of A λi to be 0, which means λ is one of

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

+ MATRIX VARIABLES AND TWO DIMENSIONAL ARRAYS

+ MATRIX VARIABLES AND TWO DIMENSIONAL ARRAYS + MATRIX VARIABLES AND TWO DIMENSIONAL ARRAYS Matrices are organized rows and columns of numbers that mathematical operations can be performed on. MATLAB is organized around the rules of matrix operations.

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

Introduction to Matrices and Linear Systems Ch. 3

Introduction to Matrices and Linear Systems Ch. 3 Introduction to Matrices and Linear Systems Ch. 3 Doreen De Leon Department of Mathematics, California State University, Fresno June, 5 Basic Matrix Concepts and Operations Section 3.4. Basic Matrix Concepts

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

Math 309 Notes and Homework for Days 4-6

Math 309 Notes and Homework for Days 4-6 Math 309 Notes and Homework for Days 4-6 Day 4 Read Section 1.2 and the notes below. The following is the main definition of the course. Definition. A vector space is a set V (whose elements are called

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a Math 360 Linear Algebra Fall 2008 9-10-08 Class Notes Matrices As we have already seen, a matrix is a rectangular array of numbers. If a matrix A has m columns and n rows, we say that its dimensions are

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

Introduction to Linear Algebra

Introduction to Linear Algebra Introduction to Linear Algebra Thomas L. Scofield August 31, 2014 Contents 1 Solving Linear Systems of Equations 1 1.1 Matrices, and Introduction to Octave....................... 1 1.2 Matrix Algebra...................................

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

USE OF MATLAB TO UNDERSTAND BASIC MATHEMATICS

USE OF MATLAB TO UNDERSTAND BASIC MATHEMATICS USE OF MATLAB TO UNDERSTAND BASIC MATHEMATICS Sanjay Gupta P. G. Department of Mathematics, Dev Samaj College For Women, Punjab ( India ) ABSTRACT In this paper, we talk about the ways in which computer

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Matrix notation. A nm : n m : size of the matrix. m : no of columns, n: no of rows. Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1

Matrix notation. A nm : n m : size of the matrix. m : no of columns, n: no of rows. Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1 Matrix notation A nm : n m : size of the matrix m : no of columns, n: no of rows Row matrix n=1 [b 1, b 2, b 3,. b m ] Column matrix m=1 n = m square matrix Symmetric matrix Upper triangular matrix: matrix

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Reduction to the associated homogeneous system via a particular solution

Reduction to the associated homogeneous system via a particular solution June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

More information

Mathematica 3.0. we will not discuss all the possibilities for every command we illustrate.

Mathematica 3.0. we will not discuss all the possibilities for every command we illustrate. Mathematica 3.0 Mathematica 3.0 allows you to type in several lines of input before executing them. Each line of input is ordinarily followed by Enter, but when you are ready to execute the input lines,

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

4 Gaussian Mixture Models

4 Gaussian Mixture Models 4 Gaussian Mixture Models Once you have a collection of feature vectors you will need to describe their distribution. You will do this using a Gaussian Mixture Model. The GMM comprises a collection of

More information

Matrix Solutions to Linear Equations

Matrix Solutions to Linear Equations Matrix Solutions to Linear Equations Augmented matrices can be used as a simplified way of writing a system of linear equations. In an augmented matrix, a vertical line is placed inside the matrix to represent

More information

1 Overview of Simulink. 2 State-space equations

1 Overview of Simulink. 2 State-space equations Modelling and simulation of engineering systems Simulink Exercise 1 - translational mechanical systems Dr. M. Turner (mct6@sun.engg.le.ac.uk 1 Overview of Simulink Simulink is a package which runs in the

More information

Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals. March 23, 2010 Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

Eigenvalue and Eigenvector Homework

Eigenvalue and Eigenvector Homework Eigenvalue and Eigenvector Homework Olena Bormashenko November 4, 2 For each of the matrices A below, do the following:. Find the characteristic polynomial of A, and use it to find all the eigenvalues

More information