Math 4377/6308 Advanced Linear Algebra

Size: px
Start display at page:

Download "Math 4377/6308 Advanced Linear Algebra"

Transcription

1 1.4 Linear Combinations Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations & Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston math.uh.edu/ jiwenhe/math4377 Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

2 1.4 Linear Combinations & Systems of Linear Equations Linear Combinations: Definition Linear Combinations of Vectors in R 2 Linear Combinations and Vector Equation Solving a System of Linear Equations by Row Eliminations Span of a Set of Vectors: Definition Span of a Set of Vectors in R 2 and in R 3 A Shortcut for Determining Subspaces Spanning Sets Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

3 Linear Combinations Definition Let V be a vector space and S a nonempty subset of V. A vector v V is called a linear combination of vectors of S if there exist a finite number of vectors u 1, u 2,, u n in S and scalars a 1, a 2,, a n in F such that v = a 1 u 1 + a 2 u a n u n. In this case we also say that v is a linear combination of u 1, u 2,, u n and call a 1, a 2,, a n the coefficients of the linear combination Note that 0v = 0 for each v V, so the zero vector is a linear combination of any nonempty subset of V. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

4 Linear Combinations of Vectors in R 2 Parallelogram Rule for Addition of Two Vectors If u and v in R 2 are represented as points in the plane, then u + v corresponds to the fourth vertex of the parallelogram whose other vertices are 0, u and v. Geometric Description of R 2 [ ] x1 Vector is the point x 2 (x 1, x 2 ) in the plane. R 2 is the set of all points in the plane. Example [ ] [ 1 2 Let u = and v = 3 1 Graphs of u, v and u + v are: ]. (Parallelogram Rule) Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

5 Linear Combinations of Vectors in R 2 (cont.) Example [ ] 1 Let u =. 2 Express u, 2u, and 3 2 u on a graph. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

6 Linear Combinations of Vectors in R 2 : Example Example [ ] [ 2 2 Let v 1 = and v 1 2 = 2 following as a linear combination of v 1 and v 2 : [ ] [ ] [ a =, b =, c = ]. Express each of the ], d = [ 7 4 ] Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

7 Linear Combinations: Example Example Let a 1 = 1 0 3, a 2 = , a 3 = , and b = Determine if b is a linear combination of a 1, a 2, and a Solution: Vector b is a linear combination of a 1, a 2, and a 3 if can we find weights x 1, x 2, x 3 such that Vector Equation (fill-in): x x 1 a 1 + x 2 a 2 + x 3 a 3 = b. + x x = Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

8 Linear Combinations: Example (cont.) Corresponding System: x 1 + 4x 2 + 3x 3 = 1 2x 2 + 6x 3 = 8 3x x x 3 = 5 Corresponding Augmented Matrix: = x 1 = x 2 = x 3 = Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

9 Linear Combinations: Review Review of the last example: the augmented matrix Solution to a 1, a 2, a 3 and b are columns of a 1 a 2 a 3 b x 1 a 1 + x 2 a 2 + x 3 a 3 = b is found by solving the linear system whose augmented matrix is [ a1 a 2 a 3 b ]. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

10 Linear Combinations and Vector Equation Vector Equation A vector equation x 1 a 1 + x 2 a x n a n = b has the same solution set as the linear system whose augmented matrix is [ a1 a 2 a n b ]. In particular, b can be generated by a linear combination of a 1, a 2,..., a n if and only if there is a solution to the linear system corresponding to the augmented matrix. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

11 Solving a System of Linear Equations Example Solving a System in Matrix Form[ x 1 2x 2 = ] x 1 + 3x 2 = (augmented matrix) x 1 2x 2 = 1 [ ] x 2 = x 1 = 3 x 2 = 2 [ ] Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

12 Row Operations Elementary Row Operations 1 (Replacement) Add one row to a multiple of another row. 2 (Interchange) Interchange two rows. 3 (Scaling) Multiply all entries in a row by a nonzero constant. Row Equivalent Matrices Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations. Fact about Row Equivalence If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

13 Solving a System by Row Eliminations: Example Example (Row Eliminations to a Triangular Form) x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = 9 x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 3x x 3 = 9 x 1 2x 2 + x 3 = 0 x 2 4x 3 = 4 3x x 3 = 9 x 1 2x 2 + x 3 = 0 x 2 4x 3 = 4 x 3 = Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

14 Solving a System by Row Eliminations: Example (cont.) Example (Row Eliminations to a Diagonal Form) x 1 2x 2 + x 3 = 0 x 2 4x 3 = 4 x 3 = 3 x 1 2x 2 = 3 x 2 = 16 x 3 = 3 x 1 = 29 x 2 = 16 x 3 = 3 Solution: (29, 16, 3) Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

15 Solving a System by Row Eliminations: Example (cont.) Example (Check the Answer) Is (29, 16, 3) a solution of the original system? x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = 9 (29) 2(16)+ (3) = = 0 2(16) 8(3) = = 8 4(29) + 5(16) + 9(3) = = 9 Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

16 Span of a Set of Vectors: Examples Example Let v = Label the origin together with v, 2v and 1.5v on the graph. v, 2v and 1.5v all lie on the same line. Span{v} is the set of all vectors of the form cv. Here, Span{v} = a line through the origin. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

17 Span of a Set of Vectors: Examples (cont.) Example Label u, v, u + v and 3u+4v on the graph. u, v, u + v and 3u+4v all lie in the same plane. Span{u, v} is the set of all vectors of the form x 1 u + x 2 v. Here, Span{u, v} = a plane through the origin. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

18 Span of a Set of Vectors: Definition Span of a Set of Vectors Suppose v 1, v 2,..., v p are in R n ; then Span{v 1, v 2,..., v p } = set of all linear combinations of v 1, v 2,..., v p. Span of a Set of Vectors (Stated another way) Span{v 1, v 2,..., v p } is the collection of all vectors that can be written as x 1 v 1 + x 2 v x p v p where x 1, x 2,..., x p are scalars. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

19 Span of a Set of Vectors in R 2 Example Let v 1 = [ 2 1 ] and v 2 = [ 4 2 (a) Find a vector in Span{v 1, v 2 }. ]. (b) Describe Span{v 1, v 2 } geometrically. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

20 Spanning Sets in R 3 Example v 2 is a multiple of v 1 Span{v 1, v 2 } =Span{v 1 } =Span{v 2 } (line through the origin) Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

21 Spanning Sets in R 3 (cont.) Example Let v 1 = and v 2 = Is Span{v 1, v 2 } a line or a plane? v 2 is not a multiple of v 1 Span{v 1, v 2 } =plane through the origin Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

22 Spanning Sets Example Let A = Linear Combinations Reduction Span Determining Subspaces and b = spanned by the columns of A? Solution: Is b in the plane? Do x 1 and x 2 exist so that x x 2 1 = Corresponding augmented matrix: So b is not in the plane spanned by the columns of A Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

23 A Shortcut for Determining Subspaces Theorem (1) If v 1,..., v p are in a vector space V, then Span{v 1,..., v p } is a subspace of V. Proof: In order to verify this, check properties a, b and c of definition of a subspace. a. 0 is in Span{v 1,..., v p } since 0 = v 1 + v v p b. To show that Span{v 1,..., v p } closed under vector addition, we choose two arbitrary vectors in Span{v 1,..., v p } : u =a 1 v 1 + a 2 v a p v p and v =b 1 v 1 + b 2 v b p v p. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

24 A Shortcut for Determining Subspaces (cont.) Then u + v = (a 1 v 1 + a 2 v a p v p ) + (b 1 v 1 + b 2 v b p v p ) = ( v 1 + v 1 ) + ( v 2 + v 2 ) + + ( v p + v p ) = (a 1 + b 1 ) v 1 + (a 2 + b 2 ) v (a p + b p ) v p. So u + v is in Span{v 1,..., v p }. c. To show that Span{v 1,..., v p } closed under scalar multiplication, choose an arbitrary number c and an arbitrary vector in Span{v 1,..., v p } : v =b 1 v 1 + b 2 v b p v p. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

25 A Shortcut for Determining Subspaces (cont.) Then cv =c (b 1 v 1 + b 2 v b p v p ) So cv is in Span{v 1,..., v p }. = v 1 + v v p Since properties a, b and c hold, Span{v 1,..., v p } is a subspace of V. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

26 Determining Subspaces: Recap Recap 1 To show that H is a subspace of a vector space, use Theorem 1. 2 To show that a set is not a subspace of a vector space, provide a specific example showing that at least one of the axioms a, b or c (from the definition of a subspace) is violated. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

27 Determining Subspaces: Example Example Is V = {(a + 2b, 2a 3b) : a and b are real} a subspace of R 2? Why or why not? Solution: Write vectors in V in column form: [ ] [ ] [ a + 2b a 2b = + 2a 3b 2a 3b = [ 1 2 ] + [ 2 3 ] ] So V =Span{v 1, v 2 } and therefore V is a subspace of Theorem 1. by Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

28 Determining Subspaces: Example Example Is H = a + 2b a + 1 a Why or why not? : a and b are real a subspace of R3? Solution: 0 is not in H since a = b = 0 or any other combination of values for a and b does not produce the zero vector. So property fails to hold and therefore H is not a subspace of R 3. Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

29 Determining Subspaces: Example Example [ Is the set H of all matrices of the form of M 2 2? Explain. 2a 3a + b ] b a subspace 3b Solution: Since [ 2a 3a + b ] b = 3b [ 2a 0 3a 0 ] [ 0 b + b 3b [ ] [ ] = a + b. ] Therefore H =Span subspace of M 2 2. {[ ] [ 0 1, 1 3 ]} and so H is a Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

30 Spanning Sets 1.4 Linear Combinations Reduction Span Determining Subspaces Theorem (1.5) The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S. Definition The subspace spanned (or subspace generated) by a nonempty set S of vectors in V is the set of all linear combinations of vectors from S: < S >= span(s) = {c 1 v c n v n c i F, v i S} When S = {v 1,, v n } is a finite set, we use the notation < v 1,, v n > or span(v 1,, v n ). A set S of vectors in V is said to span V, or generate V, if V = span(s). Jiwen He, University of Houston Math 4377/6308, Advanced Linear Algebra Spring, / 30

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Operations and Elementary Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 1.3 Subspaces Math 4377/6308 Advanced Linear Algebra 1.3 Subspaces Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377 Jiwen He, University of Houston

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6. Orthogonal Projections Math 2 Linear Algebra 6. Orthogonal Projections Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2 Jiwen He, University of

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.3 Linearly Independent Sets; Bases Math 233 Linear Algebra 4.3 Linearly Independent Sets; Bases Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu, University

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.2 Orthogonal Sets Math 233 Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233 Jiwen He, University of Houston

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.4 Inverse Math 4377/6308 Advanced Linear Algebra 2.4 Invertibility and Isomorphisms Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377 Jiwen He,

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.5 Change of Bases 2.6 Dual Spaces Math 4377/6308 Advanced Linear Algebra 2.5 Change of Bases & 2.6 Dual Spaces Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 3191 Applied Linear Algebra Lecture 11: Vector Spaces Stephen Billups University of Colorado at Denver Math 3191Applied Linear Algebra p.1/32 Announcements Study Guide 6 posted HWK 6 posted Math 3191Applied

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017 Lecture 03 Math 22 Summer 2017 Section 2 June 26, 2017 Just for today (10 minutes) Review row reduction algorithm (40 minutes) 1.3 (15 minutes) Classwork Review row reduction algorithm Review row reduction

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Anton & Rorres, 10 th Edition Lecture Set 05 Chapter 4: General Vector Spaces 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2554 1006003 คณตศาสตรวศวกรรม

More information

VECTORS [PARTS OF 1.3] 5-1

VECTORS [PARTS OF 1.3] 5-1 VECTORS [PARTS OF.3] 5- Vectors and the set R n A vector of dimension n is an ordered list of n numbers Example: v = [ ] 2 0 ; w = ; z = v is in R 3, w is in R 2 and z is in R? 0. 4 In R 3 the R stands

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.3 VECTOR EQUATIONS VECTOR EQUATIONS Vectors in 2 A matrix with only one column is called a column vector, or simply a vector. An example of a vector with two entries

More information

Lecture 16: 9.2 Geometry of Linear Operators

Lecture 16: 9.2 Geometry of Linear Operators Lecture 16: 9.2 Geometry of Linear Operators Wei-Ta Chu 2008/11/19 Theorem 9.2.1 If T: R 2 R 2 is multiplication by an invertible matrix A, then the geometric effect of T is the same as an appropriate

More information

We know how to identify the location of a point by means of coordinates: (x, y) for a point in R 2, or (x, y,z) for a point in R 3.

We know how to identify the location of a point by means of coordinates: (x, y) for a point in R 2, or (x, y,z) for a point in R 3. Vectors We know how to identify the location of a point by means of coordinates: (x, y) for a point in R 2, or (x, y,z) for a point in R 3. More generally, n-dimensional real Euclidean space R n is the

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

ICS 6N Computational Linear Algebra Vector Equations

ICS 6N Computational Linear Algebra Vector Equations ICS 6N Computational Linear Algebra Vector Equations Xiaohui Xie University of California, Irvine xhx@uci.edu January 17, 2017 Xiaohui Xie (UCI) ICS 6N January 17, 2017 1 / 18 Vectors in R 2 An example

More information

Linear Equations and Vectors

Linear Equations and Vectors Chapter Linear Equations and Vectors Linear Algebra, Fall 6 Matrices and Systems of Linear Equations Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Unique

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

Vector Spaces ปร ภ ม เวกเตอร

Vector Spaces ปร ภ ม เวกเตอร Vector Spaces ปร ภ ม เวกเตอร 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition and

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

Sept. 26, 2013 Math 3312 sec 003 Fall 2013

Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Section 4.1: Vector Spaces and Subspaces Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

VECTOR SPACES & SUBSPACES

VECTOR SPACES & SUBSPACES VECTOR SPACES & SUBSPACES Definition: The real Vector Space " V " is the set of all entities called "vectors" with real entries that satisfy two closure properties and obey a set of eight rules. If "x"

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

Announcements August 31

Announcements August 31 Announcements August 31 Homeworks 1.1 and 1.2 are due Friday. The first quiz is on Friday, during recitation. Quizzes mostly test your understanding of the homework. There will generally be a quiz every

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

Math "Matrix Approach to Solving Systems" Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25

Math Matrix Approach to Solving Systems Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25 Math 102 6.3 "Matrix Approach to Solving Systems" Bibiana Lopez Crafton Hills College November 2010 (CHC) 6.3 November 2010 1 / 25 Objectives: * Define a matrix and determine its order. * Write the augmented

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 205 Motivation When working with an inner product space, the most

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015 Midterm 1 Advanced Linear Algebra Math 4377 / 638 (Spring 215) March 5, 215 2 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.7 Linear Independence Math 21 Linear Algebra 1.7 Linear Independence Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ February 5, 218 Shang-Huan

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices MAC05-College Algebra Chapter 5-Systems of Equations & Matrices 5. Systems of Equations in Two Variables Solving Systems of Two Linear Equations/ Two-Variable Linear Equations A system of equations is

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix Pre-Calculus I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

NAME MATH 304 Examination 2 Page 1

NAME MATH 304 Examination 2 Page 1 NAME MATH 4 Examination 2 Page. [8 points (a) Find the following determinant. However, use only properties of determinants, without calculating directly (that is without expanding along a column or row

More information

MATH 2030: ASSIGNMENT 4 SOLUTIONS

MATH 2030: ASSIGNMENT 4 SOLUTIONS MATH 23: ASSIGNMENT 4 SOLUTIONS More on the LU factorization Q.: pg 96, q 24. Find the P t LU factorization of the matrix 2 A = 3 2 2 A.. By interchanging row and row 4 we get a matrix that may be easily

More information

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Linear Independence MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Given a set of vectors {v 1, v 2,..., v r } and another vector v span{v 1, v 2,...,

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

Fall 2016 MATH*1160 Final Exam

Fall 2016 MATH*1160 Final Exam Fall 2016 MATH*1160 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie Dec 16, 2016 INSTRUCTIONS: 1. The exam is 2 hours long. Do NOT start until instructed. You may use blank

More information

APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF

APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF ELEMENTARY LINEAR ALGEBRA WORKBOOK/FOR USE WITH RON LARSON S TEXTBOOK ELEMENTARY LINEAR ALGEBRA CREATED BY SHANNON MARTIN MYERS APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF When you are done

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

6. Orthogonality and Least-Squares

6. Orthogonality and Least-Squares Linear Algebra 6. Orthogonality and Least-Squares CSIE NCU 1 6. Orthogonality and Least-Squares 6.1 Inner product, length, and orthogonality. 2 6.2 Orthogonal sets... 8 6.3 Orthogonal projections... 13

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

4.3 Linear, Homogeneous Equations with Constant Coefficients. Jiwen He

4.3 Linear, Homogeneous Equations with Constant Coefficients. Jiwen He 4.3 Exercises Math 3331 Differential Equations 4.3 Linear, Homogeneous Equations with Constant Coefficients Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math3331

More information

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix Algebra & Trig. I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

1 Last time: row reduction to (reduced) echelon form

1 Last time: row reduction to (reduced) echelon form MATH Linear algebra (Fall 8) Lecture Last time: row reduction to (reduced) echelon fm The leading entry in a nonzero row of a matrix is the first nonzero entry from left going right example, the row 7

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is One-to-one Onto Question

More information

Vector Spaces ปร ภ ม เวกเตอร

Vector Spaces ปร ภ ม เวกเตอร Vector Spaces ปร ภ ม เวกเตอร 1 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Relationships Between Planes

Relationships Between Planes Relationships Between Planes Definition: consistent (system of equations) A system of equations is consistent if there exists one (or more than one) solution that satisfies the system. System 1: {, System

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.2 Echelon Forms Math 2331 Linear Algebra 1.2 Row Reduction and Echelon Forms Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ January 22, 2018 Shang-Huan

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 5. Linear

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

Matrices and Matrix Algebra.

Matrices and Matrix Algebra. Matrices and Matrix Algebra 3.1. Operations on Matrices Matrix Notation and Terminology Matrix: a rectangular array of numbers, called entries. A matrix with m rows and n columns m n A n n matrix : a square

More information