Announcements: Today: RL, LC and RLC circuits and some maths

Size: px
Start display at page:

Download "Announcements: Today: RL, LC and RLC circuits and some maths"

Transcription

1 Announcements: Today: RL, LC and RLC circuits and some maths

2 RL circuit (from last lecture) Kirchhoff loop: First order linear differential equation with general solution: i t = A + Be kt ε A + Be kt R LBke kt = 0 BR LBk = 0 k = R L A= ε/r i t = ε/r + Be R L t (general solution) i 0 = 0 B = ε R i t = ε R ε R e R L t

3 What is the current if I turn off the emf at t 0? A. B. C. D. i t = ε R e R L t i t = ε R e R L (t t 0) i t = ε R e R L (t t0) ε R e R L t i t = ε R e R L (t t0) (1 e R L t 0 )

4 RL circuit i t < t 0 = ε R ε R e R L t i t 0 = ε R ε R e R L t 0 = C t 0

5 RL circuit i t < t 0 = ε R ε R e R L t i t 0 = ε R ε R e R L t 0 = C i t > t 0 = ε R + Be R L t t 0

6 RL circuit i t < t 0 = ε R ε R e R L t i t 0 = ε R ε R e R L t 0 = C t 0 i t > t 0 = ε R + Be R L t = Be R L t 0

7 RL circuit i t < t 0 = ε R ε R e R L t i t 0 = ε R ε R e R L t 0 = C t 0 i t > t 0 = ε R + Be R L t = Be R L t 0 = Ce R L t 0 e R L t

8 circuit-construction-kit-ac_en

9 LC circuit

10 Courtesy of M. Devoret

11 2000 qubits!

12 LC circuit

13 LC circuit

14 LC circuit q C

15 LC circuit Kirchhoff loop: L di dt q C = 0

16 LC circuit Kirchhoff loop: L di dt q C = 0 I = dq dt

17 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt

18 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order (homogenous) linear differential equation

19 Survival guide on differential equations: Step 1: understand the equation and its notation Typical notations: dy dx = y d 2 y dx 2 = y dy dt = yሶ d 2 y dt 2 = yሷ dy dx = y x d 2 y dx 2 = 2 y x 2 dy dt = y t d 2 y dx 2 = 2 y x 2 One variable (x or t) y(x, t) x (partial) V(x, y, z, t) ; y Many variables (x,y,z,t) 2 y(x, t) x 2 ; 2 V(x, y, z, t) z 2 y(x, t) V(x, y, z, t) ; t t (total) (Most typical differential equations use only partial derivatives, e.g. divergence) dv(x, y, z, t) dy

20 Survival guide on differential equations: Step 2: How many variables? y x + 2 y x 2 = 0 y x + y t = 0 One variable (x) => ODE Many variables (x and t) => PDE

21 Survival guide on differential equations: Step 3: Is it linear? y x + 2 y x 2 = 0 y ay + b x + c 2 y + d = f(x) x2 Linear y x + 2 y x 2 + y x 2 = 0 Non-linear

22 Survival guide on differential equations: Step 4: What order? ay + b y x + c 2 y x 2 + d = 0 ay + b y x + c = 0 ay + b y x + c 2 y + d = f(x) x2 ay + b y x + c = f(x) a(x)y + b y x + c 2 y x 2 + d = 0 Second order a(x)y + b y x + c = 0 First order

23 Survival guide on differential equations: Step 5: Is it linear with constant coefficients? ay + b y x + c 2 y x 2 + d = 0 Yes if a,b,c,d are constants ay + b y x + c 2 y + d = f(x) No x2 a(x)y + b y x + c 2 y x 2 + d = 0 No

24 Survival guide on differential equations: Step 5: Is it linear with constant coefficients? ay + b y x + c 2 y x 2 + d = 0 a,b,c,d are constants y x = Second order Ae k 1x + Be k 2x + C or Ae k 1x + Be k 2x if d=0 (homogenous case) Examples: RLC circuit, mechanical oscillators, E&M waves, (All other PDEs or ODEs are usually more complicated) First order y x = A + Be kx or Be kx (homogenous case)

25 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k 1t + Be k 2t

26 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k 1t + Be k 2t LAk 1 2 e k 1t + LBk 2 2 e k 2t + 1 C Aek 1t + Be k 2t = 0

27 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k1t + Be k 2t LAk 2 1 e k1t + LBk 2 2 e k2t + 1 C Aek1t + Be k 2t = 0 (LAk C A)ek1t +(LBk C B)ek2t = 0

28 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k 1t + Be k 2t LAk 1 2 e k 1t + LBk 2 2 e k 2t + 1 C Aek 1t + Be k 2t = 0 (LAk C A)ek 1t +(LBk C B)ek 2t = 0 = 0 = 0

29 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k 1t + Be k 2t LAk 1 2 e k 1t + LBk 2 2 e k 2t + 1 C Aek 1t + Be k 2t = 0 (LAk C A)ek 1t +(LBk C B)ek 2t = 0 = 0 = 0 Lk C = 0 k 1 = 1 LC = i 1 LC = iω imaginary

30 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k 1t + Be k 2t LAk 1 2 e k 1t + LBk 2 2 e k 2t + 1 C Aek 1t + Be k 2t = 0 (LAk C A)ek 1t +(LBk C B)ek 2t = 0 = 0 = 0 Lk C = 0 k 1 = 1 LC = i 1 LC = iω imaginary and k 2 = iω

31 Who has seen e ix = cos x + i sin x? A. Yes B. No C. I vaguely remember

32 Survival guide on complex numbers: Step 1: understand the notation Notations: i = 1 (in most fields) j = 1 (in electrical engineering)

33 Survival guide on complex numbers: Step 2: basic properties Properties: i = 1 i 2 = 1 z = x + iy z 2 = x 2 y 2 + 2ixy Complex number Real part Imaginary part e ix = cos x + i sin x (Often called the Euler Formula) z = re iθ = r cos θ + i r sin θ One of the most important formulas in physics and engineering!

34 Challenge: i =?

35 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae k 1t + Be k 2t LAk 1 2 e k 1t + LBk 2 2 e k 2t + 1 C Aek 1t + Be k 2t = 0 (LAk C A)ek 1t +(LBk C B)ek 2t = 0 = 0 = 0 Lk C = 0 k 1 = 1 LC = i 1 LC = iω imaginary and k 2 = iω

36 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: q t = Ae kt + Be kt k = i 1 LC = iω

37 LC circuit Kirchhoff loop: L di dt q C = 0 L d2 q dt 2 + q C = 0 I = dq dt Second order homogenous linear differential equation with general solution: e ix = cos x + i sin x (Euler Formula) q t = Ae kt + Be kt q t = Q cos ωt + Φ k = i 1 LC = iω Q 2 = 4AB e 2iΦ = 4 B A

38 LC circuit General solution: q t = Q cos ωt + Φ 2 parameters depending on initial conditions (they are usually real numbers, even though the differential equation would also allow for complex solutions.)

39 LC circuit General solution: q t = Q cos ωt + Φ

40 LC circuit General solution: q t = Q cos ωt + Φ I t = ωq sin ωt + Φ

41 V General solution: q t = Q cos ωt + Φ I t = ωq sin ωt + Φ V t = Q cos ωt + Φ C LC circuit

42 V General solution: q t = Q cos ωt + Φ I t = ωq sin ωt + Φ V t = Q C cos ωt + Φ LC circuit

43 V General solution: q t = Q cos ωt + Φ I t = ωq sin ωt + Φ V t = Q C cos ωt + Φ LC circuit Total energy: E = 1 2 LI t 2 + q t 2 2C = Q2 2C ( 1 LC = ω) is constant

44

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Announcements: Today: more AC circuits

Announcements: Today: more AC circuits Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations ENGI 344 - Second Order Linear ODEs age -01. Second Order Linear Ordinary Differential Equations The general second order linear ordinary differential equation is of the form d y dy x Q x y Rx dx dx Of

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Math 322. Spring 2015 Review Problems for Midterm 2

Math 322. Spring 2015 Review Problems for Midterm 2 Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory

More information

Math Assignment 6

Math Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Fall 2013 Section 3.7-1, 5, 10, 17, 19 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.7 - Electrical Circuits 3.7.1 This

More information

Math 211. Substitute Lecture. November 20, 2000

Math 211. Substitute Lecture. November 20, 2000 1 Math 211 Substitute Lecture November 20, 2000 2 Solutions to y + py + qy =0. Look for exponential solutions y(t) =e λt. Characteristic equation: λ 2 + pλ + q =0. Characteristic polynomial: λ 2 + pλ +

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Wave Phenomena Physics 15c. Lecture 2 Damped Oscillators Driven Oscillators

Wave Phenomena Physics 15c. Lecture 2 Damped Oscillators Driven Oscillators Wave Phenomena Physics 15c Lecture Damped Oscillators Driven Oscillators What We Did Last Time Analyzed a simple harmonic oscillator The equation of motion: The general solution: Studied the solution m

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

Introductory Differential Equations

Introductory Differential Equations Introductory Differential Equations Lecture Notes June 3, 208 Contents Introduction Terminology and Examples 2 Classification of Differential Equations 4 2 First Order ODEs 5 2 Separable ODEs 5 22 First

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x.

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x. 1. Find the stationary points of the following functionals: (a) 1 (q (x) + 1xq(x)) dx, q() =, q(1) = Solution. The functional is 1 L(q, q, x) where L(q, q, x) = q + 1xq. We have q = q, q = 1x. The Euler-Lagrange

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Lecture Notes for Math 21: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation Shawn D. Ryan Spring 2012 1 Complex Roots of the Characteristic Equation Last Time: We considered the

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

MATH 1231 MATHEMATICS 1B Calculus Section 2: - ODEs.

MATH 1231 MATHEMATICS 1B Calculus Section 2: - ODEs. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 2: - ODEs. 1. Motivation 2. What you should already know 3. Types and orders of ODEs 4.

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

Solving First Order PDEs

Solving First Order PDEs Solving Ryan C. Trinity University Partial Differential Equations Lecture 2 Solving the transport equation Goal: Determine every function u(x, t) that solves u t +v u x = 0, where v is a fixed constant.

More information

Advanced Eng. Mathematics

Advanced Eng. Mathematics Koya University Faculty of Engineering Petroleum Engineering Department Advanced Eng. Mathematics Lecture 6 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Second Order Linear Ordinary

More information

Complex Numbers Review

Complex Numbers Review Complex Numbers view ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The real numbers (denoted R) are incomplete

More information

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

Partial Differential Equations for Engineering Math 312, Fall 2012

Partial Differential Equations for Engineering Math 312, Fall 2012 Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant

More information

Ordinary differential equations

Ordinary differential equations Class 7 Today s topics The nonhomogeneous equation Resonance u + pu + qu = g(t). The nonhomogeneous second order linear equation This is the nonhomogeneous second order linear equation u + pu + qu = g(t).

More information

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I Physics 3 Jonathan Dowling Lecture 35: FRI 7 APR Electrical Oscillations, LC Circuits, Alternating Current I Nikolai Tesla What are we going to learn? A road map Electric charge è Electric force on other

More information

Physics 294H. lectures will be posted frequently, mostly! every day if I can remember to do so

Physics 294H. lectures will be posted frequently, mostly! every day if I can remember to do so Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

Math 185 Homework Exercises II

Math 185 Homework Exercises II Math 185 Homework Exercises II Instructor: Andrés E. Caicedo Due: July 10, 2002 1. Verify that if f H(Ω) C 2 (Ω) is never zero, then ln f is harmonic in Ω. 2. Let f = u+iv H(Ω) C 2 (Ω). Let p 2 be an integer.

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Shawn D. Ryan Spring 2012 Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 15 - Tues 20th Nov 2018 First and Higher Order Differential Equations

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 15 - Tues 20th Nov 2018 First and Higher Order Differential Equations ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 15 - Tues 20th Nov 2018 First and Higher Order Differential Equations Integrating Factor Here is a powerful technique which will work (only!)

More information

Second-Order Linear ODEs

Second-Order Linear ODEs C0.tex /4/011 16: 3 Page 13 Chap. Second-Order Linear ODEs Chapter presents different types of second-order ODEs and the specific techniques on how to solve them. The methods are systematic, but it requires

More information

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits Module 24: Undriven RLC Circuits 1 Module 24: Outline Undriven RLC Circuits Expt. 8: Part 2:Undriven RLC Circuits 2 Circuits that Oscillate (LRC) 3 Mass on a Spring: Simple Harmonic Motion (Demonstration)

More information

Lecture 4: R-L-C Circuits and Resonant Circuits

Lecture 4: R-L-C Circuits and Resonant Circuits Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L

More information

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS 6.0 Introduction to Differential Equations Contemporary Calculus 1 6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS This chapter is an introduction to differential equations, a major field in applied and theoretical

More information

Electromagnetic Induction (Chapters 31-32)

Electromagnetic Induction (Chapters 31-32) Electromagnetic Induction (Chapters 31-3) The laws of emf induction: Faraday s and Lenz s laws Inductance Mutual inductance M Self inductance L. Inductors Magnetic field energy Simple inductive circuits

More information

Physics Lecture 40: FRI3 DEC

Physics Lecture 40: FRI3 DEC Physics 3 Physics 3 Lecture 4: FRI3 DEC Review of concepts for the final exam Electric Fields Electric field E at some point in space is defined as the force divided by the electric charge. Force on charge

More information

M412 Assignment 9 Solutions

M412 Assignment 9 Solutions M4 Assignment 9 Solutions. [ pts] Use separation of variables to show that solutions to the quarter-plane problem can be written in the form u t u xx ; t>,

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

First and Second Order ODEs

First and Second Order ODEs Civil Engineering 2 Mathematics Autumn 211 M. Ottobre First and Second Order ODEs Warning: all the handouts that I will provide during the course are in no way exhaustive, they are just short recaps. Notation

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition F. Ammar Khodja Clermont-Ferrand, June 2011 GOAL: 1 Show the important differences between scalar and non

More information

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven.

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven. Lecture 10 Monday - September 19, 005 Written or last updated: September 19, 005 P441 Analytical Mechanics - I RLC Circuits c Alex R. Dzierba Introduction In this note we discuss electrical oscillating

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Spring 2017 Second Order Linear Homogeneous Differential Equation DE: A(x) d 2 y dx 2 + B(x)dy dx + C(x)y = 0 This equation is called second order because it includes the second derivative of y; it is

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

1 (2n)! (-1)n (θ) 2n

1 (2n)! (-1)n (θ) 2n Complex Numbers and Algebra The real numbers are complete for the operations addition, subtraction, multiplication, and division, or more suggestively, for the operations of addition and multiplication

More information

Harman Outline 1A CENG 5131

Harman Outline 1A CENG 5131 Harman Outline 1A CENG 5131 Numbers Real and Imaginary PDF In Chapter 2, concentrate on 2.2 (MATLAB Numbers), 2.3 (Complex Numbers). A. On R, the distance of any real number from the origin is the magnitude,

More information

SECOND ORDER ODE S. 1. A second order differential equation is an equation of the form. F (x, y, y, y ) = 0.

SECOND ORDER ODE S. 1. A second order differential equation is an equation of the form. F (x, y, y, y ) = 0. SECOND ORDER ODE S 1. A second der differential equation is an equation of the fm F (x, y, y, y ) = 0. A solution of the differential equation is a function y = y(x) that satisfies the equation. A differential

More information

MATH FALL 2014 HOMEWORK 10 SOLUTIONS

MATH FALL 2014 HOMEWORK 10 SOLUTIONS Problem 1. MATH 241-2 FA 214 HOMEWORK 1 SOUTIONS Note that u E (x) 1 ( x) is an equilibrium distribution for the homogeneous pde that satisfies the given boundary conditions. We therefore want to find

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

Principles of Physics II

Principles of Physics II Principles of Physics II J. M. Veal, Ph. D. version 18.05.4 Contents 1 Fluid Mechanics 3 1.1 Fluid pressure............................ 3 1. Buoyancy.............................. 3 1.3 Fluid flow..............................

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1)

z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) 11 Complex numbers Read: Boas Ch. Represent an arb. complex number z C in one of two ways: z = x + iy ; x, y R rectangular or Cartesian form z = re iθ ; r, θ R polar form. (1) Here i is 1, engineers call

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math EECE 3640 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

Differential Equations Review

Differential Equations Review P. R. Nelson diff eq prn.tex Winter 2010 p. 1/20 Differential Equations Review Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

More information

PES 1120 Spring 2014, Spendier Lecture 35/Page 1

PES 1120 Spring 2014, Spendier Lecture 35/Page 1 PES 0 Spring 04, Spendier Lecture 35/Page Today: chapter 3 - LC circuits We have explored the basic physics of electric and magnetic fields and how energy can be stored in capacitors and inductors. We

More information

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,...,

Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., Atoms An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of x j e ax+icx, j = 0, 1, 2,..., where a and c represent real numbers and c 0. Details and Remarks The definition

More information

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25 Lecture 2 Introduction to Differential Equations Roman Kitsela October 1, 2018 Roman Kitsela Lecture 2 October 1, 2018 1 / 25 Quick announcements URL for the class website: http://www.math.ucsd.edu/~rkitsela/20d/

More information

Math 240: Spring-mass Systems

Math 240: Spring-mass Systems Math 240: Spring-mass Systems Ryan Blair University of Pennsylvania Tuesday March 1, 2011 Ryan Blair (U Penn) Math 240: Spring-mass Systems Tuesday March 1, 2011 1 / 15 Outline 1 Review 2 Today s Goals

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Mathematical Review for AC Circuits: Complex Number

Mathematical Review for AC Circuits: Complex Number Mathematical Review for AC Circuits: Complex Number 1 Notation When a number x is real, we write x R. When a number z is complex, we write z C. Complex conjugate of z is written as z here. Some books use

More information

About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three-year curriculum development project

About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three-year curriculum development project About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three-year curriculum development project undertaken by a consortium of five English universities led by

More information

MAT01B1: Separable Differential Equations

MAT01B1: Separable Differential Equations MAT01B1: Separable Differential Equations Dr Craig 3 October 2018 My details: acraig@uj.ac.za Consulting hours: Tomorrow 14h40 15h25 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information