Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25

Size: px
Start display at page:

Download "Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25"

Transcription

1 Lecture 2 Introduction to Differential Equations Roman Kitsela October 1, 2018 Roman Kitsela Lecture 2 October 1, / 25

2 Quick announcements URL for the class website: URL for MATLAB website: This has been updated recently with the correct dates for Fall The MATLAB TAs should be your main point of contact for MATLAB related questions. URL to sign up to Piazza: piazza.com/ucsd/fall2018/math20dfall2018dsections Roman Kitsela Lecture 2 October 1, / 25

3 Today s lecture Section Background First examples of differential equations Basic terminology: Dependent vs Independent variables Ordinary D.E. vs partial D.E. Order of a D.E. Linear vs non-linear D.E. Section Solutions and IVPs Explicit vs Implicit solutions Initial value problems Existence and uniqueness theorem: Formal statement Examples (how to use the theorem). Roman Kitsela Lecture 2 October 1, / 25

4 Section Modelling and differential equations Scientists and engineers use mathematical models to attempt to understand (and predict) physical phenomena. These models will often involve rates of change which are expressed as derivates of some (possibly unknown) function. Equations involving derivatives are called differential equations. Roman Kitsela Lecture 2 October 1, / 25

5 Basic examples Example (Body falling under the force of gravity) Object released from some height falls under the force of gravity. Model: Newton s 2nd Law Differential Equation: F = m a m d 2 h dt 2 = mg Roman Kitsela Lecture 2 October 1, / 25

6 Basic examples Example (Radioactive decay) A radioactive substance experiences radioactive decay. Model: Rate of decay is proportional to the amount of radioactive substance present. Differential Equation: da dt = ka, k > 0 Roman Kitsela Lecture 2 October 1, / 25

7 What these examples tell us about differential equations 1 Solution to differential equations are functions. 2 Integration is an important tool in solving differential equations. 3 We cannot expect to get a unique solution unless given more information. This information will be called the initial conditions of the problem (such as the initial position, velocity, acceleration etc...) Roman Kitsela Lecture 2 October 1, / 25

8 More examples Example (Compound interest) dp dt = r P, t in years 100 Example (Charge in an electric circuit) L d 2 q dt 2 + R dq dt + 1 C q = E(t) Example (Modelling rate of learning) Example (Wave propagation) dy/dt 2p y 3/2 = (1 y) 3/2 n 2 u t 2 c2 2 u x 2 = 0 Roman Kitsela Lecture 2 October 1, / 25

9 Basic Terminology To facilitate the study of differential equations we need to know some common words used to describe differential equations: Dependent vs Independent variables Ordinary D.E. vs partial D.E. Order of a D.E. Linear vs non-linear D.E. Roman Kitsela Lecture 2 October 1, / 25

10 Dependent vs independent variables Basic example: y(x) (i.e. y is a function of x) Here y depends on x and so y is the dependent variable, x is the independent variable. Differential equations involve derivatives such as dy dx dq dt dp dt 2 u x t Dependent variables: y, q, P, u Independent variables: x, t, t, x and t Conclusion: Top of the derivative = dependent variable Bottom of the derivative = independent variable(s) Roman Kitsela Lecture 2 October 1, / 25

11 Ordinary vs partial differential equations A differential equation involving only ordinary derivatives with respect to a single (independent) variable is called an ordinary differential equation. Example: da dt = ka A differential equation involving partial derivatives with respect to more than one (independent) variables is called an partial differential equation. Example: 2 u x u y 2 = 0 Roman Kitsela Lecture 2 October 1, / 25

12 Order of a differential equation The order of a differential equation is the order of the highest-order derivatives present in the equation. Example: da dt = ka and 2 u x u y 2 = 0 First-order and Second-order differential equations respectively. Roman Kitsela Lecture 2 October 1, / 25

13 Linear vs nonlinear differential equaions Definition A differential equation is called linear if it has the format a n (x) d n y dx n + a n 1(x) d n 1 y dx n a 1(x) dy dx + a 0(x)y = F (x) Linear dy dx + y = x 2 1 dy dt = yt 1 t cos(x) dy dx sin(x)y = e2x cos(x) dr dθ = θ2 Non-linear dy dx y = x 2 1 dy dt = yt y t dy dx sin(y)x = e2x ( dr dθ ) 2 = θ Roman Kitsela Lecture 2 October 1, / 25

14 Classifying differential equations Equation Dep. var? Indep. var? ODE or PDE? Order? Linear? m d2 h dt 2 = mg h t ODE 2 da dt = ka A t ODE 1 d 3 y dx 3 + y 3 = 0 y x ODE 3 dp dt = r 100 P P t ODE 1 L d2 q + R dq dt 2 dt + 1 C q = E(t) q t ODE 2 dy/dt = 2p y 3/2 (1 y) 3/2 n y t ODE 1 2 u c 2 2 u = 0 u x, t PDE 2 t 2 x 2 Roman Kitsela Lecture 2 October 1, / 25

15 Section Explicit solutions A general nth-order differential equation (with x independent and y dependent) can be expressed in the following form: F ( x, y, dy dx, d 2 y dx 2,, d n ) y dx n, = 0 (1) We assume that this equation holds for all x in some open interval I. Sometimes we can isolate the highest order derivative and rewrite (4) as: d n ( y dx n = f x, y, dy dx, d 2 y dx 2,, d n 1 ) y dx n 1 (2) Definition A function φ(x) that satisfies (4) (or (2)) for all x in I when substituted for y is called an explicit solution to (4) (or (2)). Roman Kitsela Lecture 2 October 1, / 25

16 Reminder: Open intervals Quick reminder: Open interval are usually written as (a, b) and contain all x such that: a < x < b (Note: a and b are allowed to be and respectively) Examples: ( 3, π) contains all x such that 3 < x < π (0, ) contains all x > 0 (i.e. all positive x) (, 0) contains all negative x (, 1) contains all negative x < 1 (, ) contains all (real) x Roman Kitsela Lecture 2 October 1, / 25

17 Explicit solutions - An example Example (Example 1 from textbook) Show that φ(x) = x 2 x 1 is an explicit solution to the linear equation but ψ(x) = x 3 is not. Important point: d 2 y dx 2 2 x 2 y = 0 (3) Explicit solutions need to be defined on an open interval, not just a single value of x. Roman Kitsela Lecture 2 October 1, / 25

18 Implicit solutions We are still discussing solutions to a general nth-order differential equation ( F x, y, dy dx, d 2 y dx 2,, d n ) y dx n, = 0 (4) Definition A relation G(x, y) = 0 is said to be an implicit solution to (4) on the interval I if it defines one or more explicit solutions on I. Important point: We will not always be able to rewrite implicit solutions as y = φ(x) for some φ(x). In these cases we use implicit differentiation. Roman Kitsela Lecture 2 October 1, / 25

19 Implicit solutions - examples Example (Example 3 from textbook) Show that the relation y 2 x = 0 implicitly defines a solution to the nonlinear equation on the interval (2, ). dy dx = 3x 2 2y Roman Kitsela Lecture 2 October 1, / 25

20 Implicit solutions - examples Example (Example 4 from textbook) Show that the relation x + y + e xy = 0 is an implicit solution to the nonlinear equation (1 + xe xy ) dy dx yexy = 0 Roman Kitsela Lecture 2 October 1, / 25

21 Initial value problems In general solving an nth-order differential equation introduces n unknowns (often as constants of integration). So a differential equation with no initial conditions will not have a unique solution. A differential equation together with (sufficiently many) initial conditions is called an initial value problem. Example (From practice final) Solve the initial value problem: dy dx y x = xex, y(1) = e 1 Roman Kitsela Lecture 2 October 1, / 25

22 The higher the order of the differential equation, the more initial conditions we need to determine an exact solution... Example (Example 6 from textbook) Show that φ(x) = sin(x) cos(x) is a solution to the initial value problem d 2 y dx 2 + y = 0; y(0) = 1, dy dx (0) = 1 Note: In chapter 4 we will learn how to actually solve these types of problems. Without the initial conditions y(0) = 1, y (0) = 1 we would only be able to get the general solution: φ(x) = A cos(x) + B sin(x) where A and B are unknown constants. Roman Kitsela Lecture 2 October 1, / 25

23 Existence and uniqueness theorem for first-order IVPs Theorem Consider the initial value problem If f and f y dy dx = f (x, y), y(x 0) = y 0 (5) are continuous functions in some rectangle R = {(x, y) : a < x < b, c < y < d} that contains (x 0, y 0 ), then the initial value problem (5) has a unique solution φ(x) in some interval x 0 δ < x < x 0 + δ. Translation: If f and f y behave nicely at the initial condition (x 0, y 0 ) then you can guarantee a unique solution to the IVP close to that initial condition (otherwise you cannot apply the theorem). Roman Kitsela Lecture 2 October 1, / 25

24 How to use the existence and uniqueness theorem Example For the initial value problem 3 dy dx = x 2 xy 3, y(1) = 6 does the existence and uniqueness theorem imply the existence of a unique solution? Solution. Calculate: f (x, y) = x 2 xy 3 3 = f y = xy 2 Check continuity: In this case f and f y are both continuous at (1, 6) so we can apply theorem (and deduce the existence of a unique solution). Roman Kitsela Lecture 2 October 1, / 25

25 How to use the existence and uniqueness theorem Example For the initial value problem dy dx = 3y 2/3, y(2) = 0 does the existence and uniqueness theorem imply the existence of a unique solution? Solution. Calculate: f (x, y) = 3y 2/3 = f y = 2y 1/3 Check continuity: In this case f y is not continuous at (2, 0) so we cannot apply the Theorem. Roman Kitsela Lecture 2 October 1, / 25

Math 225 Differential Equations Notes Chapter 1

Math 225 Differential Equations Notes Chapter 1 Math 225 Differential Equations Notes Chapter 1 Michael Muscedere September 9, 2004 1 Introduction 1.1 Background In science and engineering models are used to describe physical phenomena. Often these

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008 Chapter 1. Introduction Section 1.1 Background Definition Equation that contains some derivatives of an unknown function is called

More information

Differential Equations & Separation of Variables

Differential Equations & Separation of Variables Differential Equations & Separation of Variables SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 8. of the recommended textbook (or the equivalent

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

These notes are based mostly on [3]. They also rely on [2] and [1], though to a lesser extent.

These notes are based mostly on [3]. They also rely on [2] and [1], though to a lesser extent. Chapter 1 Introduction These notes are based mostly on [3]. They also rely on [2] and [1], though to a lesser extent. 1.1 Definitions and Terminology 1.1.1 Background and Definitions The words "differential

More information

Computational Neuroscience. Session 1-2

Computational Neuroscience. Session 1-2 Computational Neuroscience. Session 1-2 Dr. Marco A Roque Sol 05/29/2018 Definitions Differential Equations A differential equation is any equation which contains derivatives, either ordinary or partial

More information

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs.

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs. MATH 1231 MATHEMATICS 1B 2010. For use in Dr Chris Tisdell s lectures. Calculus Section 3A: - First order ODEs. Created and compiled by Chris Tisdell S1: What is an ODE? S2: Motivation S3: Types and orders

More information

Example (#1) Example (#1) Example (#2) Example (#2) dv dt

Example (#1) Example (#1) Example (#2) Example (#2) dv dt 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

9.1 Solving Differential Equations

9.1 Solving Differential Equations 9.1 Solving Differential Equations What is a differential equation? Real-world examples: The order of a differential equation is the order of the that occurs in the equation. A differential equation is

More information

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects:

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects: 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 7: 2.4 Differences Between Linear and Nonlinear Equations

Lecture Notes for Math 251: ODE and PDE. Lecture 7: 2.4 Differences Between Linear and Nonlinear Equations Lecture Notes for Math 51: ODE and PDE. Lecture 7:.4 Differences Between Linear and Nonlinear Equations Shawn D. Ryan Spring 01 1 Existence and Uniqueness Last Time: We developed 1st Order ODE models for

More information

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

Solving differential equations (Sect. 7.4) Review: Overview of differential equations. Solving differential equations (Sect. 7.4 Previous class: Overview of differential equations. Exponential growth. Separable differential equations. Review: Overview of differential equations. Definition

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Math Applied Differential Equations

Math Applied Differential Equations Math 256 - Applied Differential Equations Notes Existence and Uniqueness The following theorem gives sufficient conditions for the existence and uniqueness of a solution to the IVP for first order nonlinear

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 1 Books Shyamashree Upadhyay ( IIT Guwahati

More information

Solutions Definition 2: a solution

Solutions Definition 2: a solution Solutions As was stated before, one of the goals in this course is to solve, or find solutions of differential equations. In the next definition we consider the concept of a solution of an ordinary differential

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES J. WONG (FALL 2017) What did we cover this week? Basic definitions: DEs, linear operators, homogeneous (linear) ODEs. Solution techniques for some classes

More information

First Order Differential Equations Lecture 3

First Order Differential Equations Lecture 3 First Order Differential Equations Lecture 3 Dibyajyoti Deb 3.1. Outline of Lecture Differences Between Linear and Nonlinear Equations Exact Equations and Integrating Factors 3.. Differences between Linear

More information

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C. Midterm 1 33B-1 015 October 1 Find the exact solution of the initial value problem. Indicate the interval of existence. y = x, y( 1) = 0. 1 + y Solution. We observe that the equation is separable, and

More information

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point,

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point, 1.2. Direction Fields: Graphical Representation of the ODE and its Solution Section Objective(s): Constructing Direction Fields. Interpreting Direction Fields. Definition 1.2.1. A first order ODE of the

More information

(1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min.

(1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min. CHAPTER 1 Introduction 1. Bacground Models of physical situations from Calculus (1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min. With V = volume in gallons and t = time

More information

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS 130 LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS: A differential equation (DE) is an equation involving an unknown function and one or more of its derivatives. A differential

More information

Lecture I Introduction, concept of solutions, application

Lecture I Introduction, concept of solutions, application S. Ghorai Lecture I Introduction, concept of solutions, application Definition. A differential equation (DE) is a relation that contains a finite set of functions and their derivatives with respect to

More information

Solutions to Math 53 First Exam April 20, 2010

Solutions to Math 53 First Exam April 20, 2010 Solutions to Math 53 First Exam April 0, 00. (5 points) Match the direction fields below with their differential equations. Also indicate which two equations do not have matches. No justification is necessary.

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Essential Ordinary Differential Equations

Essential Ordinary Differential Equations MODULE 1: MATHEMATICAL PRELIMINARIES 10 Lecture 2 Essential Ordinary Differential Equations In this lecture, we recall some methods of solving first-order IVP in ODE (separable and linear) and homogeneous

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

MAT137 - Week 8, lecture 1

MAT137 - Week 8, lecture 1 MAT137 - Week 8, lecture 1 Reminder: Problem Set 3 is due this Thursday, November 1, at 11:59pm. Don t leave the submission process until the last minute! In today s lecture we ll talk about implicit differentiation,

More information

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22]

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] HW2 Solutions MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, 2013 Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] Section 3.1: 1, 2, 3, 9, 16, 18, 20, 23 Section 3.2: 1, 2,

More information

! 1.1 Definitions and Terminology

! 1.1 Definitions and Terminology ! 1.1 Definitions and Terminology 1. Introduction: At times, mathematics aims to describe a physical phenomenon (take the population of bacteria in a petri dish for example). We want to find a function

More information

Math 104: l Hospital s rule, Differential Equations and Integration

Math 104: l Hospital s rule, Differential Equations and Integration Math 104: l Hospital s rule, and Integration Ryan Blair University of Pennsylvania Tuesday January 22, 2013 Math 104:l Hospital s rule, andtuesday Integration January 22, 2013 1 / 8 Outline 1 l Hospital

More information

Math 2a Prac Lectures on Differential Equations

Math 2a Prac Lectures on Differential Equations Math 2a Prac Lectures on Differential Equations Prof. Dinakar Ramakrishnan 272 Sloan, 253-37 Caltech Office Hours: Fridays 4 5 PM Based on notes taken in class by Stephanie Laga, with a few added comments

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

First order differential equations

First order differential equations First order differential equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. First

More information

Integration, Separation of Variables

Integration, Separation of Variables Week #1 : Integration, Separation of Variables Goals: Introduce differential equations. Review integration techniques. Solve first-order DEs using separation of variables. 1 Sources of Differential Equations

More information

1.1 Motivation: Why study differential equations?

1.1 Motivation: Why study differential equations? Chapter 1 Introduction Contents 1.1 Motivation: Why stu differential equations?....... 1 1.2 Basics............................... 2 1.3 Growth and decay........................ 3 1.4 Introduction to Ordinary

More information

First Order Differential Equations

First Order Differential Equations Chapter 2 First Order Differential Equations 2.1 9 10 CHAPTER 2. FIRST ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Equations A first order differential equation = f(x, y) is called separable if f(x, y)

More information

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS 6.0 Introduction to Differential Equations Contemporary Calculus 1 6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS This chapter is an introduction to differential equations, a major field in applied and theoretical

More information

SMA 208: Ordinary differential equations I

SMA 208: Ordinary differential equations I SMA 208: Ordinary differential equations I First Order differential equations Lecturer: Dr. Philip Ngare (Contacts: pngare@uonbi.ac.ke, Tue 12-2 PM) School of Mathematics, University of Nairobi Feb 26,

More information

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives.

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Lexicon Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Ordinary Differential Equation (ODE): A differential equation that contains only ordinary

More information

Math Reading assignment for Chapter 1: Study Sections 1.1 and 1.2.

Math Reading assignment for Chapter 1: Study Sections 1.1 and 1.2. Math 3350 1 Chapter 1 Reading assignment for Chapter 1: Study Sections 1.1 and 1.2. 1.1 Material for Section 1.1 An Ordinary Differential Equation (ODE) is a relation between an independent variable x

More information

3.8 Exponential Growth and Decay

3.8 Exponential Growth and Decay October 15, 2010 Population growth Population growth If y = f (t) is the number of individuals in a population of animals or humans at time t, then it seems reasonable to expect that the rate of growth

More information

Introductory Differential Equations

Introductory Differential Equations Introductory Differential Equations Lecture Notes June 3, 208 Contents Introduction Terminology and Examples 2 Classification of Differential Equations 4 2 First Order ODEs 5 2 Separable ODEs 5 22 First

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics Lecture Notes in Mathematics Arkansas Tech University Department of Mathematics Introductory Notes in Ordinary Differential Equations for Physical Sciences and Engineering Marcel B. Finan c All Rights

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth

More information

Solving Differential Equations: First Steps

Solving Differential Equations: First Steps 30 ORDINARY DIFFERENTIAL EQUATIONS 3 Solving Differential Equations Solving Differential Equations: First Steps Now we start answering the question which is the theme of this book given a differential

More information

Unit #16 : Differential Equations

Unit #16 : Differential Equations Unit #16 : Differential Equations Goals: To introduce the concept of a differential equation. Discuss the relationship between differential equations and slope fields. Discuss Euler s method for solving

More information

Lecture 1, August 21, 2017

Lecture 1, August 21, 2017 Engineering Mathematics 1 Fall 2017 Lecture 1, August 21, 2017 What is a differential equation? A differential equation is an equation relating a function (known sometimes as the unknown) to some of its

More information

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik AMATH 351 Mar 15, 013 FINAL REVIEW Instructor: Jiri Najemni ABOUT GRADES Scores I have so far will be posted on the website today sorted by the student number HW4 & Exam will be added early next wee Let

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS HANDOUT DIFFERENTIAL EQUATIONS For International Class Nikenasih Binatari NIP. 19841019 200812 2 005 Mathematics Educational Department Faculty of Mathematics and Natural Sciences State University of Yogyakarta

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Mr. Isaac Akpor Adjei (MSc. Mathematics, MSc. Biostats) isaac.adjei@gmail.com April 7, 2017 ORDINARY In many physical situation, equation arise which involve differential coefficients. For example: 1 The

More information

Math 5198 Mathematics for Bioscientists

Math 5198 Mathematics for Bioscientists Math 5198 Mathematics for Bioscientists Lecture 1: Course Conduct/Overview Stephen Billups University of Colorado at Denver Math 5198Mathematics for Bioscientists p.1/22 Housekeeping Syllabus CCB MERC

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 17. October 1, 005 Homework. Problem Set 5 Part I: (a) and (b); Part II: Problem 1. Practice Problems. Course Reader: 3F 1, 3F, 3F 4, 3F 8. 1. Ordinary differential equations. An ordinary differential

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

Chapter 4: Higher-Order Differential Equations Part 1

Chapter 4: Higher-Order Differential Equations Part 1 Chapter 4: Higher-Order Differential Equations Part 1 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 8, 2013 Higher-Order Differential Equations Most of this

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Differential Equations. Joe Erickson

Differential Equations. Joe Erickson Differential Equations Joe Erickson Contents 1 Basic Principles 1 1.1 Functions of Several Variables.......................... 1 1.2 Linear Differential Operators........................... 7 1.3 Ordinary

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

7.1 Day 1: Differential Equations & Initial Value Problems (30L)

7.1 Day 1: Differential Equations & Initial Value Problems (30L) A P 7.1 Day 1: Differential Equations & Initial Value Problems (30L) Calculus 30 & 30L I CAN SOLVE DIFFERENTIAL EQUATIONS AND INITIAL VALUE PROBLEMS VIDEO LINKS: a) http://bit.ly/2bxsc6r b) http://bit.ly/2sshyyh

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

MTH210 DIFFERENTIAL EQUATIONS. Dr. Gizem SEYHAN ÖZTEPE

MTH210 DIFFERENTIAL EQUATIONS. Dr. Gizem SEYHAN ÖZTEPE MTH210 DIFFERENTIAL EQUATIONS Dr. Gizem SEYHAN ÖZTEPE 1 References Logan, J. David. A first course in differential equations. Springer, 2015. Zill, Dennis G. A first course in differential equations with

More information

First Order ODEs, Part II

First Order ODEs, Part II Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Existence & Uniqueness Theorems 1 Existence & Uniqueness Theorems

More information

AP Calculus Testbank (Chapter 6) (Mr. Surowski)

AP Calculus Testbank (Chapter 6) (Mr. Surowski) AP Calculus Testbank (Chapter 6) (Mr. Surowski) Part I. Multiple-Choice Questions 1. Suppose that f is an odd differentiable function. Then (A) f(1); (B) f (1) (C) f(1) f( 1) (D) 0 (E). 1 1 xf (x) =. The

More information

Math Applied Differential Equations

Math Applied Differential Equations Math 256 - Applied Differential Equations Notes Basic Definitions and Concepts A differential equation is an equation that involves one or more of the derivatives (first derivative, second derivative,

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

First Order ODEs, Part I

First Order ODEs, Part I Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline 1 2 in General 3 The Definition & Technique Example Test for

More information

Ordinary Differential Equations

Ordinary Differential Equations 12/01/2015 Table of contents Second Order Differential Equations Higher Order Differential Equations Series The Laplace Transform System of First Order Linear Differential Equations Nonlinear Differential

More information

13 Implicit Differentiation

13 Implicit Differentiation - 13 Implicit Differentiation This sections highlights the difference between explicit and implicit expressions, and focuses on the differentiation of the latter, which can be a very useful tool in mathematics.

More information

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs First Order DE 2.4 Linear vs. Nonlinear DE We recall the general form of the First Oreder DEs (FODE): dy = f(t, y) (1) dt where f(t, y) is a function

More information

Mathematical Computing

Mathematical Computing IMT2b2β Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Differential Equations Types of Differential Equations Differential equations can basically be classified as ordinary differential

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I MA Practice Final Answers in Red 4/8/ and 4/9/ Name Note: Final Exam is at :45 on Tuesday, 5// (This is the Final Exam time reserved for our labs). From Practice Test I Consider the integral 5 x dx. Sketch

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

MATH1013 Calculus I. Derivatives II (Chap. 3) 1 MATH1013 Calculus I Derivatives II (Chap. 3) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology October 16, 2013 2013 1 Based on Briggs, Cochran and Gillett: Calculus

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Spring Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs)

More information

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Mathematical Models. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Mathematical Models MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Ordinary Differential Equations The topic of ordinary differential equations (ODEs) is

More information

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation.

1.2. Introduction to Modeling. P (t) = r P (t) (b) When r > 0 this is the exponential growth equation. G. NAGY ODE January 9, 2018 1 1.2. Introduction to Modeling Section Objective(s): Review of Exponential Growth. The Logistic Population Model. Competing Species Model. Overview of Mathematical Models.

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

MATH 1231 MATHEMATICS 1B Calculus Section 2: - ODEs.

MATH 1231 MATHEMATICS 1B Calculus Section 2: - ODEs. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 2: - ODEs. 1. Motivation 2. What you should already know 3. Types and orders of ODEs 4.

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt Partial Derivatives for Math 229 Our puropose here is to explain how one computes partial derivatives. We will not attempt to explain how they arise or why one would use them; that is left to other courses

More information

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b]. 1.) If G(x) = x. f(t)dt = F (b) F (a) where F is any antiderivative

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b]. 1.) If G(x) = x. f(t)dt = F (b) F (a) where F is any antiderivative 1 Calulus pre-requisites you must know. Derivative = slope of tangent line = rate. Integral = area between curve and x-axis (where area can be negative). The Fundamental Theorem of Calculus: Suppose f

More information

MAT 285: Introduction to Differential Equations. James V. Lambers

MAT 285: Introduction to Differential Equations. James V. Lambers MAT 285: Introduction to Differential Equations James V. Lambers April 2, 27 2 Contents Introduction 5. Some Basic Mathematical Models............................. 5.2 Solutions of Some Differential Equations.........................

More information

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I October 10, 2013 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

and verify that it satisfies the differential equation:

and verify that it satisfies the differential equation: MOTIVATION: Chapter One: Basic and Review Why study differential equations? Suppose we know how a certain quantity changes with time (for example, the temperature of coffee in a cup, the number of people

More information

Tutorial-1, MA 108 (Linear Algebra)

Tutorial-1, MA 108 (Linear Algebra) Tutorial-1, MA 108 (Linear Algebra) 1. Verify that the function is a solution of the differential equation on some interval, for any choice of the arbitrary constants appearing in the function. (a) y =

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information