LOGISTIC GROWTH. Section 6.3A Calculus BC AP/Dual, Revised /30/ :40 AM 6.3A: Logistic Growth 1

Size: px
Start display at page:

Download "LOGISTIC GROWTH. Section 6.3A Calculus BC AP/Dual, Revised /30/ :40 AM 6.3A: Logistic Growth 1"

Transcription

1 LOGISTIC GROWTH Section 6.3A Calculus BC A/Dual, Revised /30/ :40 AM 6.3A: Logistic Growth 1

2 RECALL Solve the logistic differential equation d k 1 L. d 1 1 k 1 L 7/30/ :40 AM 6.3A: Logistic Growth 2 d L d L k k

3 RECALL Solve the logistic differential equation dy k 1. L ln + ln L kt + C ln L kt C L e 7/30/ :40 AM 6.3A: Logistic Growth 3 kt C L e C e kt L Be kt L 1 + Be kt

4 LOGISTIC CURVES A. Logistics Differential Equation: d k 1 d or k L where L k will be multiplied and the inside is divided B. The k can be different depending on the use of the equation C. Logical Growth Model: 1+Be kt 1. L Carrying Capacity (Upper Horizontal LIMIT) 2. K roportionality Constant 3. B Beginning Amount (arbitrary), use the equation: B L 0 population C. oint of Inflection: y L 2 L 0 where 0 is the initial 7/30/ :40 AM 6.3A: Logistic Growth 4

5 LOGISTIC GROWTH 7/30/ :40 AM 6.3A: Logistic Growth 5

6 EXAMLE 1 Given d identify the k and L of the equation. dy ky 1 y L d k 1 L d /30/ :40 AM 6.3A: Logistic Growth 6

7 Given d d EXAMLE 1 identify the k and L of the equation. d d 2 ( 2) /30/ :40 AM 6.3A: Logistic Growth 7 k 2 L 10, 000

8 YOUR TURN Given d identify the k and L of the equation. k L /30/ :40 AM 6.3A: Logistic Growth 8

9 EXAMLE 2 Using the equation, y sketch a graph e 3t y identify the point of inflection and L 4, B 2, and k 3 ( 3t e ) ( )( 3t ) 2 ( 3 t) y ' e 6e y 4 2e + e + e 3t ' t 1 2 3t 1 y' 3y t e + using Long Division 7/30/ :40 AM 6.3A: Logistic Growth 9

10 EXAMLE 2 Using the equation, y sketch a graph e 3t identify the point of inflection and 1 y' 3y t e + using Long Division y 4 4 ; y 30 ( ) ( 0) 1+ 2e 3 ' y y t ( 3 + e ) y y' 3y 1 4 7/30/ :40 AM 6.3A: Logistic Growth 10

11 Using the equation, y sketch a graph. y y L y 2 EXAMLE e 3t identify the point of inflection and 4 y /30/ :40 AM 6.3A: Logistic Growth 11 3t e 3t e ( 3 e t ) e t 2 OI 3t 2e 1 ln 2 :,2 3 e t e 2 3t e 2 3t ln e ln 2 3t 1 3t ln 2 ln 2 t 3

12 EXAMLE 2 Using the equation, y sketch a graph e 3t identify the point of inflection and OI ln 2 :,2 3 7/30/ :40 AM 6.3A: Logistic Growth 12

13 YOUR TURN Using the equation, y sketch a graph e 2t identify the point of inflection and OI ln 2 :,4 2 7/30/ :40 AM 6.3A: Logistic Growth 13

14 EXAMLE 3 A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than elk. The growth rate of the elk population, p, is: d k 1, 40 p where t is the number of years. dt A. Write a model for the elk population in terms of t. B. Estimate the elk population in 15 years. C. Find the limit of the model as t. 7/30/ :40 AM 6.3A: Logistic Growth 14

15 EXAMLE 3A A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than elk. The growth rate of the elk population, p, is: d dt k 1, 40 p where t is the number of years. 40 ( 0) 1 + Be k A. Write a model for the elk population in terms of t. L ( ( 0) ) d kp y Be k k 1,40 kt 1 + Be L, k??,b B 99?? B kt 1 + Be 40B e kt B 99 7/30/ :40 AM 6.3A: Logistic Growth 15

16 EXAMLE 3A A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than elk. The growth rate of the elk population, p, is: d k 1, 40 p where t is the number of years e kt dt A. Write a model for the elk population in terms of t. d kp k 1,40 L, k ,??, B B t y e kt e k 7/30/ :40 AM 6.3A: Logistic Growth 16 ( 5) k ( e k ) k 1+ 99e 104 5k 99e k e k 37.5 e k e 99 ( ) 5 k 37.5 e 99 5k e k ln e ln k ln

17 EXAMLE 3B A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than elk. The growth rate of the elk population, p, is: d k 1, 40 p where t is the number of years. dt B. Estimate the elk population in 15 years. d kp 1,40 L, k??, B?? ( ) e t e elk 7/30/ :40 AM 6.3A: Logistic Growth 17

18 EXAMLE 3C A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than elk. The growth rate of the elk population, p, is: d k 1, 40 p where t is the number of years. dt C. Find the limit of the model as t. d k kp 1,40 L, k??,b B 99?? lim ( t 1 99 ) t t e e 7/30/ :40 AM 6.3A: Logistic Growth 18

19 EXAMLE 4 Suppose the population of bears in a national park grows according to the logistic differential equation, d 5 0. dt 0022, where is the number of bears at time t in years. Find the limit of the model as t where d 51 d 2500 k 1 L 2500 d ( t) 1+ 24e d B lim t 1 24 x ( ) e 7/30/ :40 AM 6.3A: Logistic Growth 19

20 YOUR TURN Ten grizzly bears were introduced to a national park 10 years ago. There are 23 bears in the park at the present time. The park can support a maximum of 100 bears. Assuming a logistic growth model, when will the bear population reach 50? 75? 100? L 1 + Be Be kt ( ) B ( 0,10) ( 10,23) B B 90 B e kt 7/30/ :40 AM 6.3A: Logistic Growth 20

21 YOUR TURN Ten grizzly bears were introduced to a national park 10 years ago. There are 23 bears in the park at the present time. The park can support a maximum of 100 bears. Assuming a logistic growth model, when will the bear population reach 50? 75? 100? 10k 0,10 ( 10,23) e ( ) k ln k( ) e k e k 77 9e ( ) t 1 + 9e 23 7/30/ :40 AM 6.3A: Logistic Growth 21

22 YOUR TURN e ( ) t Bears Y 50 at 22 years Y 75 at 33 years Y 100 at 75 years Years 7/30/ :40 AM 6.3A: Logistic Growth 22

23 EXAMLE 5 In a particular town of 100,000 residents, 20,000 watched a viral video on the Internet. The rate of growth of the spread of information was jointly proportional to the amount of people who had not watched it. If 50% watched it after one hour, how long does 80% of the population watched the viral video? L 100,000 L kt 1 + Be 100,000 20,000 B 20,000 B 4 ( ) t 100, e kt ( 0, 20000) ( 1,50000) 7/30/ :40 AM 6.3A: Logistic Growth 23 B?

24 EXAMLE 5 In a particular town of 100,000 residents, 20,000 watched a viral video on the Internet. The rate of growth of the spread of information was jointly proportional to the amount of people who had not watched it. If 50% watched it after one hour, how long does 80% of the population watched the viral video? L 100, ,000 ( t) B? 1 + 4e kt ( 0, 20000) 100,000 50,000 ( 1,50000) ( 1) 1 + 4e k 50, e k 100,000 ( ) 1+ 4e k 2 7/30/ :40 AM 6.3A: Logistic Growth 24

25 EXAMLE 5 In a particular town of 100,000 residents, 20,000 watched a viral video on the Internet. The rate of growth of the spread of information was jointly proportional to the amount of people who had not watched it. If 50% watched it after one hour, how long does 80% of the population watched the viral video? L 100, e k 2 B? k 4e 1 ( 0, 20000) k 1 e ( 1,50000) k e 4 k e 4 7/30/ :40 AM 6.3A: Logistic Growth 25

26 EXAMLE 5 In a particular town of 100,000 residents, 20,000 watched a viral video on the Internet. The rate of growth of the spread of information was jointly proportional to the amount of people who had not watched it. If 50% watched it after one hour, how long does 80% of the population watched the viral video? L 100,000 k e 4 B? k ( 0, 20000) ( 1,50000) ln 100,000 ( t) ( ln 4) t e 100,000 80,000 ln e 7/30/ :40 AM 6.3A: Logistic Growth 26 t

27 EXAMLE 5 In a particular town of 100,000 residents, 20,000 watched a viral video on the Internet. The rate of growth of the spread of information was jointly proportional to the amount of people who had not watched it. If 50% watched it after one hour, how long does 80% of the population watched the viral video? L 100, ,000 B? 80,000 ln 4t 1 + 4e ( 0, 20000) ln 4 80, e t ( 1,50000) 100,000 ( ) 1+ 4 ln 4t 5 e 7/30/ :40 AM 6.3A: Logistic Growth 27 4

28 EXAMLE 5 In a particular town of 100,000 residents, 20,000 watched a viral video on the Internet. The rate of growth of the spread of information was jointly proportional to the amount of people who had not watched it. If 50% watched it after one hour, how long does 80% of the population watched the viral video? L 100,000 ln 4t 5 ln 4t e e B? 4e ln 4t 1 e 4 ln 4t ( ln 4)( t) 1 ln ln e 16 ( 0, 20000) 16 1 ln 4t 1 ln ( 1,50000) e ln 4t ln 4 t 2 hours 7/30/ :40 AM 6.3A: Logistic Growth 28

29 A MULTILE CHOICE RACTICE QUESTION 1 (NON-CALCULATOR) Which of the following differential equations for a population could model the logistic growth equation for the graph below? (A) d (B) d (C) d (D) d /30/ :40 AM 6.3A: Logistic Growth 29

30 A MULTILE CHOICE RACTICE QUESTION 1 (NON-CALCULATOR) Which of the following differential equations for a population could model the logistic growth equation for the graph below? Vocabulary Logistic Growth Equation A) Connections and rocess d d k 1 ; k d k 0.2 d ( ) d k 7/30/ :40 AM 6.3A: Logistic Growth 30 B) d k k 200 d

31 A MULTILE CHOICE RACTICE QUESTION 1 (NON-CALCULATOR) Which of the following differential equations for a population could model the logistic growth equation for the graph below? Connections and rocess Answer d d k 1 ; k ( ) d 2 k k 200 C) D) d d k k d 1 d A 7/30/ :40 AM 6.3A: Logistic Growth 31

32 ASSIGNMENT Worksheet 7/30/ :40 AM 6.3A: Logistic Growth 32

CALCULUS BC., where P is the number of bears at time t in years. dt (a) Given P (i) Find lim Pt.

CALCULUS BC., where P is the number of bears at time t in years. dt (a) Given P (i) Find lim Pt. CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH NAME Do not use your calculator. 1. Suppose the population of bears in a national park grows according to the logistic differential equation 5P 0.00P, where P

More information

February 03, 2017 WARMUP!!

February 03, 2017 WARMUP!! WARMUP!! Find the general solution to the logistic differential equation below. Your answer should be in the form P = f(t). Keep in mind that k and L are constants. (Hint: you might need to use partial

More information

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be Final Problem Set Name A. Show the steps for each of the following problems. 1. Show 1 1 1 y y L y y(1 ) L.. Use the information in #1 to show a solution to the differential equation dy y ky(1 ), where

More information

Name Date Period. Worksheet 5.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice

Name Date Period. Worksheet 5.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice Name Date Period Worksheet 5.5 Partial Fractions & Logistic Growth Show all work. No calculator unless stated. Multiple Choice 1. The spread of a disease through a community can be modeled with the logistic

More information

Euler s Method and Logistic Growth (BC Only)

Euler s Method and Logistic Growth (BC Only) Euler s Method Students should be able to: Approximate numerical solutions of differential equations using Euler s method without a calculator. Recognize the method as a recursion formula extension of

More information

where people/square mile. In

where people/square mile. In CALCULUS WORKSHEET ON APPLICATIONS OF THE DEFINITE INTEGRAL - ACCUMULATION Work the following on notebook paper. Use your calculator on problems 1-8 and give decimal answers correct to three decimal places.

More information

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

5.5 Partial Fractions & Logistic Growth

5.5 Partial Fractions & Logistic Growth 5.5 Partial Fractions & Logistic Growth Many things that grow exponentially cannot continue to do so indefinitely. This is a good thing. Imagine if human population growth went unchecked: we d have people

More information

dx. Ans: y = tan x + x2 + 5x + C

dx. Ans: y = tan x + x2 + 5x + C Chapter 7 Differential Equations and Mathematical Modeling If you know one value of a function, and the rate of change (derivative) of the function, then yu can figure out many things about the function.

More information

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models 197 Objective #1: Find Equations of Populations that Obey the Law of Uninhibited Growth. In the last section, we saw that when interest

More information

Calculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x

Calculus BC AP/Dual Fall Semester Review Sheet REVISED 1 Name Date. 3) Explain why f(x) = x 2 7x 8 is a guarantee zero in between [ 3, 0] g) lim x Calculus BC AP/Dual Fall Semester Review Sheet REVISED Name Date Eam Date and Time: Read and answer all questions accordingly. All work and problems must be done on your own paper and work must be shown.

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

9.3: Separable Equations

9.3: Separable Equations 9.3: Separable Equations An equation is separable if one can move terms so that each side of the equation only contains 1 variable. Consider the 1st order equation = F (x, y). dx When F (x, y) = f (x)g(y),

More information

Euler s Method (BC Only)

Euler s Method (BC Only) Euler s Method (BC Only) Euler s Method is used to generate numerical approximations for solutions to differential equations that are not separable by methods tested on the AP Exam. It is necessary to

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

Unit #16 : Differential Equations

Unit #16 : Differential Equations Unit #16 : Differential Equations Goals: To introduce the concept of a differential equation. Discuss the relationship between differential equations and slope fields. Discuss Euler s method for solving

More information

1. Write the definition of continuity; i.e. what does it mean to say f(x) is continuous at x = a?

1. Write the definition of continuity; i.e. what does it mean to say f(x) is continuous at x = a? Review Worksheet Math 251, Winter 15, Gedeon 1. Write the definition of continuity; i.e. what does it mean to say f(x) is continuous at x = a? 2. Is the following function continuous at x = 2? Use limits

More information

AP Calculus Summer is Long Enough Worksheet

AP Calculus Summer is Long Enough Worksheet AP Calculus Summer is Long Enough Worksheet There are certain skills that have been taught to you over the previous years that are essential towards your success in AP Calculus. If you do not have these

More information

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing?

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing? CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH Work he following on noebook paper. Use your calculaor on 4(b) and 4(c) only. 1. Suppose he populaion of bears in a naional park grows according o he logisic

More information

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy .. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy = f(x, y). In this section we aim to understand the solution

More information

Unit 5 Applications of Antidifferentiation

Unit 5 Applications of Antidifferentiation Warmup 1) If f ( ) cos(ln ) for > 0, then f () (a) sin(ln ) (b) sin(ln ) (c) sin(ln ) (d) sin(ln ) (e) ln sin 2) If f ( ) 2, then f () (a) 2 ( ln 2) (b) 2 (1 ln 2) (c) 2 ln 2 (d) 2 (1 ln 2) (e) 2 (1 ln

More information

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it.

Math 180, Final Exam, Spring 2008 Problem 1 Solution. 1. For each of the following limits, determine whether the limit exists and, if so, evaluate it. Math 80, Final Eam, Spring 008 Problem Solution. For each of the following limits, determine whether the limit eists and, if so, evaluate it. + (a) lim 0 (b) lim ( ) 3 (c) lim Solution: (a) Upon substituting

More information

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx Chapter 6 AP Eam Problems Antiderivatives. ( ) + d = ( + ) + 5 + + 5 ( + ) 6 ( + ). If the second derivative of f is given by f ( ) = cos, which of the following could be f( )? + cos + cos + + cos + sin

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

Final Exam Review Part I: Unit IV Material

Final Exam Review Part I: Unit IV Material Final Exam Review Part I: Unit IV Material Math114 Department of Mathematics, University of Kentucky April 26, 2017 Math114 Lecture 37 1/ 11 Outline 1 Conic Sections Math114 Lecture 37 2/ 11 Outline 1

More information

First Order Linear Ordinary Differential Equations

First Order Linear Ordinary Differential Equations First Order Linear Ordinary Differential Equations The most general first order linear ODE is an equation of the form p t dy dt q t y t f t. 1 Herepqarecalledcoefficients f is referred to as the forcing

More information

Test Your Strength AB Calculus: Section A 35 questions No calculator allowed. A. 0 B. 1 C. 2 D. nonexistent. . Which of the following

Test Your Strength AB Calculus: Section A 35 questions No calculator allowed. A. 0 B. 1 C. 2 D. nonexistent. . Which of the following Test Your Strength AB Calculus: Section A 35 questions No calculator allowed Directions: Use the answer sheet to input your answers. Caps or lower case are OK. If you need to guess, put an X in the guess

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Modeling with differential equations

Modeling with differential equations Mathematical Modeling Lia Vas Modeling with differential equations When trying to predict the future value, one follows the following basic idea. Future value = present value + change. From this idea,

More information

Section 6-1 Antiderivatives and Indefinite Integrals

Section 6-1 Antiderivatives and Indefinite Integrals Name Date Class Section 6-1 Antiderivatives and Indefinite Integrals Goal: To find antiderivatives and indefinite integrals of functions using the formulas and properties Theorem 1 Antiderivatives If the

More information

AP Calculus BC : The Fundamental Theorem of Calculus

AP Calculus BC : The Fundamental Theorem of Calculus AP Calculus BC 415 5.3: The Fundamental Theorem of Calculus Tuesday, November 5, 008 Homework Answers 6. (a) approimately 0.5 (b) approimately 1 (c) approimately 1.75 38. 4 40. 5 50. 17 Introduction In

More information

ANOTHER FIVE QUESTIONS:

ANOTHER FIVE QUESTIONS: No peaking!!!!! See if you can do the following: f 5 tan 6 sin 7 cos 8 sin 9 cos 5 e e ln ln @ @ Epress sin Power Series Epansion: d as a Power Series: Estimate sin Estimate MACLAURIN SERIES ANOTHER FIVE

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information

9.4 The Logistic Equation

9.4 The Logistic Equation 0 C H P TE R 9 INTRODUCTION TO DIFFERENTIL EQUTIONS 6. y./; y D y C t, y./ D, h D 00 With t 0 D, y 0 D, F.t;y/ D y C t,andh D 00 we compute n t n y n 0.00.0 y 0 C hf.t 0 C h=; y 0 C.h=/F.t 0 ;y 0 // D

More information

Culminating Review for Vectors

Culminating Review for Vectors Culminating Review for Vectors 0011 0010 1010 1101 0001 0100 1011 An Introduction to Vectors Applications of Vectors Equations of Lines and Planes 4 12 Relationships between Points, Lines and Planes An

More information

in terms of p, q and r.

in terms of p, q and r. Logarithms and Exponents 1. Let ln a = p, ln b = q. Write the following expressions in terms of p and q. ln a 3 b ln a b 2. Let log 10 P = x, log 10 Q = y and log 10 R = z. Express P log 10 QR 3 2 in terms

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

Equations, Inequalities, and Problem Solving

Equations, Inequalities, and Problem Solving CHAPTER Equations, Inequalities, and Problem Solving. Linear Equations in One Variable. An Introduction to Problem Solving. Formulas and Problem Solving.4 Linear Inequalities and Problem Solving Integrated

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

Calculus Summer Packet

Calculus Summer Packet Calculus Summer Packet There are certain skills that have been taught to you over the previous years that are essential towards your success in Calculus. This summer packet is intended for you to retain/review/relearn

More information

Some Basic Modeling with Differential Equations

Some Basic Modeling with Differential Equations Some Basic Modeling with Differential Equations S. F. Ellermeyer Kennesaw State University October 6, 2003 1 What is a Mathematical Model? A mathematical model is an equation or set of equations that attempt

More information

IB Mathematics HL 1/AP Calculus AB Summer Packet

IB Mathematics HL 1/AP Calculus AB Summer Packet IB Mathematics HL /AP Calculus AB Summer Packet There are certain skills that have been taught to you over the previous years that are essential towards your success in IB HL /AP Calculus. If you do not

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

1.1. Bacteria Reproduce like Rabbits. (a) A differential equation is an equation. a function, and both the function and its

1.1. Bacteria Reproduce like Rabbits. (a) A differential equation is an equation. a function, and both the function and its G NAGY ODE January 7, 2018 1 11 Bacteria Reproduce like Rabbits Section Objective(s): Overview of Differential Equations The Discrete Equation The Continuum Equation Summary and Consistency 111 Overview

More information

dy x a. Sketch the slope field for the points: (1,±1), (2,±1), ( 1, ±1), and (0,±1).

dy x a. Sketch the slope field for the points: (1,±1), (2,±1), ( 1, ±1), and (0,±1). Chapter 6. d x Given the differential equation: dx a. Sketch the slope field for the points: (,±), (,±), (, ±), and (0,±). b. Find the general solution for the given differential equation. c. Find the

More information

Integration, Separation of Variables

Integration, Separation of Variables Week #1 : Integration, Separation of Variables Goals: Introduce differential equations. Review integration techniques. Solve first-order DEs using separation of variables. 1 Sources of Differential Equations

More information

sin x (B) sin x 1 (C) sin x + 1

sin x (B) sin x 1 (C) sin x + 1 ANSWER KEY Packet # AP Calculus AB Eam Multiple Choice Questions Answers are on the last page. NO CALCULATOR MAY BE USED IN THIS PART OF THE EXAMINATION. On the AP Eam, you will have minutes to answer

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x Name: Instructions: The exam will have eight problems. Make sure that your reasoning and your final answers are clear. Include labels and units when appropriate. No notes, books, or calculators are permitted

More information

AP Calculus AB. Free-Response Questions

AP Calculus AB. Free-Response Questions 2018 AP Calculus AB Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity. AP CALCULUS BC NO CALCULATORS: MIDTERM REVIEW 1. Find lim 7x 6x x 7 x 9. 1 B) 0 C) D). Find the points of discontinuity of the function y of discontinuity. x 9x 0. For each discontinuity identify the type

More information

AP Calculus Testbank (Chapter 6) (Mr. Surowski)

AP Calculus Testbank (Chapter 6) (Mr. Surowski) AP Calculus Testbank (Chapter 6) (Mr. Surowski) Part I. Multiple-Choice Questions 1. Suppose that f is an odd differentiable function. Then (A) f(1); (B) f (1) (C) f(1) f( 1) (D) 0 (E). 1 1 xf (x) =. The

More information

Midterm 1 - Data. Overall (all sections): Average Median Std dev Section 80: Average Median Std dev 14.

Midterm 1 - Data. Overall (all sections): Average Median Std dev Section 80: Average Median Std dev 14. Midterm 1 - Data Overall (all sections): Average 75.12 Median 78.50 Std dev 15.40 Section 80: Average 74.77 Median 78.00 Std dev 14.70 Midterm 2 - Data Overall (all sections): Average 74.55 Median 79

More information

AP Exam Practice Questions for Chapter 6

AP Exam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6. To find which graph is a slope field for, 5 evaluate the derivative at selected points. At ( 0, ),.. 3., 0,. 5 At ( ) At

More information

Math 31S. Rumbos Fall Solutions to Exam 1

Math 31S. Rumbos Fall Solutions to Exam 1 Math 31S. Rumbos Fall 2011 1 Solutions to Exam 1 1. When people smoke, carbon monoxide is released into the air. Suppose that in a room of volume 60 m 3, air containing 5% carbon monoxide is introduced

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve

QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve C C Moxley Samford University Brock School of Business Substitution Rule The following rules arise from the chain rule

More information

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c MATH 0100 section 4.4 Concavity and Curve Sketching Page 1 Definition: The graph of a differentiable function y = (a) concave up on an open interval I if df f( x) (b) concave down on an open interval I

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3 NAME DATE PERIOD AP CALCULUS AB UNIT BASIC DIFFERENTIATION RULES DATE TOPIC ASSIGNMENT 0 0 9/8 9/9 9/ 9/5 9/6 9/7 9/8 0/ 0/ 0/ 0/ 0/5 TOTAL AP Calculus AB Worksheet 9 Average Rates of Change Find the

More information

Math RE - Calculus II Differential Equations Page 1 of 9

Math RE - Calculus II Differential Equations Page 1 of 9 Math 201-203-RE - Calculus II Differential Equations Page 1 of 9 Introduction to Differential equation (O.D.E) A differential equation is an equation containing derivatives such as: (1) xy = y 5 (2) d2

More information

MAT137 Calculus! Lecture 20

MAT137 Calculus! Lecture 20 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 20 Today: 4.6 Concavity 4.7 Asypmtotes Next: 4.8 Curve Sketching Indeterminate Forms for Limits Which of the following are indeterminate

More information

AP Calculus AB Worksheet - Differentiability

AP Calculus AB Worksheet - Differentiability Name AP Calculus AB Worksheet - Differentiability MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the

More information

Week #7 Maxima and Minima, Concavity, Applications Section 4.2

Week #7 Maxima and Minima, Concavity, Applications Section 4.2 Week #7 Maima and Minima, Concavit, Applications Section 4.2 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

Math 1120, Section 6 Calculus Test 3

Math 1120, Section 6 Calculus Test 3 November 15, 2012 Name The total number of points available is 158 Throughout this test, show your work Using a calculator to circumvent ideas discussed in class will generally result in no credit In general

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Math Final Exam Review. 1. The following equation gives the rate at which the angle between two objects is changing during a game:

Math Final Exam Review. 1. The following equation gives the rate at which the angle between two objects is changing during a game: Math 131 Spring 2008 c Sherry Scarborough and Heather Ramsey Page 1 Math 131 - Final Exam Review 1. The following equation gives the rate at which the angle between two objects is changing during a game:

More information

Math 1131 Final Exam Review Spring 2013

Math 1131 Final Exam Review Spring 2013 University of Connecticut Department of Mathematics Math 1131 Final Exam Review Spring 2013 Name: Instructor Name: TA Name: 4 th February 2010 Section: Discussion Section: Read This First! Please read

More information

Key- Math 231 Final Exam Review

Key- Math 231 Final Exam Review Key- Math Final Eam Review Find the equation of the line tangent to the curve y y at the point (, ) y-=(-/)(-) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y y (ysiny+y)/(-siny-y^-^)

More information

BC Exam 2 - Part I 28 questions No Calculator Allowed. C. 1 x n D. e x n E. 0

BC Exam 2 - Part I 28 questions No Calculator Allowed. C. 1 x n D. e x n E. 0 1. If f x ( ) = ln e A. n x x n BC Exam - Part I 8 questions No Calculator Allowed, and n is a constant, then f ( x) = B. x n e C. 1 x n D. e x n E.. Let f be the function defined below. Which of the following

More information

AP Calculus BC Chapter 4 AP Exam Problems. Answers

AP Calculus BC Chapter 4 AP Exam Problems. Answers AP Calculus BC Chapter 4 AP Exam Problems Answers. A 988 AB # 48%. D 998 AB #4 5%. E 998 BC # % 5. C 99 AB # % 6. B 998 AB #80 48% 7. C 99 AB #7 65% 8. C 998 AB # 69% 9. B 99 BC # 75% 0. C 998 BC # 80%.

More information

Properties of Derivatives

Properties of Derivatives 6 CHAPTER Properties of Derivatives To investigate derivatives using first principles, we will look at the slope of f ( ) = at the point P (,9 ). Let Q1, Q, Q, Q4, be a sequence of points on the curve

More information

AP Calculus Prep Session Handout. Integral Defined Functions

AP Calculus Prep Session Handout. Integral Defined Functions AP Calculus Prep Session Handout A continuous, differentiable function can be epressed as a definite integral if it is difficult or impossible to determine the antiderivative of a function using known

More information

Separable Differential Equations

Separable Differential Equations Separable Differential Equations MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Fall 207 Background We have previously solved differential equations of the forms: y (t) = k y(t) (exponential

More information

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity. AP CALCULUS BC NO CALCULATORS: MIDTERM REVIEW. Find lim 7 7 9. B) C) D). Find the points of discontinuit of the function of discontinuit. 9. For each discontinuit identif the tpe A. Removable discontinuit

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

(a) Find the area of RR. (b) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(a) Find the area of RR. (b) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus AB Final Review Name: Revised 07 EXAM Date: Tuesday, May 9 Reminders:. Put new batteries in your calculator. Make sure your calculator is in RADIAN mode.. Get a good night s sleep. Eat breakfast

More information

MATH 3310 Class Notes 2

MATH 3310 Class Notes 2 MATH 330 Class Notes 2 S. F. Ellermeyer August 2, 200 The differential equation = ky () (where k is a given constant) is extremely important in applications and in the general theory of differential equations.

More information

Review of Lecture 5. F = GMm r 2. = m dv dt Expressed in terms of altitude x = r R, we have. mv dv dx = GMm. (R + x) 2. Max altitude. 2GM v 2 0 R.

Review of Lecture 5. F = GMm r 2. = m dv dt Expressed in terms of altitude x = r R, we have. mv dv dx = GMm. (R + x) 2. Max altitude. 2GM v 2 0 R. Review of Lecture 5 Models could involve just one or two equations (e.g. orbit calculation), or hundreds of equations (as in climate modeling). To model a vertical cannon shot: F = GMm r 2 = m dv dt Expressed

More information

Modeling with Differential Equations

Modeling with Differential Equations Modeling with Differential Equations 1. Exponential Growth and Decay models. Definition. A quantity y(t) is said to have an exponential growth model if it increases at a rate proportional to the amount

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt).

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt). Calculus II - Problem Solving Drill 4: Calculus for Parametric Equations Question No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Find dy/dx where

More information

= first derivative evaluated at that point: ( )

= first derivative evaluated at that point: ( ) Calculus 130, section 5.1-5. Functions: Increasing, Decreasing, Extrema notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! First, a quick scan of what we know

More information

" $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1

 $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1 CALCULUS 2 WORKSHEET #2. The asymptotes of the graph of the parametric equations x = t t, y = t + are A) x = 0, y = 0 B) x = 0 only C) x =, y = 0 D) x = only E) x= 0, y = 2. What are the coordinates of

More information

MATHEMATICS AP Calculus (BC) Standard: Number, Number Sense and Operations

MATHEMATICS AP Calculus (BC) Standard: Number, Number Sense and Operations Standard: Number, Number Sense and Operations Computation and A. Develop an understanding of limits and continuity. 1. Recognize the types of nonexistence of limits and why they Estimation are nonexistent.

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Math 132 Information for Test 2

Math 132 Information for Test 2 Math 13 Information for Test Test will cover material from Sections 5.6, 5.7, 5.8, 6.1, 6., 6.3, 7.1, 7., and 7.3. The use of graphing calculators will not be allowed on the test. Some practice questions

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

Rational Expressions VOCABULARY

Rational Expressions VOCABULARY 11-4 Rational Epressions TEKS FOCUS TEKS (7)(F) Determine the sum, difference, product, and quotient of rational epressions with integral eponents of degree one and of degree two. TEKS (1)(G) Display,

More information

MA 123 Calculus I Midterm II Practice Exam Answer Key

MA 123 Calculus I Midterm II Practice Exam Answer Key MA 1 Midterm II Practice Eam Note: Be aware that there may be more than one method to solving any one question. Keep in mind that the beauty in math is that you can often obtain the same answer from more

More information

CALCULUS AB SECTION II, Part A

CALCULUS AB SECTION II, Part A CALCULUS AB SECTION II, Part A Time 45 minutes Number of problems 3 A graphing calculator is required for some problems or parts of problems. pt 1. The rate at which raw sewage enters a treatment tank

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models, logistic growth rate models. Population can mean anything from bacteria

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information