Review of Lecture 5. F = GMm r 2. = m dv dt Expressed in terms of altitude x = r R, we have. mv dv dx = GMm. (R + x) 2. Max altitude. 2GM v 2 0 R.

Size: px
Start display at page:

Download "Review of Lecture 5. F = GMm r 2. = m dv dt Expressed in terms of altitude x = r R, we have. mv dv dx = GMm. (R + x) 2. Max altitude. 2GM v 2 0 R."

Transcription

1 Review of Lecture 5 Models could involve just one or two equations (e.g. orbit calculation), or hundreds of equations (as in climate modeling). To model a vertical cannon shot: F = GMm r 2 = m dv dt Expressed in terms of altitude x = r R, we have Max altitude Escape velocit mv dv dx = GMm (R + x) 2 ξ = v 2 0 R2 2GM v 2 0 R. v escape = 2GM R

2 Autonomous equations The general first-order equation is d dt = F (, t) If F (t, ) actuall depends onl on we have d dt = f (). Such an equation is called autonomous

3 Autonomous equations The general first-order equation is d dt = F (, t) If F (t, ) actuall depends onl on we have d dt = f (). Such an equation is called autonomous For example the simplest equations for growth or deca: = k Growth with k > 0, deca with k < 0, since = Ae kt

4 Modeling population growth With a constant birth rate and constant death rate, we get for the population, = r. Here r is the difference of the birth rate and the death rate. With r > 0 the model predicts exponential growth. In a finite environment, that can t be right for long.

5 The logistic equation We need a revised model that allows to be bounded when grows large. One such model is the logistic equation: ( = r 1 ) K For small it s almost = r. For large will be negative, so will decrease.

6 The logistic equation We need a revised model that allows to be bounded when grows large. One such model is the logistic equation: ( = r 1 ) K For small it s almost = r. For large will be negative, so will decrease. Is there an equilibrium solution?

7 Is there an equilibrium solution? ( = r 1 ) K To find an equilibrium solution, set = 0: ( 0 = r 1 ) K There are two equilibrium solutions: = 0 and = K.

8 Is there an equilibrium solution? ( = r 1 ) K To find an equilibrium solution, set = 0: ( 0 = r 1 ) K There are two equilibrium solutions: = 0 and = K. K is called the carring capacit of the environment.

9 Solutions can t cross or touch an equilibrium solution, because through each point (t, ) there is a unique solution. So if another solution touched or crossed an equilibrium solution, it would have to coincide with that solution. As engineers ou ll probabl take that on authorit or faith. The curious or skeptical can read section 2.8 of the text

10 Graphical investigation In class we will graph the solutions and see that all solutions approach the equilibrium solution = K for large t. Solutions with 0 < K increase Solutions with > 0 decrease If ou are viewing these slides at another time, refer to pp , and use MathXpert Grapher or other software to graph the solutions.

11 Concavit Recall from calculus that the second derivative determines the concavit (upwards or downwards), and the inflection points (where = 0). We can do some of this analsis for an autonomous equation = f (). = d dt

12 Concavit Recall from calculus that the second derivative determines the concavit (upwards or downwards), and the inflection points (where = 0). We can do some of this analsis for an autonomous equation = f (). = d dt = d dt f ()

13 Concavit Recall from calculus that the second derivative determines the concavit (upwards or downwards), and the inflection points (where = 0). We can do some of this analsis for an autonomous equation = f (). = d dt = d dt f () = f () d dt

14 After-the-lecture viewers, see pages to replace graphs done in class. Concavit Recall from calculus that the second derivative determines the concavit (upwards or downwards), and the inflection points (where = 0). We can do some of this analsis for an autonomous equation = f (). = d dt = d dt f () = f () d dt = f ()f () Thus the signs of f and f tell us about concavit

15 The phase line If we think of t as time and onl use one space dimension, then our graph becomes a moving point on a line. It is customar to draw that line verticall. The direction field from the 2-d graph now becomes just an arrow up or down at ever point on the line. This line, with arrows, is the phase line. In our case, the arrows point up at points below = K, and down at points above = K. at = K the arrow has zero length. That is a critical point. There is another critical point at = 0, so technicall the arrow doesn t point up there, but it does point up at points just below or above there At the critical point = K the arrows do change direction. After-lecture viewers, see Fig

16 Determining qualitative behavior We can determine the qualitative behavior of the solutions from the graph of f alone. We did not need a computer or an explicit solution, although in class a computer was used first. We could have started with f, found the critical points and the phase line, sketched the direction field and solutions using the concavit information. This procedure was illustrated at the whiteboard.

17 Solving the logistic equation Since solutions can t cross equilibrium solutions, if we have a non-equilibrium solution then is never equal to 0 or K, for an value of t. Therefore we won t get a zero denominator when we separate the variables: rdt = d (1 /K)

18 Solving the logistic equation rdt = rt = d (1 /K) d (1 /K)

19 Solving the logistic equation rdt = rt = rt = d (1 /K) d (1 /K) 1 + 1/K 1 /K d

20 Solving the logistic equation d rdt = (1 /K) d rt = (1 /K) 1 rt = + 1/K 1 /K d rt + c = ln ln 1 K Can we drop the absolute value signs?

21 Solving the logistic equation d rdt = (1 /K) d rt = (1 /K) 1 rt = + 1/K 1 /K d rt + c = ln ln 1 K Can we drop the absolute value signs? Yes, if 0 < 0 < K, since then stas in this interval. ( rt + c = ln ln 1 ) K

22 So we need to solve this equation for : rt + c = ln ln = ln 1 /K ( 1 K )

23 So we need to solve this equation for : rt + c = ( ln ln 1 ) K = ln 1 /K e rt+c = 1 /K since e ln u = u

24 So we need to solve this equation for : rt + c = ( ln ln 1 ) K = ln 1 /K e rt+c = 1 /K since e ln u = u 1 /K = ec e rt = Ce r t with C = e c

25 So we need to solve this equation for : rt + c = ( ln ln 1 ) K = ln 1 /K e rt+c = 1 /K since e ln u = u 1 /K = ec e rt = Ce r t with C = e c It works if > K too, but then we have a negative sign on the left.

26 Initial condition determines C When t = 0, we have = 0. So we put those values into and we get 1 /K = ec e rt = Ce r t with C = e c /K = C B putting the absolute value signs in, the equation works for all 0 > 0.

27 Solving for So put that value for C in, and we get 1 /K = Ce rt = 0 e rt 1 0 /K

28 Solving for So put that value for C in, and we get 1 /K = Ce rt = 0 e rt 1 0 /K But since 1 /K has the same sign as 1 0 /K we can take the absolute value signs off again. 1 /K = 0 e rt 1 0 /K

29 Solving for So put that value for C in, and we get 1 /K = Ce rt = 0 e rt 1 0 /K But since 1 /K has the same sign as 1 0 /K we can take the absolute value signs off again. 1 /K = 0 e rt 1 0 /K (1 0 /K) = 0 e rt (1 /K)

30 Solving for So put that value for C in, and we get 1 /K = Ce rt = 0 e rt 1 0 /K But since 1 /K has the same sign as 1 0 /K we can take the absolute value signs off again. 1 /K = 0 e rt 1 0 /K (1 0 /K) = 0 e rt (1 /K) ( 1 0 K + 0e rt ) = 0 e rt K

31 ( 1 0 K + 0e rt ) K = 0 e rt = 0 e rt 1 0 K + 0e rt K

32 ( 1 0 K + 0e rt ) K = 0 e rt = = = 0 e rt 1 0 K + 0e rt K 0 e rt 1 0 K + 0e rt K K 0 e rt K e rt

33 = K 0 e rt K e rt Divide numerator and denominator both b e rt : = K (K 0 )e rt

34 Qualitative conclusions check out? Now we can confirm our qualitative conclusions: The limit as t goes to is K. Solutions starting in some interval around K converge to K. Solutions starting near 0 diverge from 0 (well, at least positive ones)

35 Qualitative conclusions check out? Now we can confirm our qualitative conclusions: The limit as t goes to is K. Solutions starting in some interval around K converge to K. Solutions starting near 0 diverge from 0 (well, at least positive ones) We sa = K is a stable equilibrium and = 0 is an unstable equilibrium.

36 Growth with a threshold ( = r 1 ) = f () T

37 Growth with a threshold ( = r 1 ) = f () T Practice what ou learned in the first part of the lecture: Draw the graph of f. Draw the phase line. Sketch the direction field and some solutions.

Ch 2.5: Autonomous Equations and Population Dynamics

Ch 2.5: Autonomous Equations and Population Dynamics Ch 2.5: Autonomous Equations and Population Dnamics In this section we examine equations of the form d/dt = f (), called autonomous equations, where the independent variable t does not appear explicitl.

More information

Math 266: Autonomous equation and population dynamics

Math 266: Autonomous equation and population dynamics Math 266: Autonomous equation and population namics Long Jin Purdue, Spring 2018 Autonomous equation An autonomous equation is a differential equation which only involves the unknown function y and its

More information

Today. Qualitative analysis examples.

Today. Qualitative analysis examples. Toda Qualitative analsis examples. = -(-1)(+1) What are the stead states of this equation? Draw the slope fields for this equation. = -(-1)(+1) What are the stead states of this equation? Draw the slope

More information

Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski

Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski Calculus 140, section 4.7 Concavity and Inflection Points notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! Theory Eample: Consider the graph of y = pictured

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

Homework #4 Solutions

Homework #4 Solutions MAT 303 Spring 03 Problems Section.: 0,, Section.:, 6,, Section.3:,, 0,, 30 Homework # Solutions..0. Suppose that the fish population P(t) in a lake is attacked by a disease at time t = 0, with the result

More information

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy .. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy = f(x, y). In this section we aim to understand the solution

More information

Autonomous Equations and Stability Sections

Autonomous Equations and Stability Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Autonomous Equations and Stability Sections 2.4-2.5 Dr. John Ehrke Department of Mathematics Fall 2012 Autonomous Differential

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Vector Fields. Field (II) Field (V)

Vector Fields. Field (II) Field (V) Math 1a Vector Fields 1. Match the following vector fields to the pictures, below. Eplain our reasoning. (Notice that in some of the pictures all of the vectors have been uniforml scaled so that the picture

More information

Math 216 First Midterm 8 October, 2012

Math 216 First Midterm 8 October, 2012 Math 216 First Midterm 8 October, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: This is an isocline associated with a slope

More information

Solutions: Section 2.5

Solutions: Section 2.5 Solutions: Section 2.5. Problem : Given dy = ay + by2 = y(a + by) with a, b > 0. For the more general case, we will let y 0 be any real number. Always look for the equilibria first! In this case, y(a +

More information

4.3 Exercises. local maximum or minimum. The second derivative is. e 1 x 2x 1. f x x 2 e 1 x 1 x 2 e 1 x 2x x 4

4.3 Exercises. local maximum or minimum. The second derivative is. e 1 x 2x 1. f x x 2 e 1 x 1 x 2 e 1 x 2x x 4 SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH 297 local maimum or minimum. The second derivative is f 2 e 2 e 2 4 e 2 4 Since e and 4, we have f when and when 2 f. So the curve is concave downward

More information

Solving Differential Equations: First Steps

Solving Differential Equations: First Steps 30 ORDINARY DIFFERENTIAL EQUATIONS 3 Solving Differential Equations Solving Differential Equations: First Steps Now we start answering the question which is the theme of this book given a differential

More information

Math Assignment 2

Math Assignment 2 Math 2280 - Assignment 2 Dylan Zwick Spring 2014 Section 1.5-1, 15, 21, 29, 38, 42 Section 1.6-1, 3, 13, 16, 22, 26, 31, 36, 56 Section 2.1-1, 8, 11, 16, 29 Section 2.2-1, 10, 21, 23, 24 1 Section 1.5

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

Modeling with differential equations

Modeling with differential equations Mathematical Modeling Lia Vas Modeling with differential equations When trying to predict the future value, one follows the following basic idea. Future value = present value + change. From this idea,

More information

20D - Homework Assignment 1

20D - Homework Assignment 1 0D - Homework Assignment Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment October 7, 0. #,,,4,6 Solve the given differential equation. () y = x /y () y = x /y( + x ) () y + y sin x = 0 (4) y =

More information

Week #7 Maxima and Minima, Concavity, Applications Section 4.2

Week #7 Maxima and Minima, Concavity, Applications Section 4.2 Week #7 Maima and Minima, Concavit, Applications Section 4.2 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: (a) Equilibrium solutions are only defined

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv Math 1270 Honors ODE I Fall, 2008 Class notes # 1 We have learned how to study nonlinear systems x 0 = F (x; y) y 0 = G (x; y) (1) by linearizing around equilibrium points. If (x 0 ; y 0 ) is an equilibrium

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing Find the open interval(s) where the function is changing as requested. 1) Decreasing; f()

More information

MATH 23 EXAM 1 REVIEW PROBLEMS

MATH 23 EXAM 1 REVIEW PROBLEMS MATH 3 EXAM 1 REVIEW PROBLEMS Problem 1. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume of the raindrop as a function of time.

More information

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II Section 13.3 Concavity and Curve Sketching College of Science MATHS 104: Mathematics for Business II (University of Bahrain) Concavity 1 / 18 Concavity Increasing Function has three cases (University of

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 0 8.0 Fall 2006 Lecture

More information

Math 1314 Lesson 12 Curve Sketching

Math 1314 Lesson 12 Curve Sketching Math 1314 Lesson 12 Curve Sketching One of our objectives in this part of the course is to be able to graph functions. In this lesson, we ll add to some tools we already have to be able to sketch an accurate

More information

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ). Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution

More information

2.3 Maxima, minima and second derivatives

2.3 Maxima, minima and second derivatives CHAPTER 2. DIFFERENTIATION 39 2.3 Maxima, minima and second derivatives Consider the following question: given some function f, where does it achieve its maximum or minimum values? First let us examine

More information

Sample Solutions of Assignment 3 for MAT3270B: 2.8,2.3,2.5,2.7

Sample Solutions of Assignment 3 for MAT3270B: 2.8,2.3,2.5,2.7 Sample Solutions of Assignment 3 for MAT327B: 2.8,2.3,2.5,2.7 1. Transform the given initial problem into an equivalent problem with the initial point at the origin (a). dt = t2 + y 2, y(1) = 2, (b). dt

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

8 Autonomous first order ODE

8 Autonomous first order ODE 8 Autonomous first order ODE There are different ways to approach differential equations. Prior to this lecture we mostly dealt with analytical methods, i.e., with methods that require a formula as a final

More information

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth

More information

Math 3B: Lecture 14. Noah White. February 13, 2016

Math 3B: Lecture 14. Noah White. February 13, 2016 Math 3B: Lecture 14 Noah White February 13, 2016 Last time Accumulated change problems Last time Accumulated change problems Adding up a value if it is changing over time Last time Accumulated change problems

More information

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension Phsics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension What concepts did ou find most difficult, or what would ou like to be sure we discuss in lecture? Acceleration vectors. Will ou go over

More information

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW

MATH LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW MATH 234 - LECTURE NOTES FIRST ORDER SEPARABLE DIFFERENTIAL EQUATIONS OVERVIEW Now will will begin with the process of learning how to solve differential equations. We will learn different techniques for

More information

Lecture 20: Further graphing

Lecture 20: Further graphing Lecture 20: Further graphing Nathan Pflueger 25 October 2013 1 Introduction This lecture does not introduce any new material. We revisit the techniques from lecture 12, which give ways to determine the

More information

Laplace Transform Problems

Laplace Transform Problems AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value

More information

Sect2.1. Any linear equation:

Sect2.1. Any linear equation: Sect2.1. Any linear equation: Divide a 0 (t) on both sides a 0 (t) dt +a 1(t)y = g(t) dt + a 1(t) a 0 (t) y = g(t) a 0 (t) Choose p(t) = a 1(t) a 0 (t) Rewrite it in standard form and ḡ(t) = g(t) a 0 (t)

More information

Math 2930 Worksheet Equilibria and Stability

Math 2930 Worksheet Equilibria and Stability Math 2930 Worksheet Equilibria and Stabilit Week 3 September 7, 2017 Question 1. (a) Let C be the temperature (in Fahrenheit) of a cup of coffee that is cooling off to room temperature. Which of the following

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

88 Chapter 2. First Order Differential Equations. Problems 1 through 6 involve equations of the form dy/dt = f (y). In each problem sketch

88 Chapter 2. First Order Differential Equations. Problems 1 through 6 involve equations of the form dy/dt = f (y). In each problem sketch 88 Chapter 2. First Order Differential Equations place to permit successful breeding, and the population rapidl declined to extinction. The last survivor died in 1914. The precipitous decline in the passenger

More information

8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds

8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds c Dr Igor Zelenko, Spring 2017 1 8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds to section 2.5) 1.

More information

Math 2250 Lab 3 Due Date : 2/2/2017

Math 2250 Lab 3 Due Date : 2/2/2017 Math 2250 Lab Due Date : 2/2/2017 Name: UID: Unless stated otherwise, show all your work and explain your reasoning. You are allowed to use any results from lecture or the text as long as they are referenced

More information

4.3 1st and 2nd derivative tests

4.3 1st and 2nd derivative tests CHAPTER 4. APPLICATIONS OF DERIVATIVES 08 4.3 st and nd derivative tests Definition. If f 0 () > 0 we say that f() is increasing. If f 0 () < 0 we say that f() is decreasing. f 0 () > 0 f 0 () < 0 Theorem

More information

Center of Mass, Improper Integrals

Center of Mass, Improper Integrals Unit #14 : Center of Mass, Improper Integrals Goals: Apply the slicing integral approach to computing more complex totals calculations, including center of mass. Learn how to evaluate integrals involving

More information

3 First order nonlinear equations

3 First order nonlinear equations Separable equations 3 First order nonlinear equations d f dx = where f(x,) is not (in general) a linear function of. ( x, ) The equation is autonomous if there is no explicit dependence on the independent

More information

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator,

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator, GRADE PRE-CALCULUS UNIT C: QUADRATIC FUNCTIONS CLASS NOTES FRAME. After linear functions, = m + b, and their graph the Quadratic Functions are the net most important equation or function. The Quadratic

More information

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point,

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point, 1.2. Direction Fields: Graphical Representation of the ODE and its Solution Section Objective(s): Constructing Direction Fields. Interpreting Direction Fields. Definition 1.2.1. A first order ODE of the

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

Scalar functions of several variables (Sect. 14.1)

Scalar functions of several variables (Sect. 14.1) Scalar functions of several variables (Sect. 14.1) Functions of several variables. On open, closed sets. Functions of two variables: Graph of the function. Level curves, contour curves. Functions of three

More information

ES.182A Topic 36 Notes Jeremy Orloff

ES.182A Topic 36 Notes Jeremy Orloff ES.82A Topic 36 Notes Jerem Orloff 36 Vector fields and line integrals in the plane 36. Vector analsis We now will begin our stud of the part of 8.2 called vector analsis. This is the stud of vector fields

More information

Functions. Introduction CHAPTER OUTLINE

Functions. Introduction CHAPTER OUTLINE Functions,00 P,000 00 0 970 97 980 98 990 99 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of

More information

Today: 5.4 General log and exp functions (continued) Warm up:

Today: 5.4 General log and exp functions (continued) Warm up: Today: 5.4 General log and exp functions (continued) Warm up: log a (x) =ln(x)/ ln(a) d dx log a(x) = 1 ln(a)x 1. Evaluate the following functions. log 5 (25) log 7 p 7 log4 8 log 4 2 2. Di erentiate the

More information

AP Calculus. Slope Fields and Differential Equations. Student Handout

AP Calculus. Slope Fields and Differential Equations. Student Handout AP Calculus Slope Fields and Differential Equations Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Stud Session https://www.survemonke.com/r/s_sss

More information

First-Order Differential Equations

First-Order Differential Equations CHAPTER 1 First-Order Differential Equations 1. Diff Eqns and Math Models Know what it means for a function to be a solution to a differential equation. In order to figure out if y = y(x) is a solution

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1. Lecture 8 Qualitative Behaviour of Solutions to ODEs Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.1 The last few

More information

Math Lecture 9

Math Lecture 9 Math 2280 - Lecture 9 Dylan Zwick Fall 2013 In the last two lectures we ve talked about differential equations for modeling populations Today we ll return to the theme we touched upon in our second lecture,

More information

4.3 Worksheet - Derivatives of Inverse Functions

4.3 Worksheet - Derivatives of Inverse Functions AP Calculus 3.8 Worksheet 4.3 Worksheet - Derivatives of Inverse Functions All work must be shown in this course for full credit. Unsupported answers ma receive NO credit.. What are the following derivatives

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion LAB 5 Projectile Motion CONTENT: 1. Introduction. Projectile motion A. Setup B. Various characteristics 3. Pre-lab: A. Activities B. Preliminar info C. Quiz 1. Introduction After introducing one-dimensional

More information

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0 PRINCIPLES OF MATHEMATICS 11 Chapter Quadratic Functions Lesson 1 Graphs of Quadratic Functions (.1) Date A. QUADRATIC FUNCTIONS A quadratic function is an equation that can be written in the following

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

Math 1120, Section 6 Calculus Test 3

Math 1120, Section 6 Calculus Test 3 November 15, 2012 Name The total number of points available is 158 Throughout this test, show your work Using a calculator to circumvent ideas discussed in class will generally result in no credit In general

More information

The Logistic Equation

The Logistic Equation OpenStax-CNX module: m53710 1 The Logistic Equation OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Describe

More information

dy dt = 1 y t 1 +t 2 y dy = 1 +t 2 dt 1 2 y2 = 1 2 ln(1 +t2 ) +C, y = ln(1 +t 2 ) + 9.

dy dt = 1 y t 1 +t 2 y dy = 1 +t 2 dt 1 2 y2 = 1 2 ln(1 +t2 ) +C, y = ln(1 +t 2 ) + 9. Math 307A, Winter 2014 Midterm 1 Solutions Page 1 of 8 1. (10 points Solve the following initial value problem explicitly. Your answer should be a function in the form y = g(t, where there is no undetermined

More information

115.3 Assignment #9 Solutions

115.3 Assignment #9 Solutions 115. Assignment #9 Solutions-1 115. Assignment #9 Solutions 8.1-12 Solve the differential equation d dx = 2(1 ), where 0 = 2 for x 0 = 0. d 1 = 2dx d 1 = 2dx ln 1 =2x + C Find C b inserting the Initial

More information

Homework Solutions:

Homework Solutions: Homework Solutions: 1.1-1.3 Section 1.1: 1. Problems 1, 3, 5 In these problems, we want to compare and contrast the direction fields for the given (autonomous) differential equations of the form y = ay

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2 MAT 7: Calculus C, Spring 07 Solutions to Problem Set Section 7., Problems -6 (webassign, pts) Match the differential equation with its direction field (labeled I-IV on p06 in the book). Give reasons for

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions. A bacteria culture initially contains 00 cells and grows at a rate proportional to its size. After an hour the population has increased to 40 cells. (a) Find an expression for the

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 970 97 980 98 990 99 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

MATHEMATICS 4 UNIT (ADDITIONAL) HIGHER SCHOOL CERTIFICATE EXAMINATION. Time allowed Three hours (Plus 5 minutes reading time)

MATHEMATICS 4 UNIT (ADDITIONAL) HIGHER SCHOOL CERTIFICATE EXAMINATION. Time allowed Three hours (Plus 5 minutes reading time) N E W S O U T H W A L E S HIGHER SCHOOL CERTIFICATE EXAMINATION 997 MATHEMATICS UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions.

More information

2. Jan 2010 qu June 2009 qu.8

2. Jan 2010 qu June 2009 qu.8 C3 Functions. June 200 qu.9 The functions f and g are defined for all real values of b f() = 4 2 2 and g() = a + b, where a and b are non-zero constants. (i) Find the range of f. [3] Eplain wh the function

More information

Math Lecture 9

Math Lecture 9 Math 2280 - Lecture 9 Dylan Zwick Spring 2013 In the last two lectures we ve talked about differential equations for modeling populations. Today we ll return to the theme we touched upon in our second

More information

Slope Fields and Differential Equations

Slope Fields and Differential Equations Slope Fields and Differential Equations Students should be able to: Draw a slope field at a specified number of points b hand. Sketch a solution that passes through a given point on a slope field. Match

More information

PRE-CALCULUS: by Finney,Demana,Watts and Kennedy Chapter 3: Exponential, Logistic, and Logarithmic Functions 3.1: Exponential and Logistic Functions

PRE-CALCULUS: by Finney,Demana,Watts and Kennedy Chapter 3: Exponential, Logistic, and Logarithmic Functions 3.1: Exponential and Logistic Functions PRE-CALCULUS: Finne,Demana,Watts and Kenned Chapter 3: Eponential, Logistic, and Logarithmic Functions 3.1: Eponential and Logistic Functions Which of the following are eponential functions? For those

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc.

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc. 2.6 Graphs of Rational Functions Copyright 2011 Pearson, Inc. Rational Functions What you ll learn about Transformations of the Reciprocal Function Limits and Asymptotes Analyzing Graphs of Rational Functions

More information

Calculus IV - HW 2 MA 214. Due 6/29

Calculus IV - HW 2 MA 214. Due 6/29 Calculus IV - HW 2 MA 214 Due 6/29 Section 2.5 1. (Problems 3 and 5 from B&D) The following problems involve differential equations of the form dy = f(y). For each, sketch the graph of f(y) versus y, determine

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Derivatives 2: The Derivative at a Point

Derivatives 2: The Derivative at a Point Derivatives 2: The Derivative at a Point 69 Derivatives 2: The Derivative at a Point Model 1: Review of Velocit In the previous activit we eplored position functions (distance versus time) and learned

More information

Calculus I - Math 3A - Chapter 4 - Applications of the Derivative

Calculus I - Math 3A - Chapter 4 - Applications of the Derivative Berkele Cit College Just for Practice Calculus I - Math 3A - Chapter - Applications of the Derivative Name Identrif the critical points and find the maimum and minimum value on the given interval I. )

More information

P1 Chapter 4 :: Graphs & Transformations

P1 Chapter 4 :: Graphs & Transformations P1 Chapter 4 :: Graphs & Transformations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 14 th September 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

1 What is a differential equation

1 What is a differential equation Math 10B - Calculus by Hughes-Hallett, et al. Chapter 11 - Differential Equations Prepared by Jason Gaddis 1 What is a differential equation Remark 1.1. We have seen basic differential equations already

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

Section Differential Equations: Modeling, Slope Fields, and Euler s Method

Section Differential Equations: Modeling, Slope Fields, and Euler s Method Section.. Differential Equations: Modeling, Slope Fields, and Euler s Method Preliminar Eample. Phsical Situation Modeling Differential Equation An object is taken out of an oven and placed in a room where

More information

Name: October 24, 2014 ID Number: Fall Midterm I. Number Total Points Points Obtained Total 40

Name: October 24, 2014 ID Number: Fall Midterm I. Number Total Points Points Obtained Total 40 Math 307O: Introduction to Differential Equations Name: October 24, 204 ID Number: Fall 204 Midterm I Number Total Points Points Obtained 0 2 0 3 0 4 0 Total 40 Instructions.. Show all your work and box

More information