NORMAL MODES AND VORTEX DYNAMICS IN 2D EASY-AXIS FERROMAGNETS 1

Size: px
Start display at page:

Download "NORMAL MODES AND VORTEX DYNAMICS IN 2D EASY-AXIS FERROMAGNETS 1"

Transcription

1 IC/96/234 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NORMAL MODES AND VORTEX DYNAMICS IN 2D EASY-AXIS FERROMAGNETS 1 F.Kh. Abdullaev Physical-Technical Institute of the Uzbek Academy of Sciences, G. Mavlyanova str. 2b, Tashkent, Uzbekistan and A.S. Kirakosyan 2 International Centre for Theoretical Physics, Trieste, Italy. ABSTRACT Magnon modes, localized on vortices in easy-axis 2-D ferromagnets are studied. There are local modes for all values of quantum numbers m in a definite frequency range, determined by the strength of anisotropy. Connected with the translational mode, the vortex dynamics problem is considered. The momentum of individual moving vortex is calculated based on the exact solution of equation for vortex motion in the isotropic case. The momentum balance equation with the Magnus-type force for the system of vortices is derived. PACS Hk Ch MIRAMARE - TRIESTE November Submitted to JETP Letters. 2 Permanent address: Physical-Technical Institute of the Uzbek Academy of Sciences, G. Mavlyanova str. 2b, Tashkent, Uzbekistan. 1

2 Quasilocal magnon modes in isotropic [?], easy-plane Heisenberg [?],[?], XY-type [?] 2D ferromagnets (FM) have been investigated. Literally local mode with m = 0 in easyplane 2D Heisenberg antiferromagnets (AFM) was studied in [?]. In the recent work of [?] two modes were found in 2D easy-plane AFM within the continuous spectrum. The problem of spin wave scattering on the soliton in 2-D isotropic Heisenberg FM has been solved and quasilocal modes have been investigated in [?]. In the local rotated coordinate frame, connected with the magnetization vector of vortex, linearized Landau- Lifshitz equations(lle) have been reduced to the 2-D Schrodinger equation. In the static limit, this equation possess an exact solution due to scale invariance. The vortex- magnon scattering (S) matrix calculation showed, that the most strong scattering takes place in the region of local modes(lm). Considerable physical interest is taken in the study of such problem in easy-axis FMs. Another important problem, closely connected with the translational mode of the vortex, is the calculation of a vortex distortion, caused by translational motion. Vortex, considered in this paper, has an instanton-type core structure. The scale invariance is the unique property, providing the possibility to integrate equations of motion for the vortices. Due to the exact solution of equation, describing the dynamics of moving vortex in isotropic ferromagnet, we may construct a solution in the anisotropic case for solitons with small radius. There is some connection between dynamics of vortices in easyplane and easy-axis 2D ferromagnets. In both cases, vortices are "frozen" in environment according to the Helmholtz theorem as in hydrodynamics. It is bound up with the fact, that the ratio of force, acting on the vortex, to the vortex velocity is proportional to the difference of the magnetization projection at the vortex axis and at an infinity (hard axis for easy-plane ferromagnets and easy axis for easy axis ones)[?]- [?]. That is why, if the vortex is not acted by any force it can't move. Interaction between solitons in isotropic ferromagnets is absent. But interaction arises in the anisotropic case. Local Modes. - Let us go on to the investigation of LM in anisotropic FM. It is known, that in the anisotropic case, a soliton with small radius (soliton with localization length much less than magnetic length l 0 = α/ β) precesses with frequency ω = ω 0 / ν, where α, β - constant of inhomogeneous exchange and anisotropy respectively, Ω0 = βgm 0, ν - topological charge of the soliton, g - giromagnetic ratio [?]. It is suitable to study small oscillations of the magnetization vector of vortex in the coordinate frame connected with easy axis anisotropy (z axis). We introduce variables m z = M o $ sin θ 0,

3 m + = m x + ımy = M 0 ('dcos9o where M 0 - nominal magnetization, i) = θ Θ0, <pi = <p <po and ^o = νχ + ωt + χ0, and for θ 0 we have the following equation J\ d ( d9 0 \ u 2 sm9 0 cos9 0 \ - sinθ0 cosθ 0 + sinθ 0 ω = 0. (1) 0r dr dr j r At r <ti l0 Eq. (1) has the solution accurate to small parameter (lr) tg 20 =r A The lacing method gives the approximate solution, which had been used in [?] 2 In the present work we will use a linearized coupled set of dynamic L-L equations. Far from vortex we will reduce this set to the 2D Schrodinger equation. L-L equations (LLE) have the following form 1 2 O (A9 - (V^)2 sinθcosθ) -sm9cos9 + ^ sin θ = 0, 1 39 l02div(sin 2 6V<p) sin θ = 0. UJQ ut Let us introduce a new variable \i = sin 9o<pi. The variables \i and i) are the projections of the M on the local axes e\ and e* 2 connected with the vortex: /j, = Me\, $ = Me 2 - The axis e*3 coincides with M direction in the unperturbed vortex. Then we get the coupled set of two partial differential equations for i) and \i Here 2z/cos6 l o ctyx 1 dfx r 2 &x W O /Q dt, [- +U 2 {r)\n - 0 =. (2) U 2 (r) = ctg9 0 A9 0 - (V9 0 ) 2. Multiplying (1) to r 2 dθdr0 and integrating within the limits 0 to r and using the boundary conditions θ 0 = π at r = 0 and θ 0 = 0 at r = oo we get

4 -4 r(sin 2 θ 0 - (1 - cosθ 0 ))ρdρ. (3) It is easy to show by direct integration, that far from the vortex the r.h.s. of Eq. (3) may be neglected for all r. Thereby we have the following approximate expression for U2(r) U 2 (r) =(^ + l) cos2θ 0 -^2(3cosθ 0-2). Far from the vortex "potentials" approach asymptotically to each other. The equation for ψ = i) + i/j, is derived from (2) and has the form For r ^$> R we have U(r) = (1 Ω)/L02. Eq. (4) differs from having been derived in [?] by an additional term "anisotropy potential" U(r). For r <^i l0 Eq. (4) with the accuracy lr) 2 has the solution, describing magnon modes, localized on the soliton [?] ' H\ ma ) Here σ = ν, ν < m < ν,ω1- frequency of small oscillations. For the sake of convenience let ν > 0. It is evident from (4), that there are LMs for all m at frequences uji < Ω0 ω. The use of Macdonald's function K n (x) and the modified Bessel's function I n (x) gives the approximate solutions. Due to the lacing method used in [?],[?] we have for F m (r) at the distances R < i r < i 1, and m > v For m < v kr). (6) y L J \K0 / {'lit -t iy 1)'. l\ u {Kor) " hvj V 2 ; V^o7 \m + u\\ I\ m+v \(kr) Here k 2 = (1 ω ~)/^o> ^o = (1 ~ ω)/l02. Thereby we have the exponential decay of intensity of spin wave in the region of LMs. Similarly, the approximate solutions for quasilocal modes at the frequences ω1 > Ω 0 Ω may be constructed and the S matrix computed. Vortex Dynamics. - Now let us investigate the distortion of the system of spins, caused by motion of vortex in isotropic FM (Belavin-Polyakov vortex) [?]. This problem is an

5 auxiliary stage in the study of the dynamics in the anisotropic case. When the vortex moves with stationary velocity V the small additives to ipo and Θ0 will occur [?]. To find these additives we represent ip and θ in the form where e x and e* r are the unit vectors of appropriate polar coordinates frame. In the limit of small velocities of the vortex equation of motion has the form of linearized LLE for LMs with the additional term, which is proportional to the vortex velocity. We get for ψ the following equation from (4) and L-L equations = - A + 2 cos 2θ 0 ] ψ 1ı2 0 02, r 2 r 2 dx oj o lor where Vexp(ıζ) = V y + ıv x. We look for the solution in the form ( 8 ) ψ(χ, r ) = exp(ıζ + ıχ)g(r). The equation for G(r) can easily be integrated. We may exclude the singularity of the momentum density and momentum flow one of the vortex at its axis by an appropriate choice of the integration constant. Then we have Vr / 1 / r \ 2l A 4cj o to V v + l\nj ) The expression for the full momentum of magnetization field accounted for one atomic layer has the form +00 2TT P = - J J (1-cos 6)Vprdrd X. (10) 00 Now if we will compute the momentum of moving vortex, using Eqs. (9) and (10) we will see that it diverges in the infinite medium. This is connected with the abovementioned "frozenness" of vortex in environment. Belavin-Polyakov vortices describe the static state of isotropic magnet and already for this reason they neither can move nor interact with each other. Nevertheless, when the anisotropy is taken into account, interaction occurs. There is a characteristic length, when a space power law growth of distortion turns into exponential decay. This length is a cutoff parameter for integration. Calculation of the momentum of moving vortex in anisotropic case at account of vortex distortion ψ gives p = M ΠA 0 ΝV g(ujuj)(l + ν).

6 The Eq. (11) valid in the limit of slow motion of vortex. Vortex momentum is proportional to the square of the cut-off parameter, which may be called a vortex soft core. The soft core size is equal to 1/k0 = l0/(1 ~~ ω)1/ 2. At ν = 1 precession frequency of soliton Ω = Ω0 is accurate up to (lr0) 4. In this case the vortex momentum becomes anomalously big and dependent on vortex radius R. Vortex size R depends on the number of magnons in 2D magnetic soliton. The last one is integral of motion. That is why it does not change when vortex moves. In the soft core region we have the reconstruction of scale invariance. So we can use the solution (11) for anisotropic ferromagnet. Direct differentiation of (10) with regard to time gives the following expression for the momentum balance Here F is a force, acting on vortex from the remaining vortices and r.h.s. of Eq. (12) is the Magnus force, acting on the vortex from the homogeneous magnet. Calculation of the force F is the subject for a separate discussion. In conclusion we would like to note that in our work we showed that in easy-axis ferromagnets there are local modes on the two-dimensional topological solitons for all values of quantum number m. This is different from the situation in easy-plane FMs, where only quasilocal modes can exist. In the limits of small velocities one can construct the vortex dynamics due to the scale invariance. Acknowledgments. - We wish to thank Ilia Krive and Alexander Nersesian for clarifying discussions. This work was supported by the Fund of Fundamental Researches of the Uzbek Academy of Sciences. Finally, we gratefully acknowledge the sponsoring support of S.K. Abduvaliev.

7 References [1] B.A. Ivanov, JETP Lett. 61, 898 (1995). [2] G.M. Wysin, Phys. Rev. B49, 8780 (1994). [3] G.M. Wysin and Volkel, Phys. Rev. B 52, 7412 (1995). [4] B.V. Costa, M.E. Gouvea, and A.S.T. Pires, Phys. Lett. A 165, 179 (1992). [5] B.A. Ivanov, A.K. Kolezhuk, and G.M. Wysin, Phys. Rev. Lett. 76, 511 (1996). [6] A.R. Pereira, F.O. Coelho, and A.S.T. Pires, Phys. Rev. B 54, 6084 (1996). [7] G.E. Volovik and V.S. Dotsenko, ZhETF 78, 132 (1980). [8] D.L. Huber, Phys. Rev. B 26, 3758 (1982). [9] A.A. Belavin and A.M. Polyakov, Pis ma Zh. Eksp. Teor. Fiz. 22, 503 (1975). [10] A.V. Nikiforov and E.B. Sonin, ZhETF 85, 642 (1983). [11] V.P. Voronov, B.A. Ivanov and A.M. Kosevich, ZhETF 84, 2235 (1983).

COMPARISON OF VORTEX NORMAL MODES IN EASY-PLANE FERROMAGNETS AND ANTIFERROMAGNETS

COMPARISON OF VORTEX NORMAL MODES IN EASY-PLANE FERROMAGNETS AND ANTIFERROMAGNETS COMPARISON OF VORTEX NORMAL MODES IN EASY-PLANE FERROMAGNETS AND ANTIFERROMAGNETS G. M. Wysin Department of Physics, Kansas State University, Manhattan, KS 66506 U.S.A. A. R. Völkel University of Toronto,

More information

Eigenfrequencies of vortex state excitations in magnetic submicron-size disks

Eigenfrequencies of vortex state excitations in magnetic submicron-size disks Eigenfrequencies of vortex state excitations in magnetic submicron-size disks K. Yu. Guslienko 1, *, B. A. Ivanov, V. Novosad 3, 4, Y. Otani 3, 5, H. Shima 3, and K. Fukamichi 3 1 School of Physics, Korea

More information

Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets

Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-260 (November 9, 993) An analysis of the core region

More information

arxiv: v2 [cond-mat.supr-con] 25 Mar 2016

arxiv: v2 [cond-mat.supr-con] 25 Mar 2016 NMR properties of the polar phase of superfluid 3 He in anisotropic aerogel under rotation V.P.Mineev Commissariat a l Energie Atomique, INAC / SPSMS, 38054 Grenoble, France (Dated: March 28, 2016) arxiv:1508.03740v2

More information

Solitonic elliptical solutions in the classical XY model

Solitonic elliptical solutions in the classical XY model Solitonic elliptical solutions in the classical XY model Rodrigo Ferrer, José Rogan, Sergio Davis, Gonzalo Gutiérrez Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago,

More information

Tunneling via a barrier faster than light

Tunneling via a barrier faster than light Tunneling via a barrier faster than light Submitted by: Evgeniy Kogan Numerous theories contradict to each other in their predictions for the tunneling time. 1 The Wigner time delay Consider particle which

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Roles of the surface and the bulk electronic states in the de Haas - van Alphen oscillations of two-dimentional electron gas

Roles of the surface and the bulk electronic states in the de Haas - van Alphen oscillations of two-dimentional electron gas AIT Journal of Science and Engineering A, Volume 5, Issues 1-, pp. 05-11 Copyright C 008 olon Institute of Technology Roles of the surface and the bulk electronic states in the de aas - van Alphen oscillations

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

FM AFM Crossover in Vanadium Oxide Nanomaterials

FM AFM Crossover in Vanadium Oxide Nanomaterials ISSN 0021-3640, JETP Letters, 2010, Vol. 91, No. 1, pp. 11 15. Pleiades Publishing, Inc., 2010. Original Russian Text S.V. Demishev, A.L. Chernobrovkin, V.V. Glushkov, A.V. Grigorieva, E.A. Goodilin, N.E.

More information

DYNAMICS of a QUANTUM VORTEX

DYNAMICS of a QUANTUM VORTEX PCE STAMP DYNAMICS of a QUANTUM VORTEX (ORLANDO, Dec 21st, 2010) Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics DYNAMICS of a QUANTUM VORTEX L THOMPSON & PCE STAMP I WILL TALK

More information

Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry

Imry-Ma disordered state induced by defects of random local anisotropy type in the system with O(n) symmetry 1 Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry A.A. Berzin 1, A.I. Morosov 2, and A.S. Sigov 1 1 Moscow Technological University (MIREA),

More information

Two Dimensional Magnetic Solitons and Thermodynamics of Quasi Two Dimensional Magnets

Two Dimensional Magnetic Solitons and Thermodynamics of Quasi Two Dimensional Magnets Two Dimensional Magnetic Solitons and Thermodynamics of Quasi Two Dimensional Magnets B. A. IVANOV and D. D. SHEKA Theoretical Physics Division, Institute for Metal Physics 36 Vernadskiĭ av., 514 Kiev,

More information

arxiv:cond-mat/ v1 27 Sep 2003

arxiv:cond-mat/ v1 27 Sep 2003 Amplitudes for magnon scattering by vortices in two dimensional weakly easy plane ferromagnets Denis D. Sheka and Ivan A. Yastremsky National Taras Shevchenko University of Kiev, 317 Kiev, Ukraine Boris

More information

Physics 139B Solutions to Homework Set 4 Fall 2009

Physics 139B Solutions to Homework Set 4 Fall 2009 Physics 139B Solutions to Homework Set 4 Fall 9 1. Liboff, problem 1.16 on page 594 595. Consider an atom whose electrons are L S coupled so that the good quantum numbers are j l s m j and eigenstates

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction

Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 663 667 c International Academic Publishers Vol. 46, No. 4, October 15, 2006 Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas

Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas Department of Applied Mathematics Archimedes Center for Modeling, Analysis & Computation University of Crete,

More information

Angular momentum and spin

Angular momentum and spin Luleå tekniska universitet Avdelningen för Fysik, 007 Hans Weber Angular momentum and spin Angular momentum is a measure of how much rotation there is in particle or in a rigid body. In quantum mechanics

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 015, 0 (0), P. 1 7 Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model V. L. Kulinskii, D. Yu. Panchenko

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

TRIBUTE TO LEV GORKOV

TRIBUTE TO LEV GORKOV TRIBUTE TO LEV GORKOV 81 = 9 x 9 LANDAU S NOTEBOOK To solve the Problem of Critical Phenomena using Diagrammatics To find the level statistics in nuclei taking into account their mutual repulsion

More information

ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD

ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD Progress In Electromagnetics Research Letters, Vol. 11, 103 11, 009 ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD G.-Q. Zhou Department of Physics Wuhan University

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from

More information

Topological Phase Transitions

Topological Phase Transitions Chapter 5 Topological Phase Transitions Previously, we have seen that the breaking of a continuous symmetry is accompanied by the appearance of massless Goldstone modes. Fluctuations of the latter lead

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

5 Topological defects and textures in ordered media

5 Topological defects and textures in ordered media 5 Topological defects and textures in ordered media In this chapter we consider how to classify topological defects and textures in ordered media. We give here only a very short account of the method following

More information

arxiv: v2 [cond-mat.other] 3 Apr 2014

arxiv: v2 [cond-mat.other] 3 Apr 2014 Half-quantum vortices in polar phase of superfluid 3 He V.P.Mineev Commissariat a l Energie Atomique, INAC / SPSMS, 38054 Grenoble, France Dated: April 4, 2014) arxiv:1402.2111v2 [cond-mat.other] 3 Apr

More information

The Mermin-Wagner Theorem

The Mermin-Wagner Theorem June 24, 2010 Conclusion In one and two dimensions, continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions. Contents 1 How symmetry

More information

Temperature Correlation Functions in the XXO Heisenberg Chain

Temperature Correlation Functions in the XXO Heisenberg Chain CONGRESSO NAZIONALE DI FISICA DELLA MATERIA Brescia, 13-16 June, 1994 Temperature Correlation Functions in the XXO Heisenberg Chain F. Colomo 1, A.G. Izergin 2,3, V.E. Korepin 4, V. Tognetti 1,5 1 I.N.F.N.,

More information

Phase diagram and stability of skyrmion configurations in anti-ferromagnetic materials lacking inversion symmetry

Phase diagram and stability of skyrmion configurations in anti-ferromagnetic materials lacking inversion symmetry Phase diagram and stability of skyrmion configurations in anti-ferromagnetic materials lacking inversion symmetry A.E. Baerends Bachelor Thesis Under the supervision of dr. R.A. Duine Institute of Theoretical

More information

Antiferromagnetic Textures

Antiferromagnetic Textures Antiferromagnetic Textures This image cannot currently be displayed. ULRICH K. RÖSSLE IFW DRESDEN SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen u.roessler@ifw-dresden.de

More information

Variation Principle in Mechanics

Variation Principle in Mechanics Section 2 Variation Principle in Mechanics Hamilton s Principle: Every mechanical system is characterized by a Lagrangian, L(q i, q i, t) or L(q, q, t) in brief, and the motion of he system is such that

More information

Lepton pair production by high-energy neutrino in an external electromagnetic field

Lepton pair production by high-energy neutrino in an external electromagnetic field Yaroslavl State University Preprint YARU-HE-00/03 hep-ph/000316 Lepton pair production by high-energy neutrino in an external electromagnetic field A.V. Kuznetsov, N.V. Mikheev, D.A. Rumyantsev Division

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Conductivity of a disordered ferromagnetic monoatomic film

Conductivity of a disordered ferromagnetic monoatomic film Materials Science-Poland, Vol. 6, No. 4, 008 Conductivity of a disordered ferromagnetic monoatomic film A. PAJA *, B. J. SPISAK Faculty of Physics and Applied Computer Science, AGH University of Science

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Phase shift s influence of two strong pulsed laser waves on effective interaction of electrons

Phase shift s influence of two strong pulsed laser waves on effective interaction of electrons Phase shift s influence of two strong pulsed laser waves on effective interaction of electrons S S Starodub, S P Roshchupkin and V V Dubov Institute of Applied Physics, National Academy of Sciences of

More information

Multipole Expansion for Radiation;Vector Spherical Harmonics

Multipole Expansion for Radiation;Vector Spherical Harmonics Multipole Expansion for Radiation;Vector Spherical Harmonics Michael Dine Department of Physics University of California, Santa Cruz February 2013 We seek a more systematic treatment of the multipole expansion

More information

arxiv: v1 [gr-qc] 19 Jun 2009

arxiv: v1 [gr-qc] 19 Jun 2009 SURFACE DENSITIES IN GENERAL RELATIVITY arxiv:0906.3690v1 [gr-qc] 19 Jun 2009 L. FERNÁNDEZ-JAMBRINA and F. J. CHINEA Departamento de Física Teórica II, Facultad de Ciencias Físicas Ciudad Universitaria,

More information

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2 Physics 443 Prelim # with solutions March 7, 8 Each problem is worth 34 points.. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator H p m + mω x (a Use dimensional analysis to

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

Moving fronts for complex Ginzburg-Landau equation with Raman term

Moving fronts for complex Ginzburg-Landau equation with Raman term PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Moving fronts for complex Ginzburg-Lau equation with Raman term Adrian Ankiewicz Nail Akhmediev Optical Sciences Centre, The Australian National University,

More information

Hole-vortex-magnons interactions in diluted layered antiferromagnets with planar symmetry

Hole-vortex-magnons interactions in diluted layered antiferromagnets with planar symmetry Hole-vortex-magnons interactions in diluted layered antiferromagnets with planar symmetry A. R. Pereira Departamento de Física, Universidade Federal de Viçosa, Viçosa, 3657-, Minas Gerais, Brazil G. M.

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model

Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model Notes on Renormalization Group: Berezinskii-Kosterlitz-Thouless (BKT) transition and Sine-Gordon model Yi Zhou (Dated: December 4, 05) We shall discuss BKT transition based on +D sine-gordon model. I.

More information

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS T. Nattermann University of Cologne * F.Li, TN and V. Pokrovsky Phys. Rev.Lett. 108, 107302 (2012) TN arxiv:1210.1358 Acknowledgments to SFB 608 of DFG.

More information

Reciprocal Space Magnetic Field: Physical Implications

Reciprocal Space Magnetic Field: Physical Implications Reciprocal Space Magnetic Field: Physical Implications Junren Shi ddd Institute of Physics Chinese Academy of Sciences November 30, 2005 Outline Introduction Implications Conclusion 1 Introduction 2 Physical

More information

1 Time-Dependent Two-State Systems: Rabi Oscillations

1 Time-Dependent Two-State Systems: Rabi Oscillations Advanced kinetics Solution 7 April, 16 1 Time-Dependent Two-State Systems: Rabi Oscillations a In order to show how Ĥintt affects a bound state system in first-order time-dependent perturbation theory

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 76 4 MARCH 1996 NUMBER 10 Finite-Size Scaling and Universality above the Upper Critical Dimensionality Erik Luijten* and Henk W. J. Blöte Faculty of Applied Physics, Delft

More information

Appendix: SU(2) spin angular momentum and single spin dynamics

Appendix: SU(2) spin angular momentum and single spin dynamics Phys 7 Topics in Particles & Fields Spring 03 Lecture v0 Appendix: SU spin angular momentum and single spin dynamics Jeffrey Yepez Department of Physics and Astronomy University of Hawai i at Manoa Watanabe

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Topological Solitons from Geometry

Topological Solitons from Geometry Topological Solitons from Geometry Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Atiyah, Manton, Schroers. Geometric models of matter. arxiv:1111.2934.

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy Axis Heisenberg Model

Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy Axis Heisenberg Model Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy Axis Heisenberg Model M. E. Gouvêa, G.M. Wysin, S. A. Leonel, A. S. T. Pires, T. Kamppeter, + and F.G. Mertens + Departamento de

More information

QUANTUM BOUND STATES WITH ZERO BINDING ENERGY

QUANTUM BOUND STATES WITH ZERO BINDING ENERGY ψ hepth@xxx/940554 LA-UR-94-374 QUANTUM BOUND STATES WITH ZERO BINDING ENERGY Jamil Daboul Physics Department, Ben Gurion University of the Negev Beer Sheva, Israel and Michael Martin Nieto 2 Theoretical

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 7" IC/93/57 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON THE DEBYE-HUCKEL'S THEORY Ivailo M. Mladenov INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

More information

10. Scattering from Central Force Potential

10. Scattering from Central Force Potential University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 215 1. Scattering from Central Force Potential Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Renormalization group analysis for the 3D XY model. Francesca Pietracaprina

Renormalization group analysis for the 3D XY model. Francesca Pietracaprina Renormalization group analysis for the 3D XY model Statistical Physics PhD Course Statistical physics of Cold atoms 5/04/2012 The XY model Duality transformation H = J i,j cos(ϑ i ϑ j ) Plan of the seminar:

More information

MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS

MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS S. P. NOVIKOV I. In previous joint papers by the author and B. A. Dubrovin [1], [2] we computed completely

More information

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Classical behavior of magnetic dipole vector. P. J. Grandinetti Classical behavior of magnetic dipole vector Z μ Y X Z μ Y X Quantum behavior of magnetic dipole vector Random sample of spin 1/2 nuclei measure μ z μ z = + γ h/2 group μ z = γ h/2 group Quantum behavior

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Matrix Theory and Differential Equations Homework 6 Solutions, 10/5/6

Matrix Theory and Differential Equations Homework 6 Solutions, 10/5/6 Matrix Theory and Differential Equations Homework 6 Solutions, 0/5/6 Question Find the general solution of the matrix system: x 3y + 5z 8t 5 x + 4y z + t Express your answer in the form of a particulaolution

More information

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets George A. Hagedorn Happy 60 th birthday, Mr. Fritz! Abstract. Although real, normalized Gaussian wave packets minimize the product

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

Errata for Quantum Mechanics by Ernest Abers August 1, 2004

Errata for Quantum Mechanics by Ernest Abers August 1, 2004 Errata for Quantum Mechanics by Ernest Abers August, 004 Preface Page xv: Add a sentence at the end of the next-to-last paragraph: Rudaz (University of Minnesota, and several anonymous reviewers. My special

More information

HARMONIC MAPS AND THEIR APPLICATION TO GENERAL RELATIVITY* YISHI DUANE. Stanford Linear Accelerator. Stanford University, Stanford, California 94305

HARMONIC MAPS AND THEIR APPLICATION TO GENERAL RELATIVITY* YISHI DUANE. Stanford Linear Accelerator. Stanford University, Stanford, California 94305 SLACPUB3265 December 1983 _ 03 HARMONIC MAPS AND THEIR APPLICATION TO GENERAL RELATIVITY* YISHI DUANE Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT A method

More information

n-n" oscillations beyond the quasi-free limit or n-n" oscillations in the presence of magnetic field

n-n oscillations beyond the quasi-free limit or n-n oscillations in the presence of magnetic field n-n" oscillations beyond the quasi-free limit or n-n" oscillations in the presence of magnetic field E.D. Davis North Carolina State University Based on: Phys. Rev. D 95, 036004 (with A.R. Young) INT workshop

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Fundamental Solution

Fundamental Solution Fundamental Solution onsider the following generic equation: Lu(X) = f(x). (1) Here X = (r, t) is the space-time coordinate (if either space or time coordinate is absent, then X t, or X r, respectively);

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS IC/68/54 0^ 19. JUL1B6b) 5^1 2 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS N. F. NASRALLAH 1968 MIRAMARE - TRIESTE

More information

The phase of the de Haas van Alphen oscillations, the Berry phase, and band-contact lines in metals

The phase of the de Haas van Alphen oscillations, the Berry phase, and band-contact lines in metals Fizika Nizkikh Temperatur, 007, v. 33, No. 5, p. 586 590 The phase of the de aas van Alphen oscillations, the Berry phase, and band-contact lines in metals G.P. Mikitik and Yu.V. Sharlai B. Verkin Institute

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl.

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl. Physics 505 Homework No 8 s S8- Spinor rotations Somewhat based on a problem in Schwabl a) Suppose n is a unit vector We are interested in n σ Show that n σ) = I where I is the identity matrix We will

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

Creation and Destruction Operators and Coherent States

Creation and Destruction Operators and Coherent States Creation and Destruction Operators and Coherent States WKB Method for Ground State Wave Function state harmonic oscillator wave function, We first rewrite the ground < x 0 >= ( π h )1/4 exp( x2 a 2 h )

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 10, Solutions. (1.a) N = a. we see that a m ar a = 0 and so N = 0. ω 3 ω 2 = 0 ω 2 + I 1 I 3

PHY 5246: Theoretical Dynamics, Fall Assignment # 10, Solutions. (1.a) N = a. we see that a m ar a = 0 and so N = 0. ω 3 ω 2 = 0 ω 2 + I 1 I 3 PHY 54: Theoretical Dynamics, Fall 015 Assignment # 10, Solutions 1 Graded Problems Problem 1 x 3 a ω First we calculate the moments of inertia: ( ) a I 1 = I = m 4 + b, 1 (1.a) I 3 = ma. b/ α The torque

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov Strong magnetic fields in lattice gluodynamics P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov arxiv:1011.3001, arxiv:1011.3795, arxiv:1003.180,

More information

Title. Statistical behaviour of optical vortex fields. F. Stef Roux. CSIR National Laser Centre, South Africa

Title. Statistical behaviour of optical vortex fields. F. Stef Roux. CSIR National Laser Centre, South Africa . p.1/37 Title Statistical behaviour of optical vortex fields F. Stef Roux CSIR National Laser Centre, South Africa Colloquium presented at School of Physics National University of Ireland Galway, Ireland

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information