Topological Solitons from Geometry

Size: px
Start display at page:

Download "Topological Solitons from Geometry"

Transcription

1 Topological Solitons from Geometry Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Atiyah, Manton, Schroers. Geometric models of matter. arxiv: Proc. R. Soc. Lond A (2012). MD. Abelian vortices from Sinh Gordon and Tzitzeica equations. arxiv: Phys. Lett. B. 710 (2012). MD. Skyrmions from gravitational instantons. arxiv: Proc. R. Soc. Lond. A (2013). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

2 Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

3 Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, Waves: Dispersion, diffraction, superpositions. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

4 Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, Waves: Dispersion, diffraction, superpositions. Particles: mass, localisation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

5 Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, Waves: Dispersion, diffraction, superpositions. QFT: Fourier transform, infinities, regularisation,..., string theory. Particles: mass, localisation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

6 Waves or Particles Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant. Max Born, Nobel Lecture, December 11, Waves: Dispersion, diffraction, superpositions. QFT: Fourier transform, infinities, regularisation,..., string theory. Particles: mass, localisation. Solitons, classical non linear field equations, topological charges, stability. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

7 Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

8 Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

9 Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

10 Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. φ(x, t) = φ 1 + δφ(x, t). Perturbative Scalar boson ( + m 2 )δφ = 0. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

11 Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. φ(x, t) = φ 1 + δφ(x, t). Perturbative Scalar boson ( + m 2 )δφ = 0. Kink: φ = φ 1 as x. φ = φ 2 as x. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

12 Solitons Solitons: Non singular, static, finite energy solutions of the field equations. ( 1 L = 2 φ2 t 1 2 φ2 x U(φ)) dx, where φ : R 1,1 R. R Stable vacuum: U 0. Set U 1 (0) = {φ 1, φ 2,..., φ N }. Finite energy: φ(x, t) φ i as x. φ(x, t) = φ 1 + δφ(x, t). Perturbative Scalar boson ( + m 2 )δφ = 0. Kink: φ = φ 1 as x. φ = φ 2 as x. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

13 Solitons and Topology Soliton stability Nontrivial topology Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

14 Solitons and Topology Soliton stability Nontrivial topology Complete integrability Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

15 Solitons and Topology Soliton stability Nontrivial topology Complete integrability Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

16 Solitons and Topology Soliton stability Nontrivial topology Complete integrability Static vortices: Abelian gauge potential + Higgs field φ : R 2 C. Boundary conditions: F = 0 and φ = 1 as r. φ : S 1 S 1. Vortex number π 1 (S 1 ) = Z. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

17 Solitons and Topology Soliton stability Nontrivial topology Complete integrability Static vortices: Abelian gauge potential + Higgs field φ : R 2 C. Boundary conditions: F = 0 and φ = 1 as r. φ : S 1 S 1. Vortex number π 1 (S 1 ) = Z. Skyrmions: U : R 3,1 SU(2). Static+finite energy. U : S 3 SU(2). Topological baryon number π 3 (S 3 ) = Z. B = 1 24π 2 R 3 Tr[(U 1 du) 3 ]. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

18 Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

19 Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Ginsburg Landau energy E[A, φ] = 1 ( Dφ 2 + F (1 φ 2 ) 2 )vol Σ, Σ F = da Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

20 Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Ginsburg Landau energy E[A, φ] = 1 ( Dφ 2 + F (1 φ 2 ) 2 )vol Σ, Σ Bogomolny equations Dφ = 0, F = 1 2 ω(1 φ 2 ) F = da Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

21 Abelian Higgs Model 2D Kähler manifold (Σ, g, ω). Hermitian line bundle L Σ with U(1) connection A and a global section C section φ : Σ L. Ginsburg Landau energy E[A, φ] = 1 ( Dφ 2 + F (1 φ 2 ) 2 )vol Σ, Σ Bogomolny equations Dφ = 0, F = 1 2 ω(1 φ 2 ) Taubes equation: z = x + iy, g = Ω(z, z) dzd z. Set φ = exp(h/2 + iχ), solve for A. 0 h + Ω Ωe h = 0, where 0 = 4 z z. F = da Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

22 Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

23 Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const Vortices on R 2, i. e. Ω = 1. No explicit solutions. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

24 Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const Vortices on R 2, i. e. Ω = 1. No explicit solutions. Make the Taubes equations integrable: Ω = exp ( h/2). 0 (h/2) = sinh (h/2), Sinh Gordon equation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

25 Vortex from geometry. 0 h + Ω Ωe h = 0. Vortex number N = 1 2π Σ B vol Σ, h 2N log z z 0 + const Vortices on R 2, i. e. Ω = 1. No explicit solutions. Make the Taubes equations integrable: Ω = exp ( h/2). 0 (h/2) = sinh (h/2), Solitons from geometry: L = T Σ, Chern number=euler characteristic. Sinh Gordon equation. SO(2) = U(1), Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

26 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

27 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

28 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

29 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

30 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

31 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

32 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

33 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

34 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. 3 CMC surface with deficit angle π near r = 0. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

35 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. 3 CMC surface with deficit angle π near r = 0. Uses isomonodromy theory, and connection formulae (Kitaev). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

36 Geometry of Sinh Gordon vortex g = e h/2 dzd z. Constant mean curvature surface Σ R 2,1. Radial solutions, h = h(r), s.t. h 0 as r. Large r: Modified Bessel equation, h 8λK 0 (r) for a constant λ. Small r: Liouville equation, h = 4σ log r +... for a constant σ. In general, Painléve III equation. Theorem (MD, 2012) 1 σ(λ) = 2π 1 arcsin (πλ) if 0 λ π 1. 2 There exists a one vortex solution with strength 4 2/π. 3 CMC surface with deficit angle π near r = 0. Uses isomonodromy theory, and connection formulae (Kitaev). One more integrable case: Tzitzeica equation and affine spheres. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

37 Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

38 Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

39 Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Finite energy, U : S 3 S 3 and B = deg(u) Z. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

40 Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Finite energy, U : S 3 S 3 and B = deg(u) Z. Skyrmions from instanton holonomy (Atiyah+ Manton, 1989). ( ) U(x) = P exp A 4 (x, τ)dτ. Yang Mills potential A su(2) for a Yang Mills field F = da + A A on R 4. Baryon number = instanton number. R Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

41 Skyrmions Skyrme model of Baryons. Nonlinear pion field U : R 3,1 SU(2). Energy of static skyrmions. Set R j = U 1 j U su(2). E[U] = 1 ( Tr(R j R j ) + 1 ) 2 8 (Tr([R i, R j ][R i, R j ]) d 3 x > 12π 2 B. R 3 Finite energy, U : S 3 S 3 and B = deg(u) Z. Skyrmions from instanton holonomy (Atiyah+ Manton, 1989). ( ) U(x) = P exp A 4 (x, τ)dτ. Yang Mills potential A su(2) for a Yang Mills field F = da + A A on R 4. Baryon number = instanton number. R 4 S R R3 Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

42 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

43 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

44 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

45 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

46 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

47 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

48 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Charged particles = ALF instantons. Charge = Chern number of asymptotic S 1 bundle. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

49 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Charged particles = ALF instantons. Charge = Chern number of asymptotic S 1 bundle. Neutral particles = compact instantons. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

50 Particles as Gravitational Instantons Gravitational instantons = Riemannian, Einsten four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time. Taub NUT metric g = r + m dr 2 + (r 2 + mr)(dθ 2 + sin θ 2 dφ 2 ) + rm2 r r + m (dψ + cos θdφ)2, where θ [0, π), φ [0, 2π), ψ [0, 4π). Small r: g flat metric on R 4. Large r: Hopf bundle S 3 S 2, Chern class = 1. Asymptotically locally flat (ALF): M S 1 bundle over S 2 at. Particles = gravitational instantons. (Atiyah, Manton, Schroers). Charged particles = ALF instantons. Charge = Chern number of asymptotic S 1 bundle. Neutral particles = compact instantons. Proton, neutron, electron, neutrino. Atiyah Hitchin, CP 2, Taub NUT, S 4. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

51 Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

52 Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Spin connection Λ 2 = so(4) = so(3) so(3). Taub NUT γ = 0. γ + su(2) self dual YM on (M, g) Skyrmion on M/SO(2). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

53 Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Spin connection Λ 2 = so(4) = so(3) so(3). Taub NUT γ = 0. γ + su(2) self dual YM on (M, g) Skyrmion on M/SO(2). A = (1/2)ε ijk γ ij t k, where [t i, t j ] = ε ijk t k. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

54 Skyrmions from gravitational instantons Skyrmion from the holonomy of the spin connection (MD, 2012). Spin connection Λ 2 = so(4) = so(3) so(3). Taub NUT γ = 0. γ + su(2) self dual YM on (M, g) Skyrmion on M/SO(2). A = (1/2)ε ijk γ ij t k, where [t i, t j ] = ε ijk t k. AH, Taub NUT, CP 2 are SO(3) invariant. Pick SO(2) SO(3). ( U(r, ψ, θ) = exp π 3 f j (r)n j t j ), j=1 where n = (cos ψ sin θ, sin ψ sin θ, cos θ) and f 1 = f 2 = r r + m, f 3 = r(r + 2m) (r + m) 2. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

55 Geometry of Taub NUT skyrmion Skyrmion on three space (B, h) = M/SO(2) = H 2 S 1 h = h H 2 + R 2 dψ 2, R : H 2 R. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

56 Geometry of Taub NUT skyrmion Skyrmion on three space (B, h) = M/SO(2) = H 2 S 1 h = h H 2 + R 2 dψ 2, R : H 2 R. Upper half plane: h = dx2 +dy 2 y 2, R 2 = x 2 +y 2 y 2 (m 1 x 2 +y 2 +1) 2 +x 2. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

57 Geometry of Taub NUT skyrmion Skyrmion on three space (B, h) = M/SO(2) = H 2 S 1 h = h H 2 + R 2 dψ 2, R : H 2 R. Upper half plane: h = dx2 +dy 2 y 2, R 2 = Poincare disc D H 2, x + iy = z i iz 1, x 2 +y 2 y 2 (m 1 x 2 +y 2 +1) 2 +x 2. S1 B D Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

58 Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. g = (a 2 /r) 2 dr 2 + a 1 η a 2 η a 3 η 3 2, Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

59 Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. g = (a 2 /r) 2 dr 2 + a 1 η a 2 η a 3 η 2 3, Self-dual spin connection A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

60 Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. g = (a 2 /r) 2 dr 2 + a 1 η a 2 η a 3 η 2 3, Self-dual spin connection A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Topological degree Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

61 Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. Self-dual spin connection g = (a 2 /r) 2 dr 2 + a 1 η a 2 η a 3 η 3 2, A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Topological degree 1 B T N = 2 (integration). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

62 Atiyah Hitchin skyrmion SO(3) invariant metrics. Let a i = a i (r), and dη 1 = η 2 η 3 etc. Self-dual spin connection g = (a 2 /r) 2 dr 2 + a 1 η a 2 η a 3 η 3 2, A = f 1 (r)η 1 t 1 + f 2 (r)η 2 t 2 + f 3 (r)η 3 t 3. Topological degree 1 B T N = 2 (integration). 2 B AH = 1. Set r = 2 π/2 0 1 sin (β/2) 2 sin (τ) 2 2 dτ. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

63 Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

64 Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

65 Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Explicit solutions. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

66 Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Explicit solutions. Particles as four manifolds. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

67 Outlook Solitons (vortices, skyrmions) induced by the geometry of space time. Topological charges (vortex number, baryon number)= Characteristic classes the Levi Civita connection (Euler characteristic, Hirzebruch signature). Explicit solutions. Particles as four manifolds. Thank You. Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December / 13

Abelian vortices from Sinh Gordon and Tzitzeica equations

Abelian vortices from Sinh Gordon and Tzitzeica equations DAMTP-01-1 Abelian vortices from Sinh Gordon and Tzitzeica equations Maciej Dunajski Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3

More information

Singular Monopoles and Instantons on Curved Backgrounds

Singular Monopoles and Instantons on Curved Backgrounds Singular Monopoles and Instantons on Curved Backgrounds Sergey Cherkis (Berkeley, Stanford, TCD) C k U(n) U(n) U(n) Odense 2 November 2010 Outline: Classical Solutions & their Charges Relations between

More information

Self-dual conformal gravity

Self-dual conformal gravity Self-dual conformal gravity Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:1304.7772., Comm. Math. Phys. (2014). Dunajski (DAMTP, Cambridge)

More information

How to recognise a conformally Einstein metric?

How to recognise a conformally Einstein metric? How to recognise a conformally Einstein metric? Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:1304.7772., Comm. Math. Phys. (2014).

More information

Monopoles and Skyrmions. Ya. Shnir. Quarks-2010

Monopoles and Skyrmions. Ya. Shnir. Quarks-2010 Monopoles and Skyrmions Ya. Shnir Quarks-2010 Коломна, Россия, 8 Июня 2010 Outline Abelian and non-abelian magnetic monopoles BPS monopoles Rational maps and construction of multimonopoles SU(2) axially

More information

Kink Chains from Instantons on a Torus

Kink Chains from Instantons on a Torus DAMTP 94-77 arxiv:hep-th/9409181v1 9 Sep 1994 Kink Chains from Instantons on a Torus Paul M. Sutcliffe Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge CB3 9EW,

More information

Solitons and point particles

Solitons and point particles Solitons and point particles Martin Speight University of Leeds July 28, 2009 What are topological solitons? Smooth, spatially localized solutions of nonlinear relativistic classical field theories Stable;

More information

Einstein Maxwell Dilaton metrics from three dimensional Einstein Weyl structures.

Einstein Maxwell Dilaton metrics from three dimensional Einstein Weyl structures. DAMTP-2006 3 Einstein Maxwell Dilaton metrics from three dimensional Einstein Weyl structures. Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce

More information

Transparent connections

Transparent connections The abelian case A definition (M, g) is a closed Riemannian manifold, d = dim M. E M is a rank n complex vector bundle with a Hermitian metric (i.e. a U(n)-bundle). is a Hermitian (i.e. metric) connection

More information

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri Moduli Space of Higgs Bundles Instructor: Lecture Notes for MAT1305 Taught Spring of 2017 Typeset by Travis Ens Last edited January 30, 2017 Contents Lecture Guide Lecture 1 [11.01.2017] 1 History Hyperkähler

More information

How to recognize a conformally Kähler metric

How to recognize a conformally Kähler metric How to recognize a conformally Kähler metric Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:0901.2261, Mathematical Proceedings of

More information

Gravitating vortices, cosmic strings, and algebraic geometry

Gravitating vortices, cosmic strings, and algebraic geometry Gravitating vortices, cosmic strings, and algebraic geometry Luis Álvarez-Cónsul ICMAT & CSIC, Madrid Seminari de Geometria Algebraica UB, Barcelona, 3 Feb 2017 Joint with Mario García-Fernández and Oscar

More information

Simon Salamon. Turin, 24 April 2004

Simon Salamon. Turin, 24 April 2004 G 2 METRICS AND M THEORY Simon Salamon Turin, 24 April 2004 I Weak holonomy and supergravity II S 1 actions and triality in six dimensions III G 2 and SU(3) structures from each other 1 PART I The exceptional

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Electrically and Magnetically Charged Solitons in Gauge Field Th

Electrically and Magnetically Charged Solitons in Gauge Field Th Electrically and Magnetically Charged Solitons in Gauge Field Theory Polytechnic Institute of New York University Talk at the conference Differential and Topological Problems in Modern Theoretical Physics,

More information

The topology of asymptotically locally flat gravitational instantons

The topology of asymptotically locally flat gravitational instantons The topology of asymptotically locally flat gravitational instantons arxiv:hep-th/0602053v4 19 Jan 2009 Gábor Etesi Department of Geometry, Mathematical Institute, Faculty of Science, Budapest University

More information

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ.

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ. Math. Res. Lett. 3 (2006), no., 6 66 c International Press 2006 ENERY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ Katrin Wehrheim Abstract. We establish an energy identity for anti-self-dual connections

More information

arxiv: v1 [hep-th] 9 Sep 2016

arxiv: v1 [hep-th] 9 Sep 2016 DAMTP-2016-65 Complex Geometry of Nuclei and Atoms M. F. Atiyah 1 arxiv:1609.02816v1 [hep-th] 9 Sep 2016 School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait

More information

The geometry of the space of BPS vortex-antivortex pairs

The geometry of the space of BPS vortex-antivortex pairs The geometry of the space of BPS vortex-antivortex pairs Martin Speight (Leeds) joint with Nuno Romão (Augsburg) Math Phys seminar, Cambridge, 16/5/17 Motivation Vortices: simplest topological solitons

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013 DIFFERENTIAL GEOMETRY AND THE QUATERNIONS Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013 16th October 1843 ON RIEMANNIAN MANIFOLDS OF FOUR DIMENSIONS 1 SHIING-SHEN CHERN Introduction.

More information

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

ALF spaces and collapsing Ricci-flat metrics on the K3 surface ALF spaces and collapsing Ricci-flat metrics on the K3 surface Lorenzo Foscolo Stony Brook University Simons Collaboration on Special Holonomy Workshop, SCGP, Stony Brook, September 8 2016 The Kummer construction

More information

arxiv:nlin/ v1 [nlin.si] 4 Dec 2000

arxiv:nlin/ v1 [nlin.si] 4 Dec 2000 Integrable Yang-Mills-Higgs Equations in 3-Dimensional De Sitter Space-Time. arxiv:nlin/24v [nlin.si] 4 Dec 2 V. Kotecha and R. S. Ward Department of Mathematical Sciences, University of Durham, Durham

More information

arxiv:math/ v1 [math.dg] 16 Mar 2003

arxiv:math/ v1 [math.dg] 16 Mar 2003 arxiv:math/0303191v1 [math.dg] 16 Mar 2003 Gravitational Instantons, Confocal Quadrics and Separability of the Schrödinger and Hamilton-Jacobi equations. G. W. Gibbons C.M.S, Cambridge University, Wilberforce

More information

Part III Classical and Quantum Solitons

Part III Classical and Quantum Solitons Part III Classical and Quantum Solitons Based on lectures by N. S. Manton and D. Stuart Notes taken by Dexter Chua Easter 2017 Solitons are solutions of classical field equations with particle-like properties.

More information

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions Durham University Work in collaboration with Matthew Elliot-Ripley June 26, 2015 Introduction to baby Skyrmions in flat space and AdS 3 Discuss

More information

Linear connections on Lie groups

Linear connections on Lie groups Linear connections on Lie groups The affine space of linear connections on a compact Lie group G contains a distinguished line segment with endpoints the connections L and R which make left (resp. right)

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

arxiv:hep-th/ v2 14 Oct 1997

arxiv:hep-th/ v2 14 Oct 1997 T-duality and HKT manifolds arxiv:hep-th/9709048v2 14 Oct 1997 A. Opfermann Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK February

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

Abelian and non-abelian Hopfions in all odd dimensions

Abelian and non-abelian Hopfions in all odd dimensions Abelian and non-abelian Hopfions in all odd dimensions Tigran Tchrakian Dublin Institute for Advanced Studies (DIAS) National University of Ireland Maynooth, Ireland 7 December, 2012 Table of contents

More information

Torus actions and Ricci-flat metrics

Torus actions and Ricci-flat metrics Department of Mathematics, University of Aarhus November 2016 / Trondheim To Eldar Straume on his 70th birthday DFF - 6108-00358 Delzant HyperKähler G2 http://mscand.dk https://doi.org/10.7146/math.scand.a-12294

More information

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

ALF spaces and collapsing Ricci-flat metrics on the K3 surface ALF spaces and collapsing Ricci-flat metrics on the K3 surface Lorenzo Foscolo Stony Brook University Recent Advances in Complex Differential Geometry, Toulouse, June 2016 The Kummer construction Gibbons

More information

Constructing compact 8-manifolds with holonomy Spin(7)

Constructing compact 8-manifolds with holonomy Spin(7) Constructing compact 8-manifolds with holonomy Spin(7) Dominic Joyce, Oxford University Simons Collaboration meeting, Imperial College, June 2017. Based on Invent. math. 123 (1996), 507 552; J. Diff. Geom.

More information

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Thomas Schaefer, North Carolina State University 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5

More information

arxiv: v2 [hep-th] 28 Nov 2018

arxiv: v2 [hep-th] 28 Nov 2018 Self-dual sectors for scalar field theories in ( + ) dimensions L. A. Ferreira, P. Klimas and Wojtek J. Zakrzewski arxiv:88.5v [hep-th] 8 Nov 8 ( ) Instituto de Física de São Carlos; IFSC/USP; Universidade

More information

The Higgs bundle moduli space

The Higgs bundle moduli space The Higgs bundle moduli space Nigel Hitchin Mathematical Institute University of Oxford Hamburg September 8th 2014 Add title here 00 Month 2013 1 re ut on 1977... INSTANTONS connection on R 4, A i (x)

More information

η = (e 1 (e 2 φ)) # = e 3

η = (e 1 (e 2 φ)) # = e 3 Research Statement My research interests lie in differential geometry and geometric analysis. My work has concentrated according to two themes. The first is the study of submanifolds of spaces with riemannian

More information

Ancient solutions to Ricci flow

Ancient solutions to Ricci flow Ancient solutions to Ricci flow Lei Ni University of California, San Diego 2012 Motivations Motivations Ricci flow equation g(t) = 2Ric(g(t)). t Motivations Ricci flow equation g(t) = 2Ric(g(t)). t An

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

arxiv: v1 [physics.gen-ph] 8 Mar 2017

arxiv: v1 [physics.gen-ph] 8 Mar 2017 Geometric Models of Helium M. F. Atiyah arxiv:1703.02532v1 [physics.gen-ph] 8 Mar 2017 School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9

More information

On the BCOV Conjecture

On the BCOV Conjecture Department of Mathematics University of California, Irvine December 14, 2007 Mirror Symmetry The objects to study By Mirror Symmetry, for any CY threefold, there should be another CY threefold X, called

More information

Khovanov Homology And Gauge Theory

Khovanov Homology And Gauge Theory hep-th/yymm.nnnn Khovanov Homology And Gauge Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract In these notes, I will sketch

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Thomas Schaefer, North Carolina State University 0.0 0.0 0.0 0.0 0.0 0.0 with Mithat Ünsal and Erich Poppitz Confinement and the

More information

N = 2 supersymmetric gauge theory and Mock theta functions

N = 2 supersymmetric gauge theory and Mock theta functions N = 2 supersymmetric gauge theory and Mock theta functions Andreas Malmendier GTP Seminar (joint work with Ken Ono) November 7, 2008 q-series in differential topology Theorem (M-Ono) The following q-series

More information

Topological Solitons

Topological Solitons Nicholas Manton DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK email: N.S.Manton@damtp.cam.ac.uk Topological Solitons Lecture notes for the XIII

More information

Anti-Self-Duality and Solitons

Anti-Self-Duality and Solitons Anti-Self-Duality and Solitons Prim Plansangkate Trinity College University of Cambridge Department of Applied Mathematics and Theoretical Physics Faculty of Mathematics Supervisor: Dr Maciej Dunajski

More information

B-FIELDS, GERBES AND GENERALIZED GEOMETRY

B-FIELDS, GERBES AND GENERALIZED GEOMETRY B-FIELDS, GERBES AND GENERALIZED GEOMETRY Nigel Hitchin (Oxford) Durham Symposium July 29th 2005 1 PART 1 (i) BACKGROUND (ii) GERBES (iii) GENERALIZED COMPLEX STRUCTURES (iv) GENERALIZED KÄHLER STRUCTURES

More information

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES arxiv:hep-th/9310182v1 27 Oct 1993 Gerald V. Dunne Department of Physics University of Connecticut 2152 Hillside Road Storrs, CT 06269 USA dunne@hep.phys.uconn.edu

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

A dispersionless integrable system associated to Diff(S 1 ) gauge theory

A dispersionless integrable system associated to Diff(S 1 ) gauge theory DAMTP-2005-26 A dispersionless integrable system associated to Diff(S 1 gauge theory Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce Road,

More information

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ Intro to Geometry and Topology via G 2 10.07.2014 Physics and G 2 -manifolds Bobby Samir Acharya King s College London. µf µν = j ν dϕ = d ϕ = 0 and ICTP Trieste Ψ(1 γ 5 )Ψ The Rich Physics-Mathematics

More information

arxiv:hep-th/ v2 24 Sep 1998

arxiv:hep-th/ v2 24 Sep 1998 Nut Charge, Anti-de Sitter Space and Entropy S.W. Hawking, C.J. Hunter and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom

More information

Donaldson Invariants and Moduli of Yang-Mills Instantons

Donaldson Invariants and Moduli of Yang-Mills Instantons Donaldson Invariants and Moduli of Yang-Mills Instantons Lincoln College Oxford University (slides posted at users.ox.ac.uk/ linc4221) The ASD Equation in Low Dimensions, 17 November 2017 Moduli and Invariants

More information

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation A Variational Analysis of a Gauged Nonlinear Schrödinger Equation Alessio Pomponio, joint work with David Ruiz Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Variational and Topological

More information

Morse theory and stable pairs

Morse theory and stable pairs Richard A. SCGAS 2010 Joint with Introduction Georgios Daskalopoulos (Brown University) Jonathan Weitsman (Northeastern University) Graeme Wilkin (University of Colorado) Outline Introduction 1 Introduction

More information

7 The cigar soliton, the Rosenau solution, and moving frame calculations

7 The cigar soliton, the Rosenau solution, and moving frame calculations 7 The cigar soliton, the Rosenau solution, and moving frame calculations When making local calculations of the connection and curvature, one has the choice of either using local coordinates or moving frames.

More information

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009 THE GEOMETRY OF B-FIELDS Nigel Hitchin (Oxford) Odense November 26th 2009 THE B-FIELD IN PHYSICS B = i,j B ij dx i dx j flux: db = H a closed three-form Born-Infeld action: det(g ij + B ij ) complexified

More information

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory hep-th/9707042 MRI-PHY/P970716 Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory Ashoke Sen 1 2 Mehta Research Institute of Mathematics and Mathematical Physics Chhatnag Road, Jhusi,

More information

Instantons and Donaldson invariants

Instantons and Donaldson invariants Instantons and Donaldson invariants George Korpas Trinity College Dublin IFT, November 20, 2015 A problem in mathematics A problem in mathematics Important probem: classify d-manifolds up to diffeomorphisms.

More information

Metrisability of Painleve equations and Hamiltonian systems of hydrodynamic type

Metrisability of Painleve equations and Hamiltonian systems of hydrodynamic type Metrisability of Painleve equations and Hamiltonian systems of hydrodynamic type Felipe Contatto Department of Applied Mathematics and Theoretical Physics University of Cambridge felipe.contatto@damtp.cam.ac.uk

More information

Solitons, Vortices, Instantons

Solitons, Vortices, Instantons Solitons, Vortices, Instantons Seminarvortrag von David Mroß Universität Bonn 1. Juni 2006 Seminar Theoretische Elementarteilchenphysik SS 06 Structure of the talk Solitons in a nutshell Recap: solitons

More information

Two simple ideas from calculus applied to Riemannian geometry

Two simple ideas from calculus applied to Riemannian geometry Calibrated Geometries and Special Holonomy p. 1/29 Two simple ideas from calculus applied to Riemannian geometry Spiro Karigiannis karigiannis@math.uwaterloo.ca Department of Pure Mathematics, University

More information

A loop of SU(2) gauge fields on S 4 stable under the Yang-Mills flow

A loop of SU(2) gauge fields on S 4 stable under the Yang-Mills flow A loop of SU(2) gauge fields on S 4 stable under the Yang-Mills flow Daniel Friedan Rutgers the State University of New Jersey Natural Science Institute, University of Iceland MIT November 3, 2009 1 /

More information

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41 Contents Preface 1. The structure of the space of the physical states 1 1.1 Introduction......................... 1 1.2 The space of the states of physical particles........ 2 1.3 The Weyl Heisenberg algebra

More information

EFFECTIVE STRING THEORIES AND FIELD THEORIES IN FOUR DIMENSIONS

EFFECTIVE STRING THEORIES AND FIELD THEORIES IN FOUR DIMENSIONS Modern Physics Letters A, Vol. 17, No. 22 (2002) 1445 1453 c World Scientific Publishing Company EFFECTIVE STRING THEORIES AND FIELD THEORIES IN FOUR DIMENSIONS SAZZAD NASIR and ANTTI J. NIEMI Department

More information

A Review of Solitons in Gauge Theories. David Tong

A Review of Solitons in Gauge Theories. David Tong A Review of Solitons in Gauge Theories David Tong Introduction to Solitons Solitons are particle-like excitations in field theories Their existence often follows from general considerations of topology

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Questions arising in open problem sessions in AIM workshop on L 2 -harmonic forms in geometry and string theory

Questions arising in open problem sessions in AIM workshop on L 2 -harmonic forms in geometry and string theory Questions arising in open problem sessions in AIM workshop on L 2 -harmonic forms in geometry and string theory Notes by: Anda Degeratu, Mark Haskins 1 March, 17, 2004 L. Saper as moderator Question [Sobolev-Kondrakov

More information

arxiv: v2 [hep-th] 21 Jun 2018

arxiv: v2 [hep-th] 21 Jun 2018 EMPG-18-10 Hyperbolic vortices and Dirac fields in 2+1 dimensions Calum Ross and Bernd J. Schroers Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-Watt University, Edinburgh

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

V = 1 2 (g ijχ i h j ) (2.4)

V = 1 2 (g ijχ i h j ) (2.4) 4 VASILY PESTUN 2. Lecture: Localization 2.. Euler class of vector bundle, Mathai-Quillen form and Poincare-Hopf theorem. We will present the Euler class of a vector bundle can be presented in the form

More information

R. MacKenzie. Laboratoire de Physique Nucleaire, Universite de Montreal C.P. 6128, succ. centreville, Abstract

R. MacKenzie. Laboratoire de Physique Nucleaire, Universite de Montreal C.P. 6128, succ. centreville, Abstract UdeM-GPP-TH-95-22 Remarks on gauge vortex scattering R. MacKenzie Laboratoire de Physique Nucleaire, Universite de Montreal C.P. 6128, succ. centreville, Montreal, Quebec, Canada, H3C 3J7 PostScript processed

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Geometry of Skyrmions

Geometry of Skyrmions Commun. Math. Phys. Ill, 469-478 (1987) Communications in Mathematical Physics Springer-Verlag 1987 Geometry of Skyrmions N. S. Manton St. John's College, Cambridge CB2 1TP, United Kingdom Department of

More information

Berry s Phase. Erik Lötstedt November 16, 2004

Berry s Phase. Erik Lötstedt November 16, 2004 Berry s Phase Erik Lötstedt lotstedt@kth.se November 16, 2004 Abstract The purpose of this report is to introduce and discuss Berry s phase in quantum mechanics. The quantum adiabatic theorem is discussed

More information

Adiabatic Paths and Pseudoholomorphic Curves

Adiabatic Paths and Pseudoholomorphic Curves ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Adiabatic Paths and Pseudoholomorphic Curves A.G. Sergeev Vienna, Preprint ESI 1676 (2005)

More information

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS JOHN LOTT AND PATRICK WILSON (Communicated

More information

arxiv:gr-qc/ v1 21 Mar 1996

arxiv:gr-qc/ v1 21 Mar 1996 Yang-Mills Inspired Solutions for General Relativity D. Singleton Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000 arxiv:gr-qc/9603031v1 21 Mar 1996 (February 7, 2008) Abstract

More information

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Exact Results in D=2 Supersymmetric Gauge Theories And Applications Exact Results in D=2 Supersymmetric Gauge Theories And Applications Jaume Gomis Miami 2012 Conference arxiv:1206.2606 with Doroud, Le Floch and Lee arxiv:1210.6022 with Lee N = (2, 2) supersymmetry on

More information

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang Mathematical Research Letters 2, 305 310 (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS Shuguang Wang Abstract. It is shown that the quotients of Kähler surfaces under free anti-holomorphic involutions

More information

Riemannian Curvature Functionals: Lecture III

Riemannian Curvature Functionals: Lecture III Riemannian Curvature Functionals: Lecture III Jeff Viaclovsky Park City Mathematics Institute July 18, 2013 Lecture Outline Today we will discuss the following: Complete the local description of the moduli

More information

Some new torsional local models for heterotic strings

Some new torsional local models for heterotic strings Some new torsional local models for heterotic strings Teng Fei Columbia University VT Workshop October 8, 2016 Teng Fei (Columbia University) Strominger system 10/08/2016 1 / 30 Overview 1 Background and

More information

Moduli of heterotic G2 compactifications

Moduli of heterotic G2 compactifications Moduli of heterotic G2 compactifications Magdalena Larfors Uppsala University Women at the Intersection of Mathematics and High Energy Physics MITP 7.3.2017 X. de la Ossa, ML, E. Svanes (1607.03473 & work

More information

Aspects of integrability in classical and quantum field theories

Aspects of integrability in classical and quantum field theories Aspects of integrability in classical and quantum field theories Second year seminar Riccardo Conti Università degli Studi di Torino and INFN September 26, 2018 Plan of the talk PART 1 Supersymmetric 3D

More information

arxiv:hep-th/ v3 25 Sep 2006

arxiv:hep-th/ v3 25 Sep 2006 OCU-PHYS 46 AP-GR 33 Kaluza-Klein Multi-Black Holes in Five-Dimensional arxiv:hep-th/0605030v3 5 Sep 006 Einstein-Maxwell Theory Hideki Ishihara, Masashi Kimura, Ken Matsuno, and Shinya Tomizawa Department

More information

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem PETER B. GILKEY Department of Mathematics, University of Oregon Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem Second Edition CRC PRESS Boca Raton Ann Arbor London Tokyo Contents

More information

Hyperbolic vortices and Dirac fields in 2+1 dimensions

Hyperbolic vortices and Dirac fields in 2+1 dimensions Journal of Physics A: Mathematical and Theoretical PAPER OPEN ACCESS Hyperbolic vortices and Dirac fields in 2+1 dimensions To cite this article: Calum Ross and Bernd J Schroers 2018 J. Phys. A: Math.

More information

LECTURE 3: Quantization and QFT

LECTURE 3: Quantization and QFT LECTURE 3: Quantization and QFT Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 14 November 2013 Outline 1 Classical field theory 2 Schrödinger-Feynman quantization 3 Klein-Gordon Theory Classical

More information

The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature

The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature Symmetry, Integrability and Geometry: Methods and Applications SIGMA 5 2009, 045, 7 pages The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature Enli GUO, Xiaohuan MO and

More information

Cosmic Strings and Topological Defects

Cosmic Strings and Topological Defects Cosmic Strings and Topological Defects Jiawen Liu December 9, 2012 Abstract In this review article, we point out spontaneous symmetry breaking is closely related to the emergence of the topological defects.

More information

Lecture 3: Short Summary

Lecture 3: Short Summary Lecture 3: Short Summary u t t u x x + s in u = 0 sine-gordon equation: Kink solution: Á = 4 arctan exp (x x0 ) Q= Topological charge: Light-cone coordinates: ¼ R dx @@Áx x = (x t) @ @+ Á = sin Á Bäcklund

More information

Mass, quasi-local mass, and the flow of static metrics

Mass, quasi-local mass, and the flow of static metrics Mass, quasi-local mass, and the flow of static metrics Eric Woolgar Dept of Mathematical and Statistical Sciences University of Alberta ewoolgar@math.ualberta.ca http://www.math.ualberta.ca/~ewoolgar Nov

More information

HYPERKÄHLER MANIFOLDS

HYPERKÄHLER MANIFOLDS HYPERKÄHLER MANIFOLDS PAVEL SAFRONOV, TALK AT 2011 TALBOT WORKSHOP 1.1. Basic definitions. 1. Hyperkähler manifolds Definition. A hyperkähler manifold is a C Riemannian manifold together with three covariantly

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 11: CFT continued;

More information

The Strominger Yau Zaslow conjecture

The Strominger Yau Zaslow conjecture The Strominger Yau Zaslow conjecture Paul Hacking 10/16/09 1 Background 1.1 Kähler metrics Let X be a complex manifold of dimension n, and M the underlying smooth manifold with (integrable) almost complex

More information

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Mihai Visinescu Department of Theoretical Physics National Institute for Physics and Nuclear Engineering Horia Hulubei Bucharest,

More information

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011 TWISTORS AND THE OCTONIONS Penrose 80 Nigel Hitchin Oxford July 21st 2011 8th August 1931 8th August 1931 1851... an oblong arrangement of terms consisting, suppose, of lines and columns. This will not

More information