Unsupervised Reduce Order Modeling of Lead- Acid Battery Using Markov Chain Model

Size: px
Start display at page:

Download "Unsupervised Reduce Order Modeling of Lead- Acid Battery Using Markov Chain Model"

Transcription

1 Unsupervised Reduce Order Modeling of Lead- Acid Battery Using Markov Chain Model Ali Akbar Shahbazi PhD Candidate of Mechanical Eng. Department of University of Tehran Vahid Esfahanian Professor of Mechanical Eng. Department of University of Tehran June

2 OUTLINE Introduction Theory Snapshot Data Collection Construction of Reduced Order Subspace Dynamical modeling Projection method Markov chain Results and Discussion Conclusion 2

3 Introduction 3

4 Introduction LEAD-ACID BATTERY (LAB) Lead-Acid Battery (LAB hereafter) is one of the most common energy storage devices 4

5 Introduction LAB SIMULATION AND MODELING Design Decisionmaking tasks Efficient simulation Optimizatio n Monitoring Control 5

6 Introduction LITERATURE REVIEW Author (Year) Description J. Newman and W. Tiedemann (1975) First review of flooded porous electrodes theory H. Gu, T.V. Nguyen, R.E. White (1987) First charge, rest and discharge model for battery simulation W.B. Gu, C.Y. Wang, B.Y. Liaw (1997) First use of Finite Volume Method (FVM) V. Esfahanian, F. Torabi (2006) Using Keller-Box method for 1-D modeling F. Torabi, V. Esfahanian (2011, 2013) Thermal runaway study of lead-acid batteries L. Cai and R. E. White (2009) Implement POD-based ROM for simulation of lithium-ion battery J. Burkardt, M. Gunzburger, and H.C. Lee (2006) Introduction of Clustering concept In ROM A.B. Ansari, V. Esfahanian, F. Torabi (2016) 1-D POD-based ROM of lead-acid battery during a cycle V. Esfahanian, A.B. Ansari, F. Torabi (2015) 1-D POD-based ROM of lead-acid battery during discharge E. Kaiser et al. (2014) Introduce Markov chain dynamical modeling in ROM 6

7 Introduction REDUCED ORDER MODELING (ROM) OF LAB Lead-Acid Battery Simulation CFD simulation Other methods (ENG) Time Consuming Good Accuracy Fast Simulation Less Accuracy Reduced Order Modeling (ROM) 7

8 Introduction REDUCED ORDER MODELING (ROM) OF LAB Reduced Order Modeling Steps Snapshot data collection Construction of Reduced Order Subspace Dynamical Modeling Experiment Simulation Orthogonality Similarity Projection System identification (Markov Chain) 8

9 Theory 9

10 Theory Snapshot data collection SNAPSHOT DATA COLLECTION High-fidelity model FVM solution of 1-D leadacid cell model 10

11 Theory Snapshot data collection CHEMICAL REACTIONS Negative Electrode Positive Electrode discharge 4 charge 4 Pb+HSO PbSO +H 2e discharge 2 4 charg e 4 2 PbO +HSO +3H 2e PbSO +2H O 11

12 Theory Snapshot data collection GOVERNING EQUATIONS (1D ASSUMPTION) Conservation of Charge in Solid eff. s Aj 0 s x0 eff V, 0 s x s x0, L xl I Conservation of Charge in Liquid eff eff. l. D ln c Aj 0 l x x0, L 0 Conservation of Species c eff Aj c. D c a2 t 2F x x 0, L 0 The above equations is solved using Finite Volume Method (FVM) to collect the snapshot data 12

13 Theory Construction of Reduced Order Subspace CONSTRUCTION OF REDUCED ORDER SUBSPACE ROM field Approximation N (n), t a t x v x n 1 n POD POD Based ROM 1 M (1) (2) ( ) (n),,..., N M N v 2 m 1 m a n 1 n t x,,..., argmin,,..., (1),opt (2),opt ( N),opt (1) (2) ( N) POD (i) subjected to, (j) 1 0 i j i j RO n m m1 M Cluster Based ROM C v, n 1,..., N C C, i j i j N M n1cn vm m1 C v : v v (n) n m m m (1) (2) ( N) N ( n) v n1 C m M,,..., v (1),opt (2),opt ( ),opt (1) (2) ( ),,..., N N argmin ROM,,..., (i) m n 2 13

14 Theory Dynamical Modeling DYNAMICAL MODELING Goal Determining time variation of modes amplitude Dynamical Modeling Projection method System identification methods like Markov chain model System identification refers to extracting information or building a mathematical model of a dynamical system from measured data 14

15 Theory Dynamical Modeling PROJECTION METHOD Concept This method projects the governing equations onto the reduced order subspace Like tracking a dynamic shadow of a trajectory vx, t t da t x Projection Method, ts x, t v x N N n (n) n x n1 dt n1 (n) x a t x S( x, t) d a dt a t, (i) (j) ij (i) (j) ij x, i, j 1,..., (i) i, S N 15

16 Theory Dynamical Modeling MARKOV CHAIN MODEL Previous Works At the first time Eckhardt group uses Markov model for Statistical analysis of coherent structures pipe flow. (2004 & 2007) Kaiser et al. (2014) used Markov chain model for dynamical modeling in ROM Advantages of Markov Model The dynamical behavior of the system directly from snapshot data The computational time is reduced comparing with the projection technique The model could be handled in an unsupervised manner unsupervised means that it can be used for any physics with different governing equation 16

17 Theory Dynamical Modeling MARKOV CHAIN MODEL Definition Markov chain is a stochastic model describing a random process that has Markov property Markov property (memoryless property ) property of a random process in which the probability of next event depends only on the present event and conditionally is independent of previous events X i X i, X i,, X i X i X i n1 n n n n1 n1 n n 17

18 Theory Dynamical Modeling MARKOV CHAIN MODEL Transition Matrix The element P ij in the matrix P denotes the probability of moving from state i to state j or P j i in the state space. The transition matrix P ij is defined as the probability of moving from cluster C i to cluster C j in one forward time-step P ij o o ij i 18

19 Theory Dynamical Modeling MARKOV CHAIN MODEL Markov Model in ROM The coefficient a in the ROM approximation is obtained from transition matrix multiplication. ROM field Approximation n 1 n 1N N1 N (n), t a t x a v x k1 k a P a k1 k 0 a P a 19

20 Results and Discussion 20

21 Results and Discussion VALIDATION AND VERIFICATION Test-Case Gu et al. (1987) Reproduced Gu et al. (1997) Esfahanian and Torabi (2006) Figure 3: Cell voltage during discharge (grid size=64) 21

22 Results and Discussion VALIDATION AND VERIFICATION Table 1: Performance of different dynamical models Method Snapshot Dim. Run time (s) Speed up factor RMSAE 1 FVM Ref Ref CROM + Projection E-2 OCROM + Projection E-2 CROM + Markov E-1 OCROM + Markov E-1 FVM Ref Ref CROM + Projection E-3 OCROM + Projection E-3 CROM + Markov E-2 OCROM + Markov E-2 22

23 CONCLUSIONS ROM of LAB Snapshot data: 1D FVM solution Basis Construction: Similarity approach (Clustering) Dynamical modeling: Projection and Markov chain Results The results show good agreement with previous results Markov model is about 2-4 times faster than projection technique 23

24 Thanks for your attention 24

Three-Dimensional Numerical Simulation of Lead-Acid Battery

Three-Dimensional Numerical Simulation of Lead-Acid Battery 1 Three--Dimensional Numerical Simulation Three of Lead Lead--Acid Battery Vahid Esfahanian Hamid Afshari Arman Pouyaei Amir Babak Ansari Vehicle, Fuel and Environment Research Institute (VFRI) Department

More information

NUMERICAL SIMULATION OF ACID STRATIFICATION IN LEAD-ACID BATTERIES

NUMERICAL SIMULATION OF ACID STRATIFICATION IN LEAD-ACID BATTERIES NUMERICAL SIMULATION OF ACID STRATIFICATION IN LEAD-ACID BATTERIES Vahid Esfahanian 1, Farschad Torabi 1 Professor, School of Mechanical Engineering, University of Tehran, Corresponding author Email: evahid@ut.ac.ir

More information

Model Order Reduction for Battery Simulation. Xiao Hu, PhD Confidence by Design Detroit June 5, 2012

Model Order Reduction for Battery Simulation. Xiao Hu, PhD Confidence by Design Detroit June 5, 2012 Model Order Reduction for Battery Simulation Xiao Hu, PhD Confidence by Design Detroit June 5, 202 Outline ANSYS model order reduction (MOR) technique Different types of battery simulation Transfer function

More information

Machine Learning Applied to 3-D Reservoir Simulation

Machine Learning Applied to 3-D Reservoir Simulation Machine Learning Applied to 3-D Reservoir Simulation Marco A. Cardoso 1 Introduction The optimization of subsurface flow processes is important for many applications including oil field operations and

More information

Today. Electrochemistry in the World Batteries Fuel Cells Corrosion

Today. Electrochemistry in the World Batteries Fuel Cells Corrosion Today Electrochemistry in the World Batteries Fuel Cells Corrosion This is the most impractical 1.1 V battery X 1.1 V volt meter How can we get rid of the beaker and salt bridge? Can we use this to make

More information

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a We re going to calculate the open circuit voltage of two types of electrochemical system: polymer electrolyte membrane (PEM) fuel cells and lead-acid batteries. To do this, we re going to make use of two

More information

Battery Design Studio Update

Battery Design Studio Update Advanced Thermal Modeling of Batteries Battery Design Studio Update March 20, 2012 13:30 13:55 New Features Covered Today 3D models Voltage dependent diffusion Let s start with brief introduction to Battery

More information

3. Potentials and thermodynamics

3. Potentials and thermodynamics Electrochemical Energy Engineering, 2012 3. Potentials and thermodynamics Learning subject 1. Electrochemical reaction 2. Thermodynamics and potential 3. Nernst equation Learning objective 1. To set up

More information

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Journal of Power Sources 165 (2007 880 886 Short communication Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Qi Zhang, Ralph E. White Center

More information

German Aerospace Center (DLR)

German Aerospace Center (DLR) German Aerospace Center (DLR) AEROGUST M30 Progress Meeting 23-24 November 2017, Bordeaux Presented by P. Bekemeryer / J. Nitzsche With contributions of C. Kaiser 1, S. Görtz 2, R. Heinrich 2, J. Nitzsche

More information

Computational fluid dynamic modeling of Nickel/Metal Hydride (Ni/MH) Battery during Charge Cycle

Computational fluid dynamic modeling of Nickel/Metal Hydride (Ni/MH) Battery during Charge Cycle Computational fluid dynamic modeling of ckel/metal Hydride (/) Battery during Charge Cycle NABI JAHANTIGH, EBRAHIM AFSHARI Department of Mechanical Engineering Zabol University Zabol, Zabol University

More information

On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010

On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010 1. Introduction On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010 There are claims that charging of lead-acid batteries from the bemf of certain magnetic motors is an overunity process,

More information

Towards Reduced Order Modeling (ROM) for Gust Simulations

Towards Reduced Order Modeling (ROM) for Gust Simulations Towards Reduced Order Modeling (ROM) for Gust Simulations S. Görtz, M. Ripepi DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany Deutscher Luft und Raumfahrtkongress 2017 5. 7. September

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information

Fabrication of Porous Hollow Glass Microspheres as additives for Lead Acid Battery. Yuqun Xie University of Idaho Department of Chemistry

Fabrication of Porous Hollow Glass Microspheres as additives for Lead Acid Battery. Yuqun Xie University of Idaho Department of Chemistry Fabrication of Porous Hollow Glass Microspheres as additives for Lead Acid Battery Yuqun Xie University of Idaho Department of Chemistry 1 Outline Why Lead Acid Battery (LAB) What limits the performance

More information

THERMAL ELECTROCHEMICAL DYNAMIC MODELING OF SEALED LEAD ACID BATTERIES. Kevin Siniard

THERMAL ELECTROCHEMICAL DYNAMIC MODELING OF SEALED LEAD ACID BATTERIES. Kevin Siniard THERMAL ELECTROCHEMICAL DYNAMIC MODELING OF SEALED LEAD ACID BATTERIES Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

Redox reactions Revision galvanic cells and fuel cells Lesson 7 Revise fuel cells by visiting the link below. www.dynamicscience.com.au/tester/solutions1/chemistry/redox/fuelcl.html 1) A fuel cell uses

More information

Investigation of acid stratification in lead-acid batteries

Investigation of acid stratification in lead-acid batteries Investigation of acid stratification in lead-acid batteries Development of an electrochemical sensor array for online measurement of acid stratification Abderrezak Hammouche, Juergen Bauer, Stephan A.

More information

Cells filling Cells filling - Final step of cell assembly: the last but not the least

Cells filling Cells filling - Final step of cell assembly: the last but not the least EUROPEAN LI-ION BATTERY ADVANCED MANUFACTURING FOR ELECTRIC VEHICLES Cells filling Cells filling - Final step of cell assembly: the last but not the least Cells filling Cells filling - Final step of cell

More information

Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates

Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates Preprints of the 19th World Congress The International Federation of Automatic Control Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates Sohel

More information

Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery Carmelo Speltino, Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract In this work an experimental

More information

Electrochemical cells. Section 21.1

Electrochemical cells. Section 21.1 Electrochemical cells Section 21.1 Electrochemical processes Chemical process either release energy or absorb energy This does not have to be solely heat or light - sometimes it can be in the form of electricity

More information

Suboptimal Open-loop Control Using POD. Stefan Volkwein

Suboptimal Open-loop Control Using POD. Stefan Volkwein Institute for Mathematics and Scientific Computing University of Graz, Austria PhD program in Mathematics for Technology Catania, May 22, 2007 Motivation Optimal control of evolution problems: min J(y,

More information

Electrode half-equation. H 2O(l)

Electrode half-equation. H 2O(l) Q1.This table shows some standard electrode potential data. Electrode half-equation E ϴ / V Au + (aq) + e Au(s) +1.68 O 2(g) + 2H + (aq) + 2e H 2O(l) +1.23 Ag + (aq) + e Ag(s) +0.80 Fe 3+ (aq) + e Fe 2+

More information

Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis

Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis Utsav Kumar Atanu K. Metya Jayant K. Singh Department of Chemical Engineering IIT Kanpur INTRODUCTION Christensen

More information

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop Chapter 9 Oxidation-Reduction Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Oxidation Historically, oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn

More information

Chapter 21 Electrochemistry

Chapter 21 Electrochemistry Chapter 21 Electrochemistry - electrochemistry and electrochemical processes are some of the most important sources of power that we have - batteries - much publicized hydrogen fuel cells - photosynthesis

More information

ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET

ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET ENHANCEMENT OF CONVECTIVE HEAT TRANSFER IN INTERNAL FLOWS USING AN ELECTRICALLY-INDUCED CORONA JET Reza Baghaei Lakeh Ph.D. Candidate PRESENTATION OUTLINE Corona Discharge Corona Wind and Ion-Drag Flows

More information

Thermodynamics: Lecture 6

Thermodynamics: Lecture 6 Thermodynamics: Lecture 6 Chris Glosser March 14, 2001 1 OUTLINE I. Chemical Thermodynamics (A) Phase equilibrium (B) Chemical Reactions (C) Mixing and Diffusion (D) Lead-Acid Batteries 2 Chemical Thermodynamics

More information

A Boundary Condition for Porous Electrodes

A Boundary Condition for Porous Electrodes Electrochemical Solid-State Letters, 7 9 A59-A63 004 0013-4651/004/79/A59/5/$7.00 The Electrochemical Society, Inc. A Boundary Condition for Porous Electrodes Venkat R. Subramanian, a, *,z Deepak Tapriyal,

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

Lab-Report Control Engineering. Proportional Control of a Liquid Level System

Lab-Report Control Engineering. Proportional Control of a Liquid Level System Lab-Report Control Engineering Proportional Control of a Liquid Level System Name: Dirk Becker Course: BEng 2 Group: A Student No.: 9801351 Date: 10/April/1999 1. Contents 1. CONTENTS... 2 2. INTRODUCTION...

More information

Dynamics of Heating and Cooling Loads: Models

Dynamics of Heating and Cooling Loads: Models Dynamics of Heating and Cooling Loads: Models An Overview of Modelling of Thermostatically Controlled Load Presentation at Smart Grid Journal Club Xinbo Geng Texas A&M University gengxinbo@gmail.com April.02.2015

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Model realiza+on and model reduc+on for quantum systems

Model realiza+on and model reduc+on for quantum systems Model realiza+on and model reduc+on for quantum systems Mohan Sarovar Scalable and Secure Systems Research Sandia Na+onal Laboratories, Livermore, USA Sandia National Laboratories is a multi-program laboratory

More information

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018 M Ü N S T E R Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models Mario Ohlberger, Stephan Rave living knowledge ECMI 2018 Budapest June 20, 2018 M Ü N S T E R Reduction of Pore-Scale

More information

Remaining Useful Performance Analysis of Batteries

Remaining Useful Performance Analysis of Batteries Remaining Useful Performance Analysis of Batteries Wei He, Nicholas Williard, Michael Osterman, and Michael Pecht Center for Advanced Life Engineering, University of Maryland, College Park, MD 20742, USA

More information

Modeling lithium/hybrid-cathode batteries

Modeling lithium/hybrid-cathode batteries Available online at www.sciencedirect.com Journal of Power Sources 174 (2007) 872 876 Short communication Modeling lithium/hybrid-cathode batteries Parthasarathy M. Gomadam a,, Don R. Merritt a, Erik R.

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Internal resistance and temperature change during overdischarge

Internal resistance and temperature change during overdischarge J. Electrochem. Sci. Eng. 8(2) (2018) 129-139; DOI: http://dx.doi.org/10.5599/jese.469 Original scientific paper Open Access : : ISSN 1847-9286 Internal resistance and temperature change during overdischarge

More information

Chapter 7. Oxidation-Reduction Reactions

Chapter 7. Oxidation-Reduction Reactions Chapter 7 Oxidation-Reduction Reactions Chapter Map Oxidation Historically oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn 2Zn 2+ + 4e O + 2e O 2 or O 2 + 4e 2O 2 Oxidation

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Battery Design LLC. Overview of the. LLIBTA 2008 Tampa, Fl

Battery Design LLC. Overview of the. LLIBTA 2008 Tampa, Fl Overview of the Life of Li-Ion Batteries Robert Spotnitz Tuesday May 13, 2008 Tampa, Fl Overview The Importance of Battery Life Life Models Loss of Cyclable Lithium Li Loss through SEI Growth Site Loss

More information

Modeling the next battery generation: Lithium-sulfur and lithium-air cells

Modeling the next battery generation: Lithium-sulfur and lithium-air cells Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz

More information

Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter

Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter Carmelo Speltino, Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract In this

More information

NUMERICAL ANALYSIS ON THERMAL ENERGY STORAGE TANK FILLED WITH PHASE CHANGE MATERIAL

NUMERICAL ANALYSIS ON THERMAL ENERGY STORAGE TANK FILLED WITH PHASE CHANGE MATERIAL NUMERICAL ANALYSIS ON THERMAL ENERGY STORAGE TANK FILLED WITH PHASE CHANGE MATERIAL Uday Maruti Jad PG Student, Department of Mechanical Engineering Rajarambapu Institute of Technology Rajaramnagar, India.

More information

Dry Cell: a galvanic cell with the electrolyte contained in a paste thickened by starch. anode and an inert graphite cathode.

Dry Cell: a galvanic cell with the electrolyte contained in a paste thickened by starch. anode and an inert graphite cathode. 1 BATTERIES Text Pages: 764-766, 787,788 Battery: a set of galvanic cells connected in series - The negative electrode of one cell is connected to the positive electrode of the next cell - The total voltage

More information

Answer Key. Chapter 23. c. What is the current through each resistor?

Answer Key. Chapter 23. c. What is the current through each resistor? Chapter 23. Three 2.0- resistors are connected in series to a 50.0- power source. a. What is the equivalent resistance of the circuit? R R R 2 R 3 2.0 2.0 2.0 36.0 b. What is the current in the circuit?

More information

To keep things simple, let us just work with one pattern. In that case the objective function is defined to be. E = 1 2 xk d 2 (1)

To keep things simple, let us just work with one pattern. In that case the objective function is defined to be. E = 1 2 xk d 2 (1) Backpropagation To keep things simple, let us just work with one pattern. In that case the objective function is defined to be E = 1 2 xk d 2 (1) where K is an index denoting the last layer in the network

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Nano Structured RGO coated TiO 2 Negative Electrode Additive For Advanced Lead-Acid Battery

Nano Structured RGO coated TiO 2 Negative Electrode Additive For Advanced Lead-Acid Battery Nano Structured RGO coated Negative Electrode Additive For Advanced Lead-Acid Battery Vangapally Naresh, Swati Jindal, S.A. Gaffor, Surendra K.Martha* Department of Chemistry Indian Institute of Technology

More information

MODELLING AND EVALUATION OF VALVE-REGULATED LEAD-ACID BATTERIES

MODELLING AND EVALUATION OF VALVE-REGULATED LEAD-ACID BATTERIES Helsinki University of Technology Control Engineering Laboratory Espoo 2004 Report 143 MODELLING AND EVALUATION OF VALVE-REGULATED LEAD-ACID BATTERIES Ander Tenno TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN

More information

CHEM J-12 June 2013

CHEM J-12 June 2013 CHEM1101 2013-J-12 June 2013 In concentration cells no net chemical conversion occurs, however a measurable voltage is present between the two half-cells. Explain how the voltage is produced. 2 In concentration

More information

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte 10.1071/CH15154_AC CSIRO 2015 Australian Journal of Chemistry 2015, 68 (12), 1911-1917 Supplementary Material Improving cycling performance of LiMn 2 O 4 battery by adding an ester functionalized ionic

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data

Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data Human Mobility Pattern Prediction Algorithm using Mobile Device Location and Time Data 0. Notations Myungjun Choi, Yonghyun Ro, Han Lee N = number of states in the model T = length of observation sequence

More information

Operational modal analysis using forced excitation and input-output autoregressive coefficients

Operational modal analysis using forced excitation and input-output autoregressive coefficients Operational modal analysis using forced excitation and input-output autoregressive coefficients *Kyeong-Taek Park 1) and Marco Torbol 2) 1), 2) School of Urban and Environment Engineering, UNIST, Ulsan,

More information

Charging and Transport Dynamics of a Flow-

Charging and Transport Dynamics of a Flow- Charging and Transport Dynamics of a Flow- Through Electrode Capacitive Deionization System Supporting information Yatian Qu, a,b Patrick G. Campbell, b Ali Hemmatifar, a Jennifer M. Knipe, b Colin K.

More information

DISPERSION IN POROUS MEDIA FOR MULTICOMPONENT SYSTEMS. Introduction. Theory

DISPERSION IN POROUS MEDIA FOR MULTICOMPONENT SYSTEMS. Introduction. Theory DISPERSION IN POROUS MEDIA FOR MULTICOMPONENT SYSTEMS Quintard M., IMFT, Toulouse-France Bletzacker, L., IMFT, Toulouse-France Chenu D., IMFT, Toulouse-France Whitaker S., UCD, Davis Introduction In this

More information

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s)

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s) 12.05 Galvanic Cells 1. In an operating voltaic cell, reduction occurs A) at the anode B) at the cathode C) in the salt bridge D) in the wire 2. Which process occurs in an operating voltaic cell? A) Electrical

More information

7. Shortest Path Problems and Deterministic Finite State Systems

7. Shortest Path Problems and Deterministic Finite State Systems 7. Shortest Path Problems and Deterministic Finite State Systems In the next two lectures we will look at shortest path problems, where the objective is to find the shortest path from a start node to an

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer

Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer Figure 1 The availability of low-cost, high-capacity energy storage technology could profoundly change

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

New universal Lyapunov functions for nonlinear kinetics

New universal Lyapunov functions for nonlinear kinetics New universal Lyapunov functions for nonlinear kinetics Department of Mathematics University of Leicester, UK July 21, 2014, Leicester Outline 1 2 Outline 1 2 Boltzmann Gibbs-Shannon relative entropy (1872-1948)

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model 17th EEE nternational Conference on Control Applications Part of 2008 EEE Multi-conference on Systems and Control San Antonio, Texas, USA, September 3-5, 2008 ThB01.3 Lithium-on battery State of Charge

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS

MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS L. X. Wang 1 M. Willatzen 1 R. V. N. Melnik 1,2 Abstract The dynamics of reciprocal transducer systems is modelled

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

In this experiment, the concept of electric field will be developed by

In this experiment, the concept of electric field will be developed by Physics Equipotential Lines and Electric Fields Plotting the Electric Field PURPOSE MATERIALS 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer In this experiment, the concept of electric

More information

A concentration fluctuation model for virtual testing of detection systems

A concentration fluctuation model for virtual testing of detection systems A concentration fluctuation model for virtual testing of detection systems Presented by: Dr Martyn Bull and Dr Robert Gordon Contents Rob Gordon - Overview Definition of concentration fluctuations Why

More information

Computational model of a PEM fuel cell with serpentine gas flow channels

Computational model of a PEM fuel cell with serpentine gas flow channels Journal of Power Sources 130 (2004) 149 157 Computational model of a PEM fuel cell with serpentine gas flow channels Phong Thanh Nguyen, Torsten Berning 1, Ned Djilali Institute for Integrated Energy Systems,

More information

Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v I. Introduction

Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v I. Introduction Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v.1.16 I. Introduction Oxidation/reduction chemistry is at the heart of important chemical processes involving electron transfer.

More information

INDUCE NANOSTRUCTURES WITH ELECTRIC FIELDS

INDUCE NANOSTRUCTURES WITH ELECTRIC FIELDS INDUCE NANOSTRUCTURES WITH ELECTRIC FIELDS David Pei With special thanks to my advisor: Wei Lu Abstract This semester, I induced different nanoparticles with electric fields to observe their behavior under

More information

CHEM Principles of Chemistry II. Chapter 17 - Electrochemistry

CHEM Principles of Chemistry II. Chapter 17 - Electrochemistry CHEM 1212 - Principles of Chemistry II Chapter 17 - Electrochemistry electrochemistry is best defined as the study of the interchange of chemical and electrical energy 17.1 Galvanic Cells an oxidation-reduction

More information

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion Supporting Information A Scalable Synthesis of Few-layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-performance Li and Na Ion Battery Anodes Seung-Keun Park, a,b Jeongyeon Lee,

More information

Approximation of Geometric Data

Approximation of Geometric Data Supervised by: Philipp Grohs, ETH Zürich August 19, 2013 Outline 1 Motivation Outline 1 Motivation 2 Outline 1 Motivation 2 3 Goal: Solving PDE s an optimization problems where we seek a function with

More information

Electrochemistry and battery technology Contents

Electrochemistry and battery technology Contents Electrochemistry and battery technology Contents Introduction Redox overview voltaic cells, electrolytic cells, fuel cells, Primary and secondary batteries. Other batteries; Construction, working and applications

More information

Proper Orthogonal Decomposition in PDE-Constrained Optimization

Proper Orthogonal Decomposition in PDE-Constrained Optimization Proper Orthogonal Decomposition in PDE-Constrained Optimization K. Kunisch Department of Mathematics and Computational Science University of Graz, Austria jointly with S. Volkwein Dynamic Programming Principle

More information

CHEM J-8 June /01(a)

CHEM J-8 June /01(a) CHEM1001 2012-J-8 June 2012 22/01(a) A galvanic cell has the following cell reaction: D(s) + 2Zn 2+ (aq) 2Zn(s) + D 4+ (aq) Write the overall cell reaction in shorthand cell notation. E = 0.18 V 8 D(s)

More information

Oxidation and Reduction. Oxidation and Reduction

Oxidation and Reduction. Oxidation and Reduction Oxidation and Reduction ϒ When an element loses an electron, the process is called oxidation: Na(s) Na + (aq) + e - ϒ The net charge on an atom is called its oxidation state in this case, Na(s) has an

More information

Thermal analysis of lithium-ion batteries

Thermal analysis of lithium-ion batteries Journal of Power Sources 140 (2005) 111 124 Thermal analysis of lithium-ion batteries S.C. Chen, C.C. Wan, Y.Y. Wang Department of Chemical Engineering, Tsing-Hua University, Hsin-Chu 300, Taiwan Received

More information

Physics 360 Review 3

Physics 360 Review 3 Physics 360 Review 3 The test will be similar to the second test in that calculators will not be allowed and that the Unit #2 material will be divided into three different parts. There will be one problem

More information

Seeing inside lead-acid batteries using neutron imaging. J. M. Campillo-Robles, D. Goonetilleke, N. Sharma, D. Soler, U. Garbe, P.

Seeing inside lead-acid batteries using neutron imaging. J. M. Campillo-Robles, D. Goonetilleke, N. Sharma, D. Soler, U. Garbe, P. Seeing inside lead-acid batteries using neutron imaging J. M. Campillo-Robles, D. Goonetilleke, N. Sharma, D. Soler, U. Garbe, P. Türkyilmaz 1 2 Causes of aging - Electrode degradation: sulfating, corrosion,

More information

Improvement of Reduced Order Modeling based on Proper Orthogonal Decomposition

Improvement of Reduced Order Modeling based on Proper Orthogonal Decomposition ICCFD5, Seoul, Korea, July 7-11, 28 p. 1 Improvement of Reduced Order Modeling based on Proper Orthogonal Decomposition Michel Bergmann, Charles-Henri Bruneau & Angelo Iollo Michel.Bergmann@inria.fr http://www.math.u-bordeaux.fr/

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells There are two types: Galvanic and Electrolytic Galvanic Cell: a cell in which a is used to produce electrical energy, i.e., Chemical energy is transformed into Electrical energy.

More information

Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications

Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications Energies 2014, 7, 7586-7601; doi:10.3390/en7117586 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery

More information

Battery Abuse Case Study Analysis Using LS-DYNA

Battery Abuse Case Study Analysis Using LS-DYNA 14 th International LS-DYNA Users Conference Session: Electromagnetic Battery Abuse Case Study Analysis Using LS-DYNA James Marcicki 1, Alexander Bartlett 1, Xiao Guang Yang 1, Valentina Mejia 1, Min Zhu

More information

Krylov Subspace Methods for Nonlinear Model Reduction

Krylov Subspace Methods for Nonlinear Model Reduction MAX PLANCK INSTITUT Conference in honour of Nancy Nichols 70th birthday Reading, 2 3 July 2012 Krylov Subspace Methods for Nonlinear Model Reduction Peter Benner and Tobias Breiten Max Planck Institute

More information

Multiphysics modeling of thermal batteries

Multiphysics modeling of thermal batteries Multiphysics modeling of thermal batteries Scott A. Roberts, Ph.D. Thermal/Fluid Component Sciences Department Sandia National Laboratories, Albuquerque, NM The Future of Munitions Batteries Workshop Army

More information

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

More information

MATH Linear Algebra

MATH Linear Algebra MATH 304 - Linear Algebra In the previous note we learned an important algorithm to produce orthogonal sequences of vectors called the Gramm-Schmidt orthogonalization process. Gramm-Schmidt orthogonalization

More information

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

Kirchhoff's Laws I 2 I 3. junc. loop. loop -IR +IR 2 2 V P I V I R R R R R C C C. eff R R R C C C. eff 3.0

Kirchhoff's Laws I 2 I 3. junc. loop. loop -IR +IR 2 2 V P I V I R R R R R C C C. eff R R R C C C. eff 3.0 V Kirchhoff's Laws junc j 0 1 2 3 - -V + +V - + loop V j 0 2 2 V P V - + loop eff 1 2 1 1 1 eff 1 2 1 1 1 C C C eff C C C eff 1 2 1 2 3.0 Charges in motion Potential difference V + E Metal wire cross-section

More information

Advanced Diagnostics for Testing the Impact of Electrolyte Additives on Li-Ion Batteries

Advanced Diagnostics for Testing the Impact of Electrolyte Additives on Li-Ion Batteries Advanced Diagnostics for Testing the Impact of Electrolyte Additives on Li-Ion Batteries Chris Burns, Nupur Sinha and Jeff Dahn Dalhousie University, Halifax, Canada Kevin Eberman, Ang Xiao and Bill Lamanna

More information

Development of a Battery Energy Loss Observer Based on Improved Equivalent Circuit Modelling

Development of a Battery Energy Loss Observer Based on Improved Equivalent Circuit Modelling Development of a Battery Energy Loss Observer Based on Improved Equivalent Circuit Modelling Ahmed M. Fares 1,2, Christian Klumpner 1, Mark Sumner 1 1 UNIVERSITY OF NOTTINGHAM, Nottingham NG7 2RD, United

More information