Model Order Reduction for Battery Simulation. Xiao Hu, PhD Confidence by Design Detroit June 5, 2012

Size: px
Start display at page:

Download "Model Order Reduction for Battery Simulation. Xiao Hu, PhD Confidence by Design Detroit June 5, 2012"

Transcription

1 Model Order Reduction for Battery Simulation Xiao Hu, PhD Confidence by Design Detroit June 5, 202

2 Outline ANSYS model order reduction (MOR) technique Different types of battery simulation Transfer function based MOR (aka LTI method) System matrix based MOR Conclusion 2

3 ANSYS MOR Techniques Model order reduction (MOR) for linear problems Transfer function based (or LTI method) System matrix based Model order reduction (MOR) for non-linear problems Proper orthogonal decomposition (POD) 3

4 ANSYS MOR Techniques Model order reduction (MOR) for linear problems Transfer function based (or LTI method) System matrix based Model order reduction (MOR) for non-linear problems Proper orthogonal decomposition (POD) 4

5 Different Types of Battery Simulations Electrical circuit model Battery system level thermal management simulation Battery P2D electrochemistry model Battery 3-D micro-scale electrochemistry model Mechanical, aging, Li + Jump Li+ Li + Li x C 6 e Li + e Lix -Metal-oxide 5

6 MOR for Battery Simulations Battery system level thermal management simulation Battery P2D electrochemistry model Li + Li x C 6 e Li + Jump Li+ Li + e Lix -Metal-oxide Li + Li + Li + Jump Li + e Li x C 6 e Li x -Metal-oxide 6

7 Motivation of Using MOR for Battery System Level Thermal Management CFD as a general thermal analysis tool is accurate Can be expensive for large system level repeated transient CFD analysis MOR can significantly reduce the model size for system level thermal analysis 7

8 Battery Thermal Management Using CFD Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing Front view of the pack with the two bricks assembled and inlet busbar Velocity contours of airflow through the brick, inlet and outlet plenum Airflow path into the battery pack. D. Ghosh, P. D. Maguire, and D. X. Zhu, " Design and CFD Simulation of a Battery Module for a Hybrid Electric Vehicle Battery Pack, SAE D. Ghosh, 20 K. King, ANSYS, B. Schwemmin, Inc. D. June Zhu, 7, Full 202 Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing, SAE Airflow path and air outlet

9 Introduction to Transfer Function Based MOR Input DT LTI Output This is a Discrete Time example. 0 Impulse Input t LTI Impulse response t 2 0 Input t LTI Output 2 3 t 0 Input t LTI Output t 2 0 Input t LTI Output t 9

10 Introduction to Transfer Function Based MOR Input Output of a LTI system is completely LTI Output characterized by its impulse response *! 0 Input t LTI 2 2 If two LTI 0 systems 2 3 t have the same impulse LTI 0 Impulse t Input response, response the two systems are equivalent Output 2 3 t 0 Input t Make a small LTI model have the 2 same LTI impulse t response as the Output 0 LTI t 0 modeled large LTI system! Input Output t 0 * Under the condition of initial rest

11 Why Is It Called Transfer Function Based? Impulse response, step response, or system transfer function contains the same amount of information. Laplace transfer of impulse response is system transfer function. Time derivative of step response is impulse response.

12 Three Approaches Are Possible Make sure the reduced model has the same impulse response as the original model Make sure the reduced model has the same step response as the original model Make sure the reduced model has the same transfer function as the original model 2

13 Two Approaches Are Implemented Step response of the reduced model is curvefitted to that of the original model in the timedomain Used in current Simplorer 0 Transfer function of the reduced model is curve-fitted to that of the original model in the frequency-domain Will be added in future Simplorer 3

14 LTI Modeling Using Simplorer 0. Create step responses From CFD / Test 2. Generate.simpinfo file Automatic using Icepak 3. Extract LTI model Use Simplorer 4. Simulate inside Simplorer 4

15 GM Battery Module Example Using LTI Modeling MOR is Used to Drastically Reduce Runtime of Long Transient Simulations The LTI model gives the same results as CFD. The LTI model runs in less than a few seconds while the CFD runs 2 hours on one single CPU.. X. Hu, S. Lin, S. Stanton, and W. Lian, "A Foster Network Thermal Model for HEV/EV Battery Modeling," IEEE Trans. on Industry Appl., vol. 47, no. 4, p , X. Hu, S. Lin, S. Stanton, W. Lian, A State Space Thermal Model for HEV/EV Battery Modeling", SAE X. Hu, S. Lin, S. Stanton, and W. Lian, A State Space Thermal Model for HEV/EV Non-Linear and 5 Time-Varying Battery Thermal Systems, IMECE , 20

16 LTI Modeling for Non-Linear Problems GM Module Non-linear CFD: Ideal gas law plus temperature dependent properties are used. Full Navier- Stokes equations are solved LTI: Assumes the system is linear and time invariant. A speed-up factor of 0,000 is observed. Huge time saving if the error, which is about.4%, is acceptable. 6

17 Battery Example with Prismatic Cells The battery module has 20 prismatic cells. Water cooling is used. Average temperature of each cell is monitored. The LTI model has input and 20 outputs. 7 Velocity magnitude

18 One Cell Battery Example with Changing Flow Rate Three sets of LTI models are identified at flow rates of 0.06, 0.075, and 0.09 kg/s. Interpolation used for intermediate flow rates. Transient heat source and mass flow rate are applied for testing the model with changing flow rate. 8

19 Six Cell Battery Example with Changing Flow Rate Cell Cell 2 Power dissipation inputs are sinusoidal functions Flow rate changes at time of 000 second. Results are excellent for the entire duration. A small difference is seen during transition period. Cell 3 Cell 4 9

20 GM Battery Module Example with Changing Flow Rate The model gives similar results as CFD. The model runs in less than 20 seconds while the CFD runs a couple of days on 6 CPUs. X. 20 Hu, S. Asgari, 20 S. ANSYS, Lin, S. Stanton, Inc. A Linear June Parameter-Varying 7, 202 Model for HEV/EV Battery Thermal Modeling, IEEE ECCE Conference, paper no. 04, 202.

21 Electro-Themeral Coupled Analysis Voc=f(SOC, U.Temp_block_) Rseries RT_S RT_L H00 SIMPARAM Ccapacity IBatt VOC CT_S CT_L CONST C 0 I7 E R R2 C2 R3 C3 H0 CONST Qcell Qcell2 Qcell3 Temp_block_ Temp_block_2 Temp_block_3 Qcell4 Temp_block_4 C4 0 I8 E2 R5 R6 C5 R7 C6 RLoad H02 CONST Qcell5 Qcell6 Tambien Temp_block_5 Temp_block_6 0 R9 R0 R H C7 I9 E3 C8 C9 CONST C0 0 I0 E4 R3 R4 C R5 C2 H04 CONST Y [kel] TR Curve Info U.Temp_block_ C3 0 I E5 R7 R8 C4 R9 C5 H05 CONST Time [s] TR TR U.Temp_block_3 U.Temp_block_

22 Newman P2D Electrochemistry Model Li + Jump Li+ Lithium Ion Batteries Li + Li x C 6 e ( ece ) t e e t F Li D c j Li + e Li x -Metal-oxide Electrochemical Kinetics Solid-State Li Transport Electrolytic Li Transport Charge Conservation/Transport (Thermal) Energy Conservation x=0 δ n δ s δ p x=l Negative Electrode Separator Positive Electrode X. 22 Hu, S. Lin, 20 S. Stanton, ANSYS, Simulating Inc. Rechargeable June 7, 202 Lithium-Ion Battery Using VHDL-AMS, SAE paper , 202.

23 Motivation of Using MOR for Newman P2D Electrochemistry Model x=0 x=l δ n δ s δ p c s, c s2, c s3, c s4, c s5, c s,2 c s2,2 c s3,2 c s4,2 c s5, c s,3 c s2,3 c s3,3 c s4,3 c s5,3 Negative Electrode Separator Positive Electrode The model is pseudo 2D due diffusion equation solved for each particle. Many particles exist c c 2 c 3 c 4 c 5 φ, φ 2, i, i 2, x=0 φ,2 φ 2,2 i,2, i 2,2 h φ,3 φ 2,3 i,3 i 2,3 φ,4 φ 2,4 i,4 i 2,4 φ,5 φ 2,5 i,5 i 2,5 φ,6 φ 2,6 i,6 i 2,6 x=δ n. M. Doyle, T.F. Fuller, and J. Newman, Journal of Electrochem. Soc., 40, 526 (993) C. R. Pals and 20 J. ANSYS, Newman Inc. Journal of Electrochem. June 7, 202 Soc., 42 (0), (995) 3. M. Doyle, J. Newman, Journal of Electochem. Soc., 43, 890 (996)

24 Observations of the Newman P2D Model Equations are highly non-linear overall. However, solid-phase diffusion equations are linear. And solid-phase diffusion is the most time consuming part of the P2D model. Use transfer function based MOR to model the diffusion process and keep the rest non-linear equations intact. 24

25 CFD Geometry/Mesh and Solution for the Diffusion Process in a Spherical Particle Use CFD to solve the diffusion process ONCE and then use model order reduction to characterize the diffusion process. X. 25 Hu, S. Stanton, 20 L. ANSYS, Cai, R. Inc. White, A Linear June 7, Time-Invariant 202 Model for Solid-Phase Diffusion in Physics-Based Lithium Ion Cell Models, J. of Power Sources, vol. 24, p , 202

26 Reduced Order Model Validation Even the 3 rd order model gives good accuracy. 3 rd order model solves only 3 equations for diffusion Log scale shows that dynamics near time of zero is captured accurately by the reduced order model X. 26 Hu, S. Stanton, 20 L. ANSYS, Cai, R. Inc. White, A Linear June 7, Time-Invariant 202 Model for Solid-Phase Diffusion in Physics-Based Lithium Ion Cell Models, J. of Power Sources, vol. 24, p , 202

27 Validation for P2D Electrochemistry Model Rate 0.C 0.5C C 3C 5C 0C x=0 x=l n x=l n +L s x=l n +L s +L p The reduced order model runs approximately 6 times faster. Excellent accuracy is retained by using the reduced order model Reduced order model allows for non-spherical particles X. 27 Hu, S. Stanton, 20 L. ANSYS, Cai, R. Inc. White, A Linear June 7, Time-Invariant 202 Model for Solid-Phase Diffusion in Physics-Based Lithium Ion Cell Models, J. of Power Sources, vol. 24, p , 202

28 Impact of Particle Shapes on Cell Performance Impact of different particle shapes only show up at high discharge rates. X. 28 Hu, S. Stanton, 20 ANSYS, L. Cai, R. Inc. White, A Linear June 7, Time-Invariant 202 Model for Solid-Phase Diffusion in Physics-Based Lithium Ion Cell Models, J. of Power Sources, vol. 24, p , 202

29 Introduction to System Matrix Based MOR What is a state? What is a state trajectory? What is change of basis? What is a projection? x 2 x 2 Initial state at t=t 0 What is the main goal of system matrix based MOR? x x 2 Find x x 2 x 2 x x x x 29

30 Introduction to System Matrix Based MOR Obtain the original system matrix Ex Kx Bu E Find and project onto lowdimensional subspace x Vz Substitute and solve the reduced system matrix. z V T EVz V T KVz V T Bu x V E r 30

31 Workflow of System Matrix Based MOR E x V. z E r 3

32 Example: Battery Pack Thermal FE Model 4 Cells Cooling by 3 air channels 3D FEM model in ANSYS Uniform heat generation in each cell D fluid channels Coupling by heat transfer coefficient Fixed velocity FLUID6 32

33 Reduced vs Full Solution VALUE=0 H VALUE=0 H VALUE=0 H VALUE=0 H Cell Cell2 Cell3 Cell4 T_Ref Q VALUE=20 Temperature [cel] Error <% TR Curve Info TCell.T ansys_cell Imported Step response of W per cell Y [kel] Curve Info THM.T TR THM2.T TR THM3.T TR THM4.T TR Time [s] Reduced Time [s] Simulation time [s] (00 time steps) Full Dimension 40 (0 x Input) elements CPU time [s] < ~20 min 33

34 Example: Electro-Thermal Response Heat Temperature Battery Pack 34

35 Recover the Original Solution From the reduced results back to the original results whenever desired Expansion pass Get reduced vectors z(t) and multiply by the matrix V x 2. z x V x 35

36 REDUCED Recover the Temperature Field FULL 36

37 More Complex Battery Pack Model 3 layers of 33 cells = 99 inputs! Each cell is a source of heat Outputs: Temperature of the cell center Numerics FEM: DOFs 4000s, adaptive time step Δt max :400s Δt min : ms Dimension of reduced order model 0*Number of inputs MOR time is less than one transient simulation Results W/per cell step response CPU time in Simplorer: 5mim 48s 37

38 Comparison Transfer Function Based System Matrix Based Linear systems (linearized non-linear systems, small non-linearity) Need to create the CFD or FEA model and run flow solution Needs transient step response Could use testing data Only specified outputs Extremely short run time (sec) Can handle very large problems Extremely accurate Most efficient with SISO systems (can be extended to MIMO systems) Needs system matrices Can not use testing data Field solution is possible Short run time (sec, min) Challenging for large problems Very accurate MIMO systems can be handled efficiently 38

39 Conclusion Both transfer function based and system matrix based ROM are available with ANSYS MOR can significantly reduce the transient simulation time while retaining excellent accuracy. MOR can be applied to battery system level thermal simulation. MOR can also be used for battery Newman P2D electrochemistry modeling. 39

40 Acknowledgement Ralph E. White (University of South Carolina) Long Cai (University of South Carolina) Wenyu Lian (General Motors) Lucas Kostetzer (ESSS) Evgeny Rudnyi (CADFEM) 40

Reduction of Model Order Based on LTI for Battery System Thermal Simulation Xiao Hu, PhD Lead Technical Services Engineer ANSYS Inc

Reduction of Model Order Based on LTI for Battery System Thermal Simulation Xiao Hu, PhD Lead Technical Services Engineer ANSYS Inc Reduction of Model Order Based on LTI for Battery System Thermal Simulation Xiao Hu, PhD Lead Technical Services Engineer ANSYS Inc 1 ANSYS, Inc. September 21, Motivation of Using Model Order Reduction

More information

Physics Based Approach to Multi-domain Multilevel System Simulation

Physics Based Approach to Multi-domain Multilevel System Simulation Physics Based Approach to Multi-domain Multilevel System Simulation 2011 REGIONAL CONFERENCES 1 ANSYS, Inc. Mark Christini ANSYS & Process Engineering System Sub-System ANSYS - Simplorer Mixed-Signal Multi-Domain

More information

Field- and System Simulation

Field- and System Simulation Product Titelmasterformat Development durch through Klicken Combined bearbeiten Field- and System Simulation 1 Actuators are systems Typical applications: Magnetic switch Valve Relay Example for general

More information

A Boundary Condition for Porous Electrodes

A Boundary Condition for Porous Electrodes Electrochemical Solid-State Letters, 7 9 A59-A63 004 0013-4651/004/79/A59/5/$7.00 The Electrochemical Society, Inc. A Boundary Condition for Porous Electrodes Venkat R. Subramanian, a, *,z Deepak Tapriyal,

More information

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Journal of Power Sources 165 (2007 880 886 Short communication Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Qi Zhang, Ralph E. White Center

More information

Battery Design Studio Update

Battery Design Studio Update Advanced Thermal Modeling of Batteries Battery Design Studio Update March 20, 2012 13:30 13:55 New Features Covered Today 3D models Voltage dependent diffusion Let s start with brief introduction to Battery

More information

Unsupervised Reduce Order Modeling of Lead- Acid Battery Using Markov Chain Model

Unsupervised Reduce Order Modeling of Lead- Acid Battery Using Markov Chain Model Unsupervised Reduce Order Modeling of Lead- Acid Battery Using Markov Chain Model Ali Akbar Shahbazi PhD Candidate of Mechanical Eng. Department of University of Tehran Vahid Esfahanian Professor of Mechanical

More information

Reduced Order Modeling Enables System Level Simulation of a MEMS Piezoelectric Energy Harvester with a Self-Supplied SSHI-Scheme

Reduced Order Modeling Enables System Level Simulation of a MEMS Piezoelectric Energy Harvester with a Self-Supplied SSHI-Scheme Reduced Order Modeling Enables System Level Simulation of a MEMS Piezoelectric Energy Harvester with a Self-Supplied SSHI-Scheme F. Sayed 1, D. Hohlfeld², T. Bechtold 1 1 Institute for Microsystems Engineering,

More information

Hybrid CFD and equivalent-circuit impedance modeling of solid oxide electrochemical cells

Hybrid CFD and equivalent-circuit impedance modeling of solid oxide electrochemical cells Risø campus Hybrid CFD and equivalent-circuit impedance modeling of solid oxide electrochemical cells Valerio Novaresio, Christopher Graves, Henrik Lund Frandsen, Massimo Santarelli Valerio Novaresio 11/12/2013

More information

Surface Temperature Estimation of Li-ion Battery via Thermal Impulse Response Technique

Surface Temperature Estimation of Li-ion Battery via Thermal Impulse Response Technique Surface Temperature Estimation of Li-ion Battery via Thermal Impulse Response Technique Ying Xiao Renewable Energy and Vehicular Technology Laboratory University of Texas at Dallas, USA ying.xiao@utdallas.edu

More information

Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications

Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications Energies 2014, 7, 7586-7601; doi:10.3390/en7117586 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery

More information

Efficient Simulation for Strongly Coupled Noise- Vibration-Harshness (NVH) R. S. Puri, D. Morrey, Oxford Brooks E. B.

Efficient Simulation for Strongly Coupled Noise- Vibration-Harshness (NVH) R. S. Puri, D. Morrey, Oxford Brooks E. B. Efficient Simulation for Strongly Coupled Noie- Vibration-Harhne (NVH) R. S. Puri, D. Morrey, Oxford Brook E. B. Rudnyi, CADFEM Background Joint work 24- Over email Available online ModelReduction.com/

More information

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018 M Ü N S T E R Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models Mario Ohlberger, Stephan Rave living knowledge ECMI 2018 Budapest June 20, 2018 M Ü N S T E R Reduction of Pore-Scale

More information

7-9 October 2009, Leuven, Belgium Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE

7-9 October 2009, Leuven, Belgium Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE Torsten Hauck*, Wim Teulings*, Evgenii Rudnyi ** * Freescale Semiconductor Inc. ** CADFEM GmbH Abstract In this paper we will

More information

NUMERICAL SIMULATION OF ACID STRATIFICATION IN LEAD-ACID BATTERIES

NUMERICAL SIMULATION OF ACID STRATIFICATION IN LEAD-ACID BATTERIES NUMERICAL SIMULATION OF ACID STRATIFICATION IN LEAD-ACID BATTERIES Vahid Esfahanian 1, Farschad Torabi 1 Professor, School of Mechanical Engineering, University of Tehran, Corresponding author Email: evahid@ut.ac.ir

More information

Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc.

Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc. Nonlinear Modeling for Health Care Applications Ashutosh Srivastava Marc Horner, Ph.D. ANSYS, Inc. 2 Motivation 12 Motivation Linear analysis works well for only small number of applications. The majority

More information

Thermal & Electrochemical Simulation of Battery Pack Systems Steve Hartridge Director, Electric & Hybrid Vehicles

Thermal & Electrochemical Simulation of Battery Pack Systems Steve Hartridge Director, Electric & Hybrid Vehicles Thermal & Electrochemical Simulation of Battery Pack Systems Steve Hartridge Director, Electric & Hybrid Vehicles CD-adapco Battery Modeling Technology Micro-structure Electrochemistry Virtually test SEM

More information

Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates

Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates Preprints of the 19th World Congress The International Federation of Automatic Control Distributed Thermal-Electrochemical Modeling of a Lithium-Ion Battery to Study the Effect of High Charging Rates Sohel

More information

Robust Identification of Time-Invariant Electrical Equivalent Circuit Models of Graphene Batteries

Robust Identification of Time-Invariant Electrical Equivalent Circuit Models of Graphene Batteries Robust Identification of Time-Invariant Electrical Equivalent Circuit Models of Graphene Batteries Ashraf Mostafa, Sami Oweis, KaC Cheok Abstract This paper presents results of a study of recursive techniques

More information

A Distributed Randles Circuit Model for Battery Abuse Simulations Using LS-DYNA

A Distributed Randles Circuit Model for Battery Abuse Simulations Using LS-DYNA Page 1 A Distributed Randles Circuit Model for Battery Abuse Simulations Using LS-DYNA Pierre L Eplattenier 1, Iñaki Çaldichoury 1 James Marcicki 2, Alexander Bartlett 2, Xiao Guang Yang 2, Valentina Mejia

More information

Unlocking insights into battery systems: A data science approach to impedance analysis

Unlocking insights into battery systems: A data science approach to impedance analysis Unlocking insights into battery systems: A data science approach to impedance analysis Matthew D. Murbach and Daniel T. Schwartz University of Washington, Seattle Department of Chemical Engineering and

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

Approximation of the Linearized Boussinesq Equations

Approximation of the Linearized Boussinesq Equations Approximation of the Linearized Boussinesq Equations Alan Lattimer Advisors Jeffrey Borggaard Serkan Gugercin Department of Mathematics Virginia Tech SIAM Talk Series, Virginia Tech, April 22, 2014 Alan

More information

Computational fluid dynamic modeling of Nickel/Metal Hydride (Ni/MH) Battery during Charge Cycle

Computational fluid dynamic modeling of Nickel/Metal Hydride (Ni/MH) Battery during Charge Cycle Computational fluid dynamic modeling of ckel/metal Hydride (/) Battery during Charge Cycle NABI JAHANTIGH, EBRAHIM AFSHARI Department of Mechanical Engineering Zabol University Zabol, Zabol University

More information

Three Dimensional Thermal Modeling of Li-Ion Battery Pack Based on Multiphysics and Calorimetric Measurement Khan, Mohammad Rezwan; Kær, Søren Knudsen

Three Dimensional Thermal Modeling of Li-Ion Battery Pack Based on Multiphysics and Calorimetric Measurement Khan, Mohammad Rezwan; Kær, Søren Knudsen Aalborg Universitet Three Dimensional Modeling of Li-Ion Battery Pack Based on Multiphysics and Calorimetric Measurement Khan, Mohammad Rezwan; Kær, Søren Knudsen Published in: Proceedings of IEEE Vehicle

More information

Three-Dimensional Numerical Simulation of Lead-Acid Battery

Three-Dimensional Numerical Simulation of Lead-Acid Battery 1 Three--Dimensional Numerical Simulation Three of Lead Lead--Acid Battery Vahid Esfahanian Hamid Afshari Arman Pouyaei Amir Babak Ansari Vehicle, Fuel and Environment Research Institute (VFRI) Department

More information

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 10, Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan Mikaël Cugnet, Issam Baghdadi, and Marion Perrin OCTOBER 0, 202 Comsol Conference Europe 202, Milan, CEA Italy 0 AVRIL 202 PAGE Excerpt from the Proceedings of the 202 COMSOL Conference in Milan SUMMARY

More information

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT Lakshminarayanan V 1, Karthikeyan P 2, D. S. Kiran Kumar 1 and SMK Dhilip Kumar 1 1 Department of Mechanical Engineering, KGiSL Institute

More information

Estimation of Optimum Operating Profile for PEMFC

Estimation of Optimum Operating Profile for PEMFC 59 10.1149/1.3210559 The Electrochemical Society Estimation of Optimum Operating Profile for PEMFC Venkat Subramanian, Ravi Methekar, Venkatasailanathan Ramadesigan, Vijayasekaran Boovaragavan, Cynthia

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Simplorer and Mechanical. David Twyman Technical Services

Simplorer and Mechanical. David Twyman Technical Services Simplorer and Mechanical David Twyman Technical Services 1 Overview Simplorer Architecture, Methodology and Operation Simplorer and Mechanical Rigid Body Dynamics to Mechanical Link (Cosimulation) Mechanical

More information

THERMAL ANALYSIS OF AN INDUCTION MOTOR BY HYBRID MODELING OF A THERMAL EQUIVALENT CIRCUIT AND CFD

THERMAL ANALYSIS OF AN INDUCTION MOTOR BY HYBRID MODELING OF A THERMAL EQUIVALENT CIRCUIT AND CFD THERMAL ANALYSIS OF AN INDUCTION MOTOR BY HYBRID MODELING OF A THERMAL EQUIVALENT CIRCUIT AND CFD Thiago Voigdlener, voigdlener@gmail.com Daniel Jochelavicius, danieljoche@gmail.com Federal University

More information

Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis

Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis Stress analysis of lithium-based rechargeable batteries using micro and macro scale analysis Utsav Kumar Atanu K. Metya Jayant K. Singh Department of Chemical Engineering IIT Kanpur INTRODUCTION Christensen

More information

Modelling fuel cells in start-up and reactant starvation conditions

Modelling fuel cells in start-up and reactant starvation conditions Modelling fuel cells in start-up and reactant starvation conditions Brian Wetton Radu Bradean Keith Promislow Jean St Pierre Mathematics Department University of British Columbia www.math.ubc.ca/ wetton

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Motivation. From SS to TF (review) Realization: From TF to SS. MECH468 Modern Control Engineering MECH550P Foundations in Control Engineering

Motivation. From SS to TF (review) Realization: From TF to SS. MECH468 Modern Control Engineering MECH550P Foundations in Control Engineering MECH468 Modern Control Engineering MECH550P Foundations in Control Engineering Realization Dr. Ryozo Nagamune Department of Mechanical Engineering University of British Columbia 2008/09 MECH468/550P 1

More information

COMPUTATIONAL FLUID DYNAMICS (CFD) FOR THE OPTIMIZATION OF PRODUCTS AND PROCESSES

COMPUTATIONAL FLUID DYNAMICS (CFD) FOR THE OPTIMIZATION OF PRODUCTS AND PROCESSES THE INTERNATIONAL CONFERENCE OF THE CARPATHIAN EURO-REGION SPECIALISTS IN INDUSTRIAL SYSTEMS 7 th EDITION COMPUTATIONAL FLUID DYNAMICS (CFD) FOR THE OPTIMIZATION OF PRODUCTS AND PROCESSES Franz, Haas DI

More information

Flow in Corrugated Pipes

Flow in Corrugated Pipes Flow in Corrugated Pipes CASA Day April 7, 2010 Patricio Rosen Promotor: R.M.M. Mattheij Supervisors: J.H.M. ten Thije Boonkkamp J.A.M. Dam Outline Motivation Fluid Flow equations Method of slow variations

More information

A Parameter Identification Method for a Battery Equivalent Circuit Model

A Parameter Identification Method for a Battery Equivalent Circuit Model A Parameter Identification Method for a Battery Equivalent Circuit Model 2011-01-1367 Published 04/12/2011 Shugang Jiang A&D Technology Inc. Copyright 2011 SAE International doi: 10.4271/2011-01-1367 ABSTRACT

More information

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case M. Weng, P. V. Nielsen and L. Liu Aalborg University Introduction. The use of CFD in ventilation research has arrived

More information

IMG: CORE-Materials Graphene tubes can be added into all three battery parts; anode, cathode and electrolyte. It improves different attributes of the device including speed of charging and discharging

More information

Using Model Reduction techniques for simulating the heat transfer in electronic systems.

Using Model Reduction techniques for simulating the heat transfer in electronic systems. Using Model Reduction techniques for simulating the heat transfer in electronic systems. -Pramod Mathai, Dr. Benjamin Shapiro, University of Maryland, College Park Abstract: There is an increasing need

More information

Figure 2: Simulation results of concentration by line scan along the x-axis at different partitioning coefficients after 0.48 ms.

Figure 2: Simulation results of concentration by line scan along the x-axis at different partitioning coefficients after 0.48 ms. Executive Summary One of the critical hurdles of the success of many clean energy technologies is energy storage. For this, new and advanced computational tools to predict battery properties are very important.

More information

Lattice Boltzmann simulation of ion and electron transport in lithium ion battery porous electrode during discharge process

Lattice Boltzmann simulation of ion and electron transport in lithium ion battery porous electrode during discharge process Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 642 646 CUE2015-Applied Energy Symposium and Summit 2015: Low carbon cities and urban energy systems Lattice Boltzmann

More information

Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior of Porous Electrodes

Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior of Porous Electrodes A984 Journal of The Electrochemical Society, 52 5 A984-A988 2005 003-465/2005/525/A984/5/$7.00 The Electrochemical Society, Inc. Effect of Varying Electrolyte Conductivity on the Electrochemical Behavior

More information

Modeling the next battery generation: Lithium-sulfur and lithium-air cells

Modeling the next battery generation: Lithium-sulfur and lithium-air cells Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING SINGLE-PARTICLE MODELING AND EXPERIMENTAL PARAMETER IDENTIFICATION FOR A LITHIUM-COBALT-OXIDE

More information

Automatic Control Systems theory overview (discrete time systems)

Automatic Control Systems theory overview (discrete time systems) Automatic Control Systems theory overview (discrete time systems) Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations

More information

Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express

Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express N. Murer, J.-P. Diard 1 /23 OBJECTIVES Understand what is performed during an impedance measurement. Understand

More information

Coupled Field Analysis using the ANSYS/Multiphysics Commercial FEA Code

Coupled Field Analysis using the ANSYS/Multiphysics Commercial FEA Code Industry Sector RTD Thematic Area Date Deliverable Nr Consumer Goods Multi Physics and Analysis 11th Sept 2002 Coupled Field Analysis using the ANSYS/Multiphysics Commercial FEA Code David Ellis Idac Ltd,

More information

Using FLOTHERM and the Command Center to Exploit the Principle of Superposition

Using FLOTHERM and the Command Center to Exploit the Principle of Superposition Using FLOTHERM and the Command Center to Exploit the Principle of Superposition Paul Gauché Flomerics Inc. 257 Turnpike Road, Suite 100 Southborough, MA 01772 Phone: (508) 357-2012 Fax: (508) 357-2013

More information

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell Electrochemical Impedance Spectroscopy of a ifepo 4 /i Half-Cell Mikael Cugnet*, Issam Baghdadi and Marion Perrin French Institute of Solar Energy (INES), CEA / ITEN *Corresponding author: 50 Avenue du

More information

Lecture 29: Forced Convection II

Lecture 29: Forced Convection II Lecture 29: Forced Convection II Notes by MIT Student (and MZB) As discussed in the previous lecture, the magnitude of limiting current can be increased by imposing convective transport of reactant in

More information

Heat Transfer Enhancement in Vertical Narrow Plates by Natural Convection

Heat Transfer Enhancement in Vertical Narrow Plates by Natural Convection Heat Transfer Enhancement in Vertical Narrow Plates by Natural Convection Dr.Ch.S.Naga Prasad 1 Professor & Principal Dept. of Mech, GIITS Engineering College, Aganampudi; Visakhapatnam (DT), A.P, India

More information

LF Electromagnetics. Marius Rosu, PhD. Vincent Delafosse. EM Lead Product Manager. EM Senior Product Manager ANSYS, Inc.

LF Electromagnetics. Marius Rosu, PhD. Vincent Delafosse. EM Lead Product Manager. EM Senior Product Manager ANSYS, Inc. LF Electromagnetics 14.0 Updates 1 Marius Rosu, PhD EM Lead Product Manager Vincent Delafosse EM Senior Product Manager 2 R14 Highlights Simplorer Co simulation with RBD Push Back excitations for EMI/EMC

More information

OBSERVER-BASED DIAGNOSTIC SCHEME FOR LITHIUM-ION BATTERIES. Pierluigi Pisu Clemson University Greenville, SC-29607, USA

OBSERVER-BASED DIAGNOSTIC SCHEME FOR LITHIUM-ION BATTERIES. Pierluigi Pisu Clemson University Greenville, SC-29607, USA Proceedings of the ASME 5 Dynamic Systems and Control Conference DSCC5 October 8-3, 5, Columbus, Ohio, USA DSCC5-993 OBSERVER-BASED DIAGNOSTIC SCHEME FOR LITHIUM-ION BATTERIES Zoleikha Abdollahi Biron

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Titelmasterformat durch Klicken bearbeiten Vibration and Acoustics for Electric Drive Development Presenter: Jens Otto, CADFEM GmbH Developer: Dr. Jürgen Wibbeler, Dr. Martin Hanke, CADFEM GmbH 4th CADFEM

More information

Linear Systems. Linear systems?!? (Roughly) Systems which obey properties of superposition Input u(t) output

Linear Systems. Linear systems?!? (Roughly) Systems which obey properties of superposition Input u(t) output Linear Systems Linear systems?!? (Roughly) Systems which obey properties of superposition Input u(t) output Our interest is in dynamic systems Dynamic system means a system with memory of course including

More information

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide

Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide www.dlr.de Chart 1 > SOFC Forum > W. G. Bessler Presentation > 28.06.2012 Lifetime and Performance Prediction of SOFC Anodes Operated with Trace Amounts of Hydrogen Sulfide Matthias Riegraf, Günter Schiller,

More information

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis The MathWorks, Inc. 1

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis The MathWorks, Inc. 1 Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis Dakai Hu, Ph.D Haiwei Cai, Ph.D MathWorks Application Engineer ANSYS Application Engineer 2017 The MathWorks, Inc. 1 Motivation

More information

Introduction Fuel Cells Repetition

Introduction Fuel Cells Repetition Introduction Fuel Cells Repetition Fuel cell applications PEMFC PowerCell AB, (S1-S3) PEMFC,1-100 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2015 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb15 Jun15 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

Simulation of Selective Catalytic Reduction using DARS 1D Tool

Simulation of Selective Catalytic Reduction using DARS 1D Tool Simulation of Selective Catalytic Reduction using DARS 1D Tool Best Practice Training: Combustion & Chemical Reaction Modeling STAR Global Conference 2013 Karin Fröjd & Adina Tunér LOGE AB Outline Introduction

More information

ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES JINGWEI ZHU

ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES JINGWEI ZHU ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES BY JINGWEI ZHU Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Urbana,

More information

Power Systems Control Prof. Wonhee Kim. Modeling in the Frequency and Time Domains

Power Systems Control Prof. Wonhee Kim. Modeling in the Frequency and Time Domains Power Systems Control Prof. Wonhee Kim Modeling in the Frequency and Time Domains Laplace Transform Review - Laplace transform - Inverse Laplace transform 2 Laplace Transform Review 3 Laplace Transform

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Oxidation and Reduction by Christopher Hamaker 1 Oxidation Reduction Reactions Oxidation reduction reactions are

More information

Capacity fade analysis of a lithium ion cell

Capacity fade analysis of a lithium ion cell Available online at www.sciencedirect.com Journal of Power Sources 179 (2008) 793 798 Short communication Capacity fade analysis of a lithium ion cell Qi Zhang, Ralph E. White Department of Chemical Engineering,

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

Krylov Subspace Methods for Nonlinear Model Reduction

Krylov Subspace Methods for Nonlinear Model Reduction MAX PLANCK INSTITUT Conference in honour of Nancy Nichols 70th birthday Reading, 2 3 July 2012 Krylov Subspace Methods for Nonlinear Model Reduction Peter Benner and Tobias Breiten Max Planck Institute

More information

Designing Thermal Management Systems For Lithium-Ion Battery Modules Using COMSOL. Emma Bergman

Designing Thermal Management Systems For Lithium-Ion Battery Modules Using COMSOL. Emma Bergman Designing Thermal Management Systems For Lithium-Ion Battery Modules Using COMSOL Emma Bergman Abstract In this thesis, a section of a lithium ion battery module, including five cells and an indirect liquid

More information

WHAT IS A BATTERY? way to store energy is through chemical bonds in substances, which is the basic

WHAT IS A BATTERY? way to store energy is through chemical bonds in substances, which is the basic WHAT IS A BATTERY? Energy cannot be destroyed or created, but it can be stored in various forms. One way to store energy is through chemical bonds in substances, which is the basic concept of fossil and

More information

Coupling Physics. Tomasz Stelmach Senior Application Engineer

Coupling Physics. Tomasz Stelmach Senior Application Engineer Coupling Physics Tomasz Stelmach Senior Application Engineer Agenda Brief look @ Multiphysics solution What is new in R18 Fluent Maxwell coupling wireless power transfer Brief look @ ANSYS Multiphysics

More information

Thermal analysis of lithium-ion batteries

Thermal analysis of lithium-ion batteries Journal of Power Sources 140 (2005) 111 124 Thermal analysis of lithium-ion batteries S.C. Chen, C.C. Wan, Y.Y. Wang Department of Chemical Engineering, Tsing-Hua University, Hsin-Chu 300, Taiwan Received

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries

Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries Effect of Intercalation Diffusivity When Simulating Mixed Electrode Materials in Li-Ion Batteries E. Wikner *1 1 Chalmers University of Technology *Hörsalvägen 11, evelina.wikner@chalmers.se Abstract:

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

CME 345: MODEL REDUCTION - Projection-Based Model Order Reduction

CME 345: MODEL REDUCTION - Projection-Based Model Order Reduction CME 345: MODEL REDUCTION - Projection-Based Model Order Reduction Projection-Based Model Order Reduction Charbel Farhat and David Amsallem Stanford University cfarhat@stanford.edu 1 / 38 Outline 1 Solution

More information

A Fast, Parallel Potential Flow Solver

A Fast, Parallel Potential Flow Solver Advisor: Jaime Peraire December 16, 2012 Outline 1 Introduction to Potential FLow 2 The Boundary Element Method 3 The Fast Multipole Method 4 Discretization 5 Implementation 6 Results 7 Conclusions Why

More information

Dynamic thermal prediction of Li-Ion batteries using physics based modeling and neural network techniques. February 24, 2010

Dynamic thermal prediction of Li-Ion batteries using physics based modeling and neural network techniques. February 24, 2010 Dynamic thermal prediction of Li-Ion batteries using physics based modeling and neural network techniques Prasad Shingne Tejas Chafekar Agenda Motivation Background Model Equations and Boundary Conditions

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

III. Transport Phenomena

III. Transport Phenomena III. Transport Phenomena Lecture 17: Forced Convection in Fuel Cells (I) MIT Student Last lecture we examined how concentration polarisation limits the current that can be drawn from a fuel cell. Reducing

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2011 信號與系統 Signals and Systems Chapter SS-4 The Continuous-Time Fourier Transform Feng-Li Lian NTU-EE Feb11 Jun11 Figures and images used in these lecture notes are adopted from Signals & Systems

More information

Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL)

Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL) Electrochemistry - Application note n 1 Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL) Available instruments for the GCPL protocol

More information

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method Research Journal of Applied Sciences, Engineering and Technology 6(14): 50-55, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 013 Submitted: November 08, 01 Accepted: December 8,

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

FEM-Study ILD-AHCAL. Seismic simulation. K. Gadow, M. Lemke, F. Sefkow Santander,

FEM-Study ILD-AHCAL. Seismic simulation. K. Gadow, M. Lemke, F. Sefkow Santander, FEM-Study ILD-AHCAL Seismic simulation K. Gadow, M. Lemke, F. Sefkow Santander, 3.6..2016 Overview > Reminder of earlier studies > Sub-structuring method > First results > Outlook Martin Lemke FEM-Study

More information

2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary Integrated Simulation Environment for Electric Machine Design Scott Stanton Technical Director Advanced Technology Initiatives ANSYS Inc. 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

More information

Possibilities of Using COMSOL Software in Physics

Possibilities of Using COMSOL Software in Physics ALEKSANDRAS STULGINSKIS UNIVERSITY Possibilities of Using COMSOL Software in Physics Jolita Sakaliūnienė 1 Overview Requirement of study quality Student motivation COMSOL software Composition of COMSOL

More information

A Single Particle Thermal Model for Lithium Ion Batteries

A Single Particle Thermal Model for Lithium Ion Batteries A Single Particle Thermal Model for Lithium Ion Batterie R. Painter* 1, B. Berryhill 1, L. Sharpe 2 and S. Keith Hargrove 2 1 Civil Engineering, Tenneee State Univerity, Nahville, TN, USA 2 Mechanical

More information

Mathematical Modeling All Solid State Batteries

Mathematical Modeling All Solid State Batteries Katharina Becker-Steinberger, Stefan Funken, Manuel Landsdorfer, Karsten Urban Institute of Numerical Mathematics Konstanz, 04.03.2010 Mathematical Modeling All Solid State Batteries Page 1/31 Mathematical

More information

Progress in Parametric Model Reduction. J. Mohring, Paris,

Progress in Parametric Model Reduction. J. Mohring, Paris, Progress in Parametric Model Reduction J. Mohring, Paris, 15.12.2009 Overview Need for parametric model reduction Optimal H 2 controller for LMS concrete car benchmark The LBF acoustic aquarium Numerical

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010

On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010 1. Introduction On Pulse Charging of Lead-Acid Batteries Cyril Smith, November 2010 There are claims that charging of lead-acid batteries from the bemf of certain magnetic motors is an overunity process,

More information

Electrochemical Equipment Design for Hybrid Vehicles

Electrochemical Equipment Design for Hybrid Vehicles ower to Motor (kw) Speed (mph) Electrochemical Equipment Design for Hybrid Vehicles Syed K. Ahmed, Benja. Omell and Donald J. Chmielewski 6 4 Cooling Air In Anode In (H, H O) Solid Material H H O Insulator

More information

Deliverable Preliminary model definition for SC

Deliverable Preliminary model definition for SC Responsible (Name, Organisation) Massimo Ceraolo Università Pisa Issuer (Name, Organisation) Massimo Ceraolo, University of Pisa Subject Preliminary model definition for SC DELIVERABLE REPORT Date WP No

More information

CFD ANALYSIS OF CONVERGENT-DIVERGENT NOZZLE

CFD ANALYSIS OF CONVERGENT-DIVERGENT NOZZLE 1. G. SATYANARAYANA,. Ch. VARUN, 3. S.S. NAIDU CFD ANALYSIS OF CONVERGENT-DIVERGENT NOZZLE 1-3. DEPARTMENT OF MECHANICAL ENGINEERING, MVGRCE, VIZIANAGARAM, 535005, (A.P.), INDIA ABSTRACT: CFD is a branch

More information

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER E.mail: rchaube@cat.ernet.in R. CHAUBE, B. SINGH Abstract The thermal properties of the laser head such as temperature distribution, thermal gradient

More information

Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries

Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries 2014 American Control Conference (ACC) June 4-6, 2014. Portland, Oregon, USA Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries Satadru Dey and Beshah Ayalew Abstract State-of-Charge

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information