Simulations of strongly correlated electron systems using cold atoms

Size: px
Start display at page:

Download "Simulations of strongly correlated electron systems using cold atoms"

Transcription

1 Simulations of strongly correlated electron systems using cold atoms Eugene Demler Harvard University Main collaborators: Anatoli Polkovnikov Ehud Altman Daw-Wei Wang Vladimir Gritsev Adilet Imambekov Ryan Barnett Mikhail Lukin Harvard/Boston University Harvard/Weizmann Harvard/Tsing-Hua University Harvard Harvard Harvard/Caltech Harvard

2 Strongly correlated electron systems

3 Conventional solid state materials Bloch theorem for non-interacting electrons in a periodic potential

4 Consequences of the Bloch theorem B V H Metals I d E F E F Insulators and Semiconductors First semiconductor transistor

5 Conventional solid state materials Electron-phonon and electron-electron interactions are irrelevant at low temperatures k y k x k F Landau Fermi liquid theory: when frequency and temperature are smaller than E F electron systems are equivalent to systems of non-interacting fermions Ag Ag Ag

6 Non Fermi liquid behavior in novel quantum materials UCu 3.5 Pd 1.5 Andraka, Stewart, PRB 47:3208 (93) Violation of the Wiedemann-Franz law in high Tc superconductors Hill et al., Nature 414:711 (2001) CeCu 2 Si 2. Steglich et al., Z. Phys. B 103:235 (1997)

7 Puzzles of high temperature superconductors Unusual normal state Resistivity, opical conductivity, Lack of sharply defined quasiparticles, Nernst effect Maple, JMMM 177:18 (1998) Mechanism of Superconductivity High transition temperature, retardation effect, isotope effect, role of elecron-electron and electron-phonon interactions Competing orders Role of magnetsim, stripes, possible fractionalization

8 Applications of quantum materials: High Tc superconductors

9 Applications of quantum materials: Ferroelectric RAM V FeRAM in Smart Cards Non-Volatile Memory High Speed Processing

10 Modeling strongly correlated systems using cold atoms

11 Bose-Einstein condensation Cornell et al., Science 269, 198 (1995) Ultralow density condensed matter system Interactions are weak and can be described theoretically from first principles

12 New Era in Cold Atoms Research Focus on Systems with Strong Interactions Feshbach resonances Rotating systems Low dimensional systems Atoms in optical lattices Systems with long range dipolar interactions

13 Feshbach resonance and fermionic condensates Greiner et al., Nature 426:537 (2003); Ketterle et al., PRL 91: (2003) Ketterle et al., Nature 435, (2005)

14 One dimensional systems 1D confinement in optical potential Weiss et al., Science (05); Bloch et al., Esslinger et al., One dimensional systems in microtraps. Thywissen et al., Eur. J. Phys. D. (99); Hansel et al., Nature (01); Folman et al., Adv. At. Mol. Opt. Phys. (02) Strongly interacting regime can be reached for low densities

15 Atoms in optical lattices Theory: Jaksch et al. PRL (1998) Experiment: Kasevich et al., Science (2001); Greiner et al., Nature (2001); Phillips et al., J. Physics B (2002) Esslinger et al., PRL (2004); and many more

16 Strongly correlated systems Electrons in Solids Atoms in optical lattices Simple metals Perturbation theory in Coulomb interaction applies. Band structure methods wotk Strongly Correlated Electron Systems Band structure methods fail. Novel phenomena in strongly correlated electron systems: Quantum magnetism, phase separation, unconventional superconductivity, high temperature superconductivity, fractionalization of electrons

17 New Era in Cold Atoms Research Focus on Systems with Strong Interactions Goals Resolve long standing questions in condensed matter physics (e.g. origin of high temperature superconductivity) Resolve matter of principle questions (e.g. existence of spin liquids in two and three dimensions) Study new phenomena in strongly correlated systems (e.g. coherent far from equilibrium dynamics)

18 Outline Introduction. Cold atoms in optical lattices. Bose Hubbard model Two component Bose mixtures Quantum magnetism. Competing orders. Fractionalized phases Fermions in optical lattices Pairing in systems with repulsive interactions. High Tc mechanism Boson-Fermion mixtures Polarons. Competing orders Interference experiments with fluctuating BEC Analysis of correlations beyond mean-field Moving condensates in optical lattices Non equilibrium dynamics of interacting many-body systems Emphasis: detection and characterzation of many-body states

19 Atoms in optical lattices. Bose Hubbard model

20 Bose Hubbard model U t tunneling of atoms between neighboring wells repulsion of atoms sitting in the same well

21 Bose Hubbard model. Mean-field phase diagram µ U N=3 n + 1 N=2 Mott Mott Superfluid M.P.A. Fisher et al., PRB40:546 (1989) N=1 Mott 0 Superfluid phase Weak interactions Mott insulator phase Strong interactions

22 Bose Hubbard model Set. Hamiltonian eigenstates are Fock states 2 4 µ U

23 Bose Hubbard Model. Mean-field phase diagram µ U 4 2 N=3 n + 1 N=2 Mott Mott Superfluid N=1 Mott 0 Mott insulator phase Particle-hole excitation Tips of the Mott lobes

24 Gutzwiller variational wavefunction Normalization Interaction energy Kinetic energy z number of nearest neighbors

25 Phase diagram of the 1D Bose Hubbard model. Quantum Monte-Carlo study Batrouni and Scaletter, PRB 46:9051 (1992)

26 Optical lattice and parabolic potential µ U 4 N=3 n N=2 MI SF N=1 MI 0 Jaksch et al., PRL 81:3108 (1998)

27 Superfluid to Insulator transition Greiner et al., Nature 415:39 (2002) µ U Mott insulator Superfluid n 1 t/u

28 Time of flight experiments Quantum noise interferometry of atoms in an optical lattice Second order coherence

29 Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment Theory: Altman et al., PRA 70:13603 (2004) Experiment: Folling et al., Nature 434:481 (2005)

30 Hanburry-Brown-Twiss stellar interferometer

31 Hanburry-Brown-Twiss interferometer

32 Second order coherence in the insulating state of bosons Bosons at quasimomentum expand as plane waves with wavevectors First order coherence: Oscillations in density disappear after summing over Second order coherence: Correlation function acquires oscillations at reciprocal lattice vectors

33 Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment Theory: Altman et al., PRA 70:13603 (2004) Experiment: Folling et al., Nature 434:481 (2005)

34 Effect of parabolic potential on the second order coherence Experiment: Spielman, Porto, et al., Theory: Scarola, Das Sarma, Demler, cond-mat/ Width of the correlation peak changes across the transition, reflecting the evolution of Mott domains

35 Width of the noise peaks

36 Interference of an array of independent condensates Hadzibabic et al., PRL 93: (2004) Smooth structure is a result of finite experimental resolution (filtering)

37 Extended Hubbard Model - on site repulsion - nearest neighbor repulsion Checkerboard phase: Crystal phase of bosons. Breaks translational symmetry

38 Extended Hubbard model. Mean field phase diagram van Otterlo et al., PRB 52:16176 (1995) Hard core bosons. Supersolid superfluid phase with broken translational symmetry

39 Extended Hubbard model. Quantum Monte Carlo study Hebert et al., PRB 65:14513 (2002) Sengupta et al., PRL 94: (2005)

40 Dipolar bosons in optical lattices Goral et al., PRL88: (2002)

41 How to detect a checkerboard phase Correlation Function Measurements

42 Magnetism in condensed matter systems

43 Ferromagnetism Magnetic needle in a compass Magnetic memory in hard drives. Storage density of hundreds of billions bits per square inch.

44 Stoner model of ferromagnetism Spontaneous spin polarization decreases interaction energy but increases kinetic energy of electrons Mean-field criterion I N(0) = 1 I interaction strength N(0) density of states at the Fermi level

45 Antiferromagnetism Maple, JMMM 177:18 (1998) High temperature superconductivity in cuprates is always found near an antiferromagnetic insulating state

46 Antiferromagnetism Antiferromagnetic Heisenberg model AF = S = t = ( - ) ( + ) ( + ) AF = S t Antiferromagnetic state breaks spin symmetry. It does not have a well defined spin

47 Spin liquid states Alternative to classical antiferromagnetic state: spin liquid states Properties of spin liquid states: fractionalized excitations topological order gauge theory description Systems with geometric frustration?

48 Spin liquid behavior in systems with geometric frustration Kagome lattice Pyrochlore lattice SrCr 9-x Ga 3+x O 19 Ramirez et al. PRL (90) Broholm et al. PRL (90) Uemura et al. PRL (94) ZnCr 2 O 4 A 2 Ti 2 O 7 Ramirez et al. PRL (02)

49 Engineering magnetic systems using cold atoms in an optical lattice

50 Spin interactions using controlled collisions Experiment: Mandel et al., Nature 425:937(2003) Theory: Jaksch et al., PRL 82:1975 (1999)

51 Effective spin interaction from the orbital motion. Cold atoms in Kagome lattices Santos et al., PRL 93:30601 (2004) Damski et al., PRL 95:60403 (2005)

52 Two component Bose mixture in optical lattice Example:. Mandel et al., Nature 425:937 (2003) t t Two component Bose Hubbard model

53 Quantum magnetism of bosons in optical lattices Kuklov and Svistunov, PRL (2003) Duan et al., PRL (2003) Ferromagnetic Antiferromagnetic

54 Exchange Interactions in Solids antibonding bonding Kinetic energy dominates: antiferromagnetic state Coulomb energy dominates: ferromagnetic state

55 Two component Bose mixture in optical lattice. Mean field theory + Quantum fluctuations Hysteresis Altman et al., NJP 5:113 (2003) 1 st order 2 nd order line

56 Coherent spin dynamics in optical lattices Widera et al., cond-mat/ atoms in the F=2 state

57 How to observe antiferromagnetic order of cold atoms in an optical lattice?

58 Second order coherence in the insulating state of bosons. Hanburry-Brown-Twiss experiment Theory: Altman et al., PRA 70:13603 (2004) See also Bach, Rzazewski, PRL 92: (2004) Experiment: Folling et al., Nature 434:481 (2005) See also Hadzibabic et al., PRL 93: (2004)

59 Probing spin order of bosons Correlation Function Measurements

60 Engineering exotic phases Optical lattice in 2 or 3 dimensions: polarizations & frequencies of standing waves can be different for different directions YY ZZ Example: exactly solvable model Kitaev (2002), honeycomb lattice with H = J x σ ix σ x j + J y σ iy σ y z j + J z σ iz σ j <i, j> x <i, j> y <i, j> z Can be created with 3 sets of standing wave light beams! Non-trivial topological order, spin liquid + non-abelian anyons those has not been seen in controlled experiments

61 Fermionic atoms in optical lattices Pairing in systems with repulsive interactions. Unconventional pairing. High Tc mechanism

62 Fermionic atoms in a three dimensional optical lattice Kohl et al., PRL 94:80403 (2005)

63 Fermions with attractive interaction Hofstetter et al., PRL 89: (2002) U t t Highest transition temperature for Compare to the exponential suppresion of Tc w/o a lattice

64 Reaching BCS superfluidity in a lattice Turning on the lattice reduces the effective atomic temperature K in NdYAG lattice 40 K 6 Li Li in CO 2 lattice Superfluidity can be achived even with a modest scattering length

65 Fermions with repulsive interactions U t Possible d-wave pairing of fermions t

66 High temperature superconductors Superconducting Tc 93 K Picture courtesy of UBC Superconductivity group Hubbard model minimal model for cuprate superconductors P.W. Anderson, cond-mat/ After many years of work we still do not understand the fermionic Hubbard model

67 Positive U Hubbard model Possible phase diagram. Scalapino, Phys. Rep. 250:329 (1995) Antiferromagnetic insulator D-wave superconductor

68 Second order correlations in the BCS superfluid n(k) n(r ) k F BCS k n(r) BEC n( r, r') n( r) n( r') n( r, r) Ψ = BCS 0

69 Momentum correlations in paired fermions Greiner et al., PRL 94: (2005)

70 Fermion pairing in an optical lattice Second Order Interference In the TOF images Normal State Superfluid State measures the Cooper pair wavefunction One can identify unconventional pairing

71 Boson Fermion mixtures Fermions interacting with phonons. Polarons. Competing orders

72 Boson Fermion mixtures Experiments: ENS, Florence, JILA, MIT, Rice, BEC Bosons provide cooling for fermions and mediate interactions. They create non-local attraction between fermions Charge Density Wave Phase Periodic arrangement of atoms Non-local Fermion Pairing P-wave, D-wave,

73 Boson Fermion mixtures Phonons : Bogoliubov (phase) mode 4 Effective fermion- phonon interaction ω/e F Fermion- phonon vertex Similar to electron-phonon systems q/k F

74 Boson Fermion mixtures in 1d optical lattices Cazalila et al., PRL (2003); Mathey et al., PRL (2004) Spinless fermions Spin ½ fermions Note: Luttinger parameters can be determined using correlation function measurements in the time of flight experiments. Altman et al. (2005)

75 BF mixtures in 2d optical lattices Wang, Lukin, Demler, PRA (1972) 40K -- 87Rb 40K -- 23Na (a) (b) =1060nm =765.5nm =1060 nm

76

77 Systems of cold atoms with strong interactions and correlations Goals Resolve long standing questions in condensed matter physics (e.g. origin of high temperature superconductivity) Resolve matter of principle questions (e.g. existence of spin liquids in two and three dimensions) Study new phenomena in strongly correlated systems Interference experiments with fluctuating BEC Analysis of high order correlation functions in low dimensional systems Moving condensates in optical lattices Non equilibrium dynamics of interacting many-body systems

78 Interference experiments with fluctuating BEC Analysis of high order correlation functions in low dimensional systems

79 Interference of two independent condensates Andrews et al., Science 275:637 (1997)

80 Interference of two independent condensates r r 1 r+d d 2 Clouds 1 and 2 do not have a well defined phase difference. However each individual measurement shows an interference pattern

81 Interference of one dimensional condensates d Experiments: Schmiedmayer et al., Nature Physics (2005) x 1 Amplitude of interference fringes,, contains information about phase fluctuations within individual condensates x 2 x y

82 Interference amplitude and correlations Polkovnikov, Altman, Demler, PNAS (2006) L For identical condensates Instantaneous correlation function

83 Interference between Luttinger liquids Luttinger liquid at T=0 K Luttinger parameter L For non-interacting bosons and For impenetrable bosons and Luttinger liquid at finite temperature Analysis of can be used for thermometry

84 Rotated probe beam experiment For large imaging angle,, θ Luttinger parameter K may be extracted from the angular dependence of

85 Interference between two-dimensional BECs at finite temperature. Kosteritz-Thouless transition

86 Interference of two dimensional condensates Experiments: Stock, Hadzibabic, Dalibard, et al., cond-mat/ Gati, Oberthaler, et al., cond-mat/ L x L y L x Probe beam parallel to the plane of the condensates

87 Interference of two dimensional condensates. Quasi long range order and the KT transition L x L y Theory: Polkovnikov, Altman, Demler, PNAS (2006) Above KT transition Below KT transition

88 Experiments with 2D Bose gas Haddzibabic et al., Nature (2006) z Time of flight x Typical interference patterns low temperature higher temperature

89 Experiments with 2D Bose gas Hadzibabic et al., Nature (2006) z x integration over x axis z 0.4 Contrast after integration integration over x axis integration z 0.2 middle T low T high T D x over x axis z integration distance D x (pixels)

90 Integrated contrast Experiments with 2D Bose gas Hadzibabic et al., Nature (2006) 0.4 low T middle T 0.2 high T fit by: 0.5 C Dx ~ [ g1(0, x) ] dx ~ 1 Dx Dx Exponent α 2α integration distance D x if g 1 (r) decays exponentially with : if g 1 (r) decays algebraically or exponentially with a large : high T low T central contrast Sudden jump!?

91 Experiments with 2D Bose gas Hadzibabic et al., Nature (2006) Exponent α c.f. Bishop and Reppy T (K) high T low T central contrast He experiments: universal jump in the superfluid density Ultracold atoms experiments: jump in the correlation function. KT theory predicts α=1/4 just below the transition

92 Experiments with 2D Bose gas. Proliferation of thermal vortices Haddzibabic et al., Nature (2006) 30% 20% Fraction of images showing at least one dislocation Exponent α % 0 high T low T central contrast central contrast The onset of proliferation coincides with α shifting to 0.5! Z. Hadzibabic et al., Nature (2006)

93 Interference between two interacting one dimensional Bose liquids Full distribution function of the interference amplitude Gritsev, Altman, Demler, Polkovnikov, cond-mat/

94 Higher moments of interference amplitude is a quantum operator. The measured value of will fluctuate from shot to shot. Can we predict the distribution function of? L Higher moments Changing to periodic boundary conditions (long condensates) Explicit expressions for are available but cumbersome Fendley, Lesage, Saleur, J. Stat. Phys. 79:799 (1995)

95 Impurity in a Luttinger liquid Expansion of the partition function in powers of g Partition function of the impurity contains correlation functions taken at the same point and at different times. Moments of interference experiments come from correlations functions taken at the same time but in different points. Euclidean invariance ensures that the two are the same

96 Relation between quantum impurity problem and interference of fluctuating condensates Normalized amplitude of interference fringes Distribution function of fringe amplitudes Relation to the impurity partition function Distribution function can be reconstructed from using completeness relations for the Bessel functions

97 Bethe ansatz solution for a quantum impurity can be obtained from the Bethe ansatz following Zamolodchikov, Phys. Lett. B 253:391 (91); Fendley, et al., J. Stat. Phys. 79:799 (95) Making analytic continuation is possible but cumbersome Interference amplitude and spectral determinant is related to the single particle Schroedinger equation Dorey, Tateo, J.Phys. A. Math. Gen. 32:L419 (1999) Bazhanov, Lukyanov, Zamolodchikov, J. Stat. Phys. 102:567 (2001) Spectral determinant

98

99 Evolution of the distribution function Probability P(x) K=1 K=1.5 K=3 K=5 Narrow distribution for. Approaches Gumble distribution. Width Wide Poissonian distribution for x

100 From interference amplitudes to conformal field theories correspond to vacuum eigenvalues of Q operators of CFT Bazhanov, Lukyanov, Zamolodchikov, Comm. Math. Phys.1996, 1997, 1999 When K>1, is related to Q operators of CFT with c<0. This includes 2D quantum gravity, nonintersecting loop model on 2D lattice, growth of random fractal stochastic interface, high energy limit of multicolor QCD, 2D quantum gravity, non-intersecting loops on 2D lattice Yang-Lee singularity

101 Moving condensates in optical lattices Non equilibrium coherent dynamics of interacting many-body systems

102 Atoms in optical lattices. Bose Hubbard model Theory: Jaksch et al. PRL 81:3108(1998) Experiment: Kasevich et al., Science (2001) Greiner et al., Nature (2001) Cataliotti et al., Science (2001) Phillips et al., J. Physics B (2002) Esslinger et al., PRL (2004),

103 Equilibrium superfluid to insulator transition µ U Theory: Fisher et al. PRB (89), Jaksch et al. PRL (98) Experiment: Greiner et al. Nature (01) Mott insulator Superfluid n 1 t/u

104 Moving condensate in an optical lattice. Dynamical instability Theory: Niu et al. PRA (01), Smerzi et al. PRL (02) Experiment: Fallani et al. PRL (04) v Related experiments by Eiermann et al, PRL (03)

105 This discussion: How to connect the dynamical instability (irreversible, classical) to the superfluid to Mott transition (equilibrium, quantum) p π/2 Unstable Stable??? This discussion SF MI U/J Possible experimental sequence: p??? U/t SF MI

106 Superconductor to Insulator transition in thin films Bi films d Superconducting films of different thickness Marcovic et al., PRL 81:5217 (1998)

107 Dynamical instability Classical limit of the Hubbard model. Discreet Gross-Pitaevskii equation Current carrying states Linear stability analysis: States with p>p/2 are unstable unstable unstable Amplification of density fluctuations r

108 Dynamical instability for integer filling Order parameter for a current carrying state Current GP regime. Maximum of the current for. When we include quantum fluctuations, the amplitude of the order parameter is suppressed decreases with increasing phase gradient

109 Dynamical instability for integer filling ρ s (p) sin(p) p π/2 I(p) p * Condensate momentum p/π Vicinity of the SF-I quantum phase transition. Classical description applies for SF U/J MI Dynamical instability occurs for

110 Dynamical instability. Gutzwiller approximation Wavefunction Time evolution We look for stability against small fluctuations 0.5 unstable Phase diagram. Integer filling p/π d=1 d=2 d=3 0.2 stable U/U c

111 Optical lattice and parabolic trap. Gutzwiller approximation Center of Mass Momentum Time N=1.5 N=3 The first instability develops near the edges, where N=1 U=0.01 t J=1/4 Gutzwiller ansatz simulations (2D)

112 Beyond semiclassical equations. Current decay by tunneling phase j phase j phase j Current carrying states are metastable. They can decay by thermal or quantum tunneling Thermal activation Quantum tunneling

113 Decay of current by quantum tunneling phase j phase Quantum phase slip j Escape from metastable state by quantum tunneling. WKB approximation S classical action corresponding to the motion in an inverted potential.

114 Decay rate from a metastable state. Example 2 τ 1 dx + ( ) 0 0 c 2m dτ S dτ ε x bx ε p p

115 For d>1 we have to include transverse directions. Need to excite many chains to create a phase slip J J cos p, J = J Longitudinal stiffness is much smaller than the transverse. The transverse size of the phase slip diverges near a phase slip. We can use continuum approximation to treat transverse directions

116 Weakly interacting systems. Gross-Pitaevskii regime. Decay of current by quantum tunneling p π/2 SF U/J MI Fallani et al., PRL (04) Quantum phase slips are strongly suppressed in the GP regime

117 Strongly interacting regime. Vicinity of the SF-Mott transition Close to a SF-Mott transition we can use an effective relativistivc GL theory (Altman, Auerbach, 2004) p π/2 SF U/J M I Metastable current carrying state: 1 This state becomes unstable at p c = ξ 3 corresponding to the maximum of the current: ψ = 1 p ( ξ ) I p ψ = p 1 p. 2 2 ip x ξ e ξ

118 Strongly interacting regime. Vicinity of the SF-Mott transition Decay of current by quantum tunneling p π/2 SF U/J MI Action of a quantum phase slip in d=1,2,3 - correlation length Strong broadening of the phase transition in d=1 and d=2 is discontinuous at the transition. Phase slips are not important. Sharp phase transition

119 Decay of current by quantum tunneling

120 0.5 unstable p/π d=1 stable d=2 d= U/U c

121 Decay of current by thermal activation phase j phase Thermal phase slip j E Escape from metastable state by thermal activation

122 Thermally activated current decay. Weakly interacting regime E Thermal phase slip Activation energy in d=1,2,3 Thermal fluctuations lead to rapid decay of currents Crossover from thermal to quantum tunneling

123 Decay of current by thermal fluctuations Phys. Rev. Lett. (2004)

124 Conclusions We understand well: electron systems in semiconductors and simple metals. Interaction energy is smaller than the kinetic energy. Perturbation theory works We do not understand: strongly correlated electron systems in novel materials. Interaction energy is comparable or larger than the kinetic energy. Many surprising new phenomena occur, including high temperature superconductivity, magnetism, fractionalization of excitations Ultracold atoms have energy scales of 10-6 K, compared to 10 4 K for electron systems. However, by engineering and studying strongly interacting systems of cold atoms we should get insights into the mysterious properties of novel quantum materials Our big goal is to develop a general framework for understanding strongly correlated systems. This will be important far beyond AMO and condensed matter

125

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Strongly correlated systems: from electronic materials to cold atoms

Strongly correlated systems: from electronic materials to cold atoms Strongly correlated systems: from electronic materials to cold atoms Eugene Demler Harvard University Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter, A. Imambekov, M.

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms

Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms SMR 1666-2 SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 11-22 July 2005 Quantum Phase Transitions, Strongly Interacting Systems, and Cold Atoms Presented by: Eugene

More information

Magnetism of spinor BEC in an optical lattice

Magnetism of spinor BEC in an optical lattice Magnetism of spinor BEC in an optical lattice Eugene Demler Physics Department, Harvard University Collaborators: Ehud Altman, Ryan Barnett, Luming Duan, Walter Hofstetter, Adilet Imambekov, Mikhail Lukin,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Alain Aspect, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa,

More information

Strongly correlated many-body systems: from electronic materials to cold atoms to photons

Strongly correlated many-body systems: from electronic materials to cold atoms to photons Strongly correlated many-body systems: from electronic materials to cold atoms to photons Eugene Demler Harvard University Collaborators: E. Altman, R. Barnett, I. Bloch, A. Burkov, D. Chang, I. Cirac,

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Lattice modulation experiments with fermions in optical lattices and more

Lattice modulation experiments with fermions in optical lattices and more Lattice modulation experiments with fermions in optical lattices and more Nonequilibrium dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University Rajdeep Sensarma Harvard

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Explana'on of the Higgs par'cle

Explana'on of the Higgs par'cle Explana'on of the Higgs par'cle Condensed ma7er physics: The Anderson- Higgs excita'on Press release of Nature magazine Unity of Physics laws fev pev nev µev mev ev kev MeV GeV TeV pk nk µk mk K Cold atoms

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Interferometric probes of quantum many-body systems of ultracold atoms

Interferometric probes of quantum many-body systems of ultracold atoms Interferometric probes of quantum many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Dima Abanin, Thierry Giamarchi, Sarang Gopalakrishnan, Adilet Imambekov, Takuya Kitagawa,

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices IASTU Condensed Matter Seminar July, 2015 Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices Xiaopeng Li ( 李晓鹏 ) CMTC/JQI University of Maryland [Figure from JQI website] Gauge fields

More information

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique - Master Concepts Fondamentaux de la Physique 2013-2014 Théorie de la Matière Condensée Cours 1-2 09 & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique " - Antoine Georges

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 8 Quantum noise measurements as a probe of

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

Reduced dimensionality. T. Giamarchi

Reduced dimensionality. T. Giamarchi Reduced dimensionality T. Giamarchi http://dpmc.unige.ch/gr_giamarchi/ References TG, arxiv/0605472 (Salerno lectures) TG arxiv/1007.1030 (Les Houches-Singapore) M.A. Cazalilla et al. arxiv/1101.5337 (RMP)

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Impurities and disorder in systems of ultracold atoms

Impurities and disorder in systems of ultracold atoms Impurities and disorder in systems of ultracold atoms Eugene Demler Harvard University Collaborators: D. Abanin (Perimeter), K. Agarwal (Harvard), E. Altman (Weizmann), I. Bloch (MPQ/LMU), S. Gopalakrishnan

More information

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity April 2011 1. Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity Energy transport solar cells nuclear energy wind energy 15% of electric power is

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator Collaborators Simulations of bosons Lode Pollet (Harvard) Boris Svistunov (UMass) Nikolay Prokof ev (UMass)

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Ultracold Atoms in optical lattice potentials

Ultracold Atoms in optical lattice potentials ICTP SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 2005 Ultracold Atoms in optical lattice potentials Experiments at the interface between atomic physics and condensed

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

Quenched BCS superfluids: Topology and spectral probes

Quenched BCS superfluids: Topology and spectral probes Quenched BCS superfluids: Topology and spectral probes Matthew S. Foster, Rice University May 6 th, 2016 Quenched BCS superfluids: Topology and spectral probes M. S. Foster 1, Maxim Dzero 2, Victor Gurarie

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information