Chapter 2: Time Series Modelling. Chapter 3: Discrete Models. Notes. Notes. Intro to the Topic Time Series Discrete Models Growth and Decay

Size: px
Start display at page:

Download "Chapter 2: Time Series Modelling. Chapter 3: Discrete Models. Notes. Notes. Intro to the Topic Time Series Discrete Models Growth and Decay"

Transcription

1 Chapter 2: Modelling 6 / 71 Chapter 3: 7 / 71

2 Glossary of Terms Here are some of the types of symbols you will see in this section: Name Symbol Face Examples Vector Lower-case bold u, v, p Matrix Upper-case bold M, X, A Vector at Time step Subscript u 0 Age Category Subscript & at Time step Superscript u t 0 8 / 71 First Order We start with the most basic equations. State at time t purely related to that at t 1 Example in nature is cell division M n+1 = am n (3.1 a constant, n is the generation number So number in nth generation related to that in first by: So if M n = am n 1 =... = a n M 0 (3.2 1 a > 1 the population will increase, 2 a = 1 the population will be stable, 3 a < 1 the population will decrease. 9 / 71

3 Examples of Example 1: Rabbit Reproduction Difference eqn Order is how many terms determine present state. Examples of higher order difference eqns common in nature. Leonardo of Pisa (a.k.a.fibonacci modelled rabbit reproduction. Assumptions of Fibonacci model: 1 Each pair of rabbits can reproduce from two months old 2 Each reproduction produces only one pair of rabbits 3 All rabbits survive. Number of rabbit pairs at t n+1, M n+1 (n =months is: M n+1 = M n + M n 1. (3.3 With M 0 = 1, M 1 = 1, (1 pair at t = 0 number grows as 1, 1, 2, 3, 5, 8, 13, / 71 Examples of Cont d Example 1: Rabbit Reproduction (cont d FIGURE 3.1 : Fibonacci Number of Immature (: & Mature Rabbits (= 11 / 71

4 Examples of Cont d Example 1: Rabbit Reproduction (cont d Instead of Eqn.(3.3, one step eqn (eg. Eqn.(3.1 is better Get this by writing Eqn.(3.3 in the form: M n+1 + M n = M n+2 M n+1 = M n+1 (3.4 which, by writing takes the form u n = u n+1 = ( Mn+1 M n ( u n. ( / 71 Digression: Matrix Basics Matrices & Vectors A matrix is an array of coefficients of the form: a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn (3.6 This is an m n matrix with m rows & n columns. A vector is an array of coefficients of the form: a 11 a 21 A =. a m1 13 / 71

5 Matrix Systems In the course will see systems of equations of the form: a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 (3.7 for a system of two equations in 2 unknowns x 1, x 2 constant coefficients a 11, a 12, a 21, a 22 & right-hand side b 1, b 2. With matrix multiplication, this can be written as: ( ( a11 a Ax = b 12 x1 = a 21 a 22 x 2 ( b1 b 2 ( / 71 Matrix Inverse, Identity Matrix Can show that Eqn.(3.8 has a unique solution if A 1 exists. A 1 has the property: A A 1 = Identity Matrix I The n n identity matrix is given by: I = ( / 71

6 Solutions to Matrix Systems: Matrix Determinant To solve x = (x, y in Eqn.(3.8 must find A 1 For a 2 2 Matrix A 1 is given by: A 1 = 1 det(a ( a22 a 12 a 21 a 11 (3.10 where det(a is the determinant of the matrix A determinant of A is det(a = a 11 a 22 a 12 a 21. Eqn.(3.10 holds for a 2 2 matrix only. The solution in Eqn.(3.8 only exists if this condition is met: det(a a 11 a 12 a 21 a 22 0 ( / 71 Matrix Characteristic Equation, Trace The characteristic equation for A is given by det(a λi = 0. It arises in a number of circumstances. For a 2 2 matrix, this expression becomes: det(a λi = 0 a 11 λ a 12 a 22 λ = 0 (3.12 a 21 which reduces to λ 2 (a 11 + a 22 λ + (a 11 a 22 a 12 a 21 = 0which we rewrite as λ 2 pλ + q = 0 (3.13 where p = a 11 + a 22 is the Trace of A and q = det(a. 17 / 71

7 Matrix Eigenvalues, Eigenvectors The roots of the quadratic equation in Eqn.(3.13 are: λ 1,2 = p 2 ± p2 4q 2 these are known as the eigenvalues of A. Can show that any matrix A can be decomposed as follows: (3.14 A = SΛS 1 (3.15 where S has eigenvectors of A, v 1, v 2 on the columns,& Λ is a matrix with eigenvalues as diagonals & zeros elsewhere: ( λ1 0 A = S S 1 ( λ 2 18 / 71 Matrix Eigendecompostition, Singular Value Decomposition Eqn.(3.15 is useful to raise matrices to powers: A 3 = ( SΛS 1 ( SΛS 1 ( SΛS 1 = (SΛ 3 S 1 (3.17 The eigenvectors v 1, v 2 are the solutions to the linear system Ax = λx for λ = λ 1, λ 2 respectively. As with λ s, these have physical meanings for the system. The process in Eqn.(3.15 is known as eigen decomposition for a square matrix; where the matrix is not square, it is known as singular value decomposition 19 / 71

8 Matrix Decomposition & Difference Equations For difference equations the system at time step n is related to that at the previous step n 1 through the system: u n = Au n 1 = A n u 0 (3.18 Using eigendecomposition A = SΛS 1 and setting ( ( c1 = S 1 u c 0 = S 1 u1 2 u 2 can see that u n = ( u1 u 2 where c 1, c 2 are constants. n=0 = c 1 λ n 1 v 1 + c 2 λ n 2 v 2 ( / 71 Matrix Decomposition, Difference & Differential Equations A similar result may be obtained for differential equations where the system of a second order equation (often has a solution of the form: ( x(t x(t = = c y(t 1 v 1 e λ1t + c 2 v 2 e λ2t. (3.20 So the solutions of difference and differential equations can be broken down into a linear combination of the λ s and corresponding v s of the original matrix system. This is useful in finding longterm solutions of matrix systems e.g. Fibonacci series. 21 / 71

9 Back to Fibonacci Sequences Eigenvalues and the Fibonacci Difference Equation To find the long-term behaviour of Fibonacci system (Eqn.(3.5, write (using Eqn.(3.17 Given that u n = A n u 0 = SΛ n S 1 u 0 (3.21 A = ( from Eqn.(3.5, we find the characteristic equation to be (from Eqn.(3.12. This gives the eigenvalues λ 1 = λ 2 λ 1 = 0, λ 2 = / 71 Stability of Fibonacci Sequences The full eigendecomposition for A can then be found to be ( ( ( 1 λ1 λ A = 2 λ1 0 1 λ2 (3.22 λ 1 λ λ 2 1 λ 1 Thus Eqn.(3.21 reduces to ( ( Mn+1 λ n = S 1 0 M n 0 λ n 2 S 1 ( 1 0 (3.23 The nth Fibonacci number is 2nd element of vector on left hand side of Eqn.(3.23, M n, can be shown to be: M n = λn 1 λ n 2 = 1 λ 1 λ 2 5 ( n ( n 2 ( / 71

10 Stability of Fibonacci Sequences cont d The Golden Number & Fibonacci Sequences φ = (1 + 5/2 is very important and was known to the Ancient Greeks as the golden number because rectangles with sides in the ratio 1 : were the most elegant. It occurs frequently in nature and persists in the everyday designs e.g. credit cards etc. As λ 2 > 1 & 1 < λ 1 < 0, λ 2 is λ max and its magnitude means the Fibonacci sequence is monotonically increasing. The fact that λ 1 is negative & magnitude < 1 means it contributes a slight oscillation. 24 / 71 Stability of Fibonacci Sequences cont d FIGURE 3.2 : Fibonacci Sequence to 10 Generations 25 / 71

11 Bonham Sequences Example 2: Pig Reproduction A pair of bonhams matures to a pair of pigs next season. Mature pairs produce 6 pairs of bonhams the following season & every successive season thereafter Each pair of bonhams produced takes one season to mature & a further season to start breeding every subsequent season. This can be seen in the diagram (fig 3.3, Assume breeding is seasonal so generations do not overlap & pigs are long-lived. 26 / 71 Bonham Sequences cont d FIGURE 3.3 : Number of Immature (: & Mature Pigs (= 27 / 71

12 Bonham Sequences cont d As with eqn(3.5, can express number of pairs of pigs in n + 1th generation w.r.t. nth: ( 1 6 u n+1 = u 1 0 n. (3.25 which (from eqn(3.12 leads to the eigenvalue problem: det(a λi = 0 1 λ λ = 0 (3.26 which reduces to giving eigenvalues λ 1 = 3 and λ 2 = 2. λ 2 λ 6 = 0 ( / 71 Bonham Sequences cont d The full eigendecomposition can then be found to be: A = 1 ( ( ( Thus, as in eqn(3.18 above for Fibonacci: (3.28 u n = Au n 1 = A n u 0 (3.29 Which may be shown to be: u n = 1 ( ( ( n n 1 3 Which reduces to u n = 1 5 [ ] 3(3 n + 2( 2 n 3 n ( 2 n u 0 (3.30 for an initial population u 0 = (1, 0 T (i.e. one breeding pair. ( / 71

13 A Small Wager Example 3: A Small Wager A cautious but enthusiastic fan speculate on a team winning consecutive weekly matches. From Week 1 with e1, bet at 1.05 (i.e odds on the previous week s winnings plus a bet at 1.1 (i.e on the week before s. Assuming fan is lucky every week, see how their winnings accumulate. So, following Eqn.(3.3, if amount at week n + 1 is given by M n+1 : M n+1 = 1.05M n + 1.1M n 1. (3.32 With M 0 = 0, M 1 = 1 30 / 71 A Small Wager (cont d Hence 1.05M n M n = M n+2 M n+1 = M n+1 (3.33 which, by writing (as per Rabbit Reproduction above ( Mn+1 u n = M n takes the form Thus u 1 = u n+1 = ( ( ( , u 2 = 1.05 u n, with u 0 = etc. ( 1 0 ( / 71

14 A Small Wager (cont d As with eqn(3.5 & eqn(3.25, derive an expression for the amount in the n + 1th week w.r.t. the nth week: ( u n+1 = u 1 0 n. (3.35 which (from eqn(3.12 leads to the eigenvalue problem: det(a λi = λ λ = 0 (3.36 which reduces to λ λ 1.1 = 0 (3.37 giving eigenvalues λ 1 = 1.7 and λ 2 = / 71 A Small Wager (cont d Thus, using Eqn(3.17 above A 3 = ( SΛS 1 ( SΛS 1 ( SΛS 1 = ( SΛ 3 S 1, (3.38 the full eigendecomposition can then be found to be: A = ( ( ( (3.39 So, as in eqn(3.18 above for the Fibonacci example: u n = Au n 1 = A n u 0 ( / 71

15 A Small Wager (cont d Which may be shown to be: u n = ( ( 1.7 n 0 0 ( 0.65 n ( u Which reduces to [ ] (1.7 u n = 0.43 n+1 ( 0.65 n n ( 0.65 n for an initial sum of u 0 = (1, 0 T, this givesu 1 ( etc. ( / 71 The Leslie Matrix The Leslie matrix is a generalization of the above. It is a matrix which describes the increases in numbers in various age categories of a population year-on-year. As above we write p n+1 = Ap n where p n, A are given by: p 1 n α 1 α 2... α m 1 α m p 2 ṇ p n =., A = σ σ p m n σ m 1 0 (3.42 where the Leslie matrix A is made up of α i, σ i, the number of births in a given age class i in year n & the fraction/probability that i year-olds survive to be i + 1 years old, respectively. 35 / 71

Chapter 2: Discrete Models

Chapter 2: Discrete Models Mathematical Modelling Computational Science Data Analytics Examples of Deep Analytics Chapter 2: 30/226 Glossary of Terms Here are some of the types of symbols you will see in the Module: Name Symbol

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

n α 1 α 2... α m 1 α m σ , A =

n α 1 α 2... α m 1 α m σ , A = The Leslie Matrix The Leslie matrix is a generalization of the above. It is a matrix which describes the increases in numbers in various age categories of a population year-on-year. As above we write p

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

The Leslie Matrix. The Leslie Matrix (/2)

The Leslie Matrix. The Leslie Matrix (/2) The Leslie Matrix The Leslie matrix is a generalization of the above. It describes annual increases in various age categories of a population. As above we write p n+1 = Ap n where p n, A are given by:

More information

FIBONACCI S NUMBERS, A POPULATION MODEL, AND POWERS OF MATRICES

FIBONACCI S NUMBERS, A POPULATION MODEL, AND POWERS OF MATRICES FIBONACCI S NUMBERS, A POPULATION MODEL, AND POWERS OF MATRICES The goal of these notes is to illustrate an application of large powers of matrices Our primary tools are the eigenvalues and eigenvectors

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77 1/77 ECEN 605 LINEAR SYSTEMS Lecture 7 Solution of State Equations Solution of State Space Equations Recall from the previous Lecture note, for a system: ẋ(t) = A x(t) + B u(t) y(t) = C x(t) + D u(t),

More information

Section 9.2: Matrices.. a m1 a m2 a mn

Section 9.2: Matrices.. a m1 a m2 a mn Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 34 The powers of matrix Consider the following dynamic

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis.

q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis. Exam Review Material covered by the exam [ Orthogonal matrices Q = q 1... ] q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

Further Mathematical Methods (Linear Algebra) 2002

Further Mathematical Methods (Linear Algebra) 2002 Further Mathematical Methods (Linear Algebra) 2002 Solutions For Problem Sheet 4 In this Problem Sheet, we revised how to find the eigenvalues and eigenvectors of a matrix and the circumstances under which

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13-14, Tuesday 11 th November 2014 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Eigenvectors

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

CAAM 335 Matrix Analysis

CAAM 335 Matrix Analysis CAAM 335 Matrix Analysis Solutions to Homework 8 Problem (5+5+5=5 points The partial fraction expansion of the resolvent for the matrix B = is given by (si B = s } {{ } =P + s + } {{ } =P + (s (5 points

More information

Announcements Monday, November 06

Announcements Monday, November 06 Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Study Notes on Matrices & Determinants for GATE 2017

Study Notes on Matrices & Determinants for GATE 2017 Study Notes on Matrices & Determinants for GATE 2017 Matrices and Determinates are undoubtedly one of the most scoring and high yielding topics in GATE. At least 3-4 questions are always anticipated from

More information

Math Camp Notes: Linear Algebra II

Math Camp Notes: Linear Algebra II Math Camp Notes: Linear Algebra II Eigenvalues Let A be a square matrix. An eigenvalue is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular matrix. In other

More information

Linear Algebra Exercises

Linear Algebra Exercises 9. 8.03 Linear Algebra Exercises 9A. Matrix Multiplication, Rank, Echelon Form 9A-. Which of the following matrices is in row-echelon form? 2 0 0 5 0 (i) (ii) (iii) (iv) 0 0 0 (v) [ 0 ] 0 0 0 0 0 0 0 9A-2.

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

Lecture 02 Linear Algebra Basics

Lecture 02 Linear Algebra Basics Introduction to Computational Data Analysis CX4240, 2019 Spring Lecture 02 Linear Algebra Basics Chao Zhang College of Computing Georgia Tech These slides are based on slides from Le Song and Andres Mendez-Vazquez.

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

EE5120 Linear Algebra: Tutorial 6, July-Dec Covers sec 4.2, 5.1, 5.2 of GS

EE5120 Linear Algebra: Tutorial 6, July-Dec Covers sec 4.2, 5.1, 5.2 of GS EE0 Linear Algebra: Tutorial 6, July-Dec 07-8 Covers sec 4.,.,. of GS. State True or False with proper explanation: (a) All vectors are eigenvectors of the Identity matrix. (b) Any matrix can be diagonalized.

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

MATHEMATICS 23a/E-23a, Fall 2015 Linear Algebra and Real Analysis I Module #1, Week 4 (Eigenvectors and Eigenvalues)

MATHEMATICS 23a/E-23a, Fall 2015 Linear Algebra and Real Analysis I Module #1, Week 4 (Eigenvectors and Eigenvalues) MATHEMATICS 23a/E-23a, Fall 205 Linear Algebra and Real Analysis I Module #, Week 4 (Eigenvectors and Eigenvalues) Author: Paul Bamberg R scripts by Paul Bamberg Last modified: June 8, 205 by Paul Bamberg

More information

Ex 12A The Inverse matrix

Ex 12A The Inverse matrix Chapter 12: Matrices II TOPIC The Inverse Matrix TEXT: Essential Further Mathematics DATE SET PAGE(S) WORK 421 Exercise 12A: Q1 4 Applying the Inverse Matrix: Solving Simultaneous Equations 428 Exercise

More information

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Mathematical Operations with Arrays) Contents Getting Started Matrices Creating Arrays Linear equations Mathematical Operations with Arrays Using Script

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 15 Review of Matrix Theory III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Matrix An m n matrix is a rectangular or square array of

More information

The Fibonacci Sequence

The Fibonacci Sequence The Fibonacci Sequence MATH 100 Survey of Mathematical Ideas J. Robert Buchanan Department of Mathematics Summer 2018 The Fibonacci Sequence In 1202 Leonardo of Pisa (a.k.a Fibonacci) wrote a problem in

More information

Example: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems.

Example: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems. Lecture 2: Eigenvalues, eigenvectors and similarity The single most important concept in matrix theory. German word eigen means proper or characteristic. KTH Signal Processing 1 Magnus Jansson/Emil Björnson

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

Lecture 3 Eigenvalues and Eigenvectors

Lecture 3 Eigenvalues and Eigenvectors Lecture 3 Eigenvalues and Eigenvectors Eivind Eriksen BI Norwegian School of Management Department of Economics September 10, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 3 Eigenvalues and Eigenvectors

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Eigenvalues and Eigenvectors A an n n matrix of real numbers. The eigenvalues of A are the numbers λ such that Ax = λx for some nonzero vector x

More information

EE5120 Linear Algebra: Tutorial 7, July-Dec Covers sec 5.3 (only powers of a matrix part), 5.5,5.6 of GS

EE5120 Linear Algebra: Tutorial 7, July-Dec Covers sec 5.3 (only powers of a matrix part), 5.5,5.6 of GS EE5 Linear Algebra: Tutorial 7, July-Dec 7-8 Covers sec 5. (only powers of a matrix part), 5.5,5. of GS. Prove that the eigenvectors corresponding to different eigenvalues are orthonormal for unitary matrices.

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

Problems for M 10/26:

Problems for M 10/26: Math, Lesieutre Problem set # November 4, 25 Problems for M /26: 5 Is λ 2 an eigenvalue of 2? 8 Why or why not? 2 A 2I The determinant is, which means that A 2I has 6 a nullspace, and so there is an eigenvector

More information

Diagonalization of Matrix

Diagonalization of Matrix of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

More information

Problems for M 11/2: A =

Problems for M 11/2: A = Math 30 Lesieutre Problem set # November 0 Problems for M /: 4 Let B be the basis given by b b Find the B-matrix for the transformation T : R R given by x Ax where 3 4 A (This just means the matrix for

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation Eigenanalysis What s Eigenanalysis? Fourier s Eigenanalysis Model is a Replacement Process Powers and Fourier s Model Differential Equations and Fourier s Model Fourier s Model Illustrated What is Eigenanalysis?

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A.

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A. Eigenspaces 1. (a) Find all eigenvalues and eigenvectors of A = (b) Find the corresponding eigenspaces. [ ] 1 1 1 Definition. If A is an n n matrix and λ is a scalar, the λ-eigenspace of A (usually denoted

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to: MAC Module Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to: Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas

Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas Finding Eigenvalues Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas plus the facts that det{a} = λ λ λ n, Tr{A}

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

0.1 Eigenvalues and Eigenvectors

0.1 Eigenvalues and Eigenvectors 0.. EIGENVALUES AND EIGENVECTORS MATH 22AL Computer LAB for Linear Algebra Eigenvalues and Eigenvectors Dr. Daddel Please save your MATLAB Session (diary)as LAB9.text and submit. 0. Eigenvalues and Eigenvectors

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and

More information

Diagonalization. P. Danziger. u B = A 1. B u S.

Diagonalization. P. Danziger. u B = A 1. B u S. 7., 8., 8.2 Diagonalization P. Danziger Change of Basis Given a basis of R n, B {v,..., v n }, we have seen that the matrix whose columns consist of these vectors can be thought of as a change of basis

More information

Linear Algebra: Sample Questions for Exam 2

Linear Algebra: Sample Questions for Exam 2 Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and

More information

Introduction to Matrices

Introduction to Matrices 214 Analysis and Design of Feedback Control Systems Introduction to Matrices Derek Rowell October 2002 Modern system dynamics is based upon a matrix representation of the dynamic equations governing the

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Math 102 Final Exam - Dec 14 - PCYNH pm Fall Name Student No. Section A0

Math 102 Final Exam - Dec 14 - PCYNH pm Fall Name Student No. Section A0 Math 12 Final Exam - Dec 14 - PCYNH 122-6pm Fall 212 Name Student No. Section A No aids allowed. Answer all questions on test paper. Total Marks: 4 8 questions (plus a 9th bonus question), 5 points per

More information

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write 1 MATH FACTS 11 Vectors 111 Definition We use the overhead arrow to denote a column vector, ie, a number with a direction For example, in three-space, we write The elements of a vector have a graphical

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Recall: Parity of a Permutation S n the set of permutations of 1,2,, n. A permutation σ S n is even if it can be written as a composition of an

More information

Introduction Eigen Values and Eigen Vectors An Application Matrix Calculus Optimal Portfolio. Portfolios. Christopher Ting.

Introduction Eigen Values and Eigen Vectors An Application Matrix Calculus Optimal Portfolio. Portfolios. Christopher Ting. Portfolios Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November 4, 2016 Christopher Ting QF 101 Week 12 November 4,

More information

Math 205, Summer I, Week 4b:

Math 205, Summer I, Week 4b: Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Contents Quantitative methods for Economics and Business University of Ferrara Academic year 2017-2018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2

More information

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 220 FINAL EXAMINATION December 13, Name ID # Section # MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

More information

Linear algebra and differential equations (Math 54): Lecture 13

Linear algebra and differential equations (Math 54): Lecture 13 Linear algebra and differential equations (Math 54): Lecture 13 Vivek Shende March 3, 016 Hello and welcome to class! Last time We discussed change of basis. This time We will introduce the notions of

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

1 A first example: detailed calculations

1 A first example: detailed calculations MA4 Handout # Linear recurrence relations Robert Harron Wednesday, Nov 8, 009 This handout covers the material on solving linear recurrence relations It starts off with an example that goes through detailed

More information

Lecture 10 - Eigenvalues problem

Lecture 10 - Eigenvalues problem Lecture 10 - Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10 - Eigenvalues problem Introduction Eigenvalue problems form an important class of problems

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

Eigenvalue and Eigenvector Homework

Eigenvalue and Eigenvector Homework Eigenvalue and Eigenvector Homework Olena Bormashenko November 4, 2 For each of the matrices A below, do the following:. Find the characteristic polynomial of A, and use it to find all the eigenvalues

More information

Eigenvalues in Applications

Eigenvalues in Applications Eigenvalues in Applications Abstract We look at the role of eigenvalues and eigenvectors in various applications. Specifically, we consider differential equations, Markov chains, population growth, and

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Contents Eigenvalues and Eigenvectors. Basic Concepts. Applications of Eigenvalues and Eigenvectors 8.3 Repeated Eigenvalues and Symmetric Matrices 3.4 Numerical Determination of Eigenvalues and Eigenvectors

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

Math Spring 2011 Final Exam

Math Spring 2011 Final Exam Math 471 - Spring 211 Final Exam Instructions The following exam consists of three problems, each with multiple parts. There are 15 points available on the exam. The highest possible score is 125. Your

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

9.1 Eigenanalysis I Eigenanalysis II Advanced Topics in Linear Algebra Kepler s laws

9.1 Eigenanalysis I Eigenanalysis II Advanced Topics in Linear Algebra Kepler s laws Chapter 9 Eigenanalysis Contents 9. Eigenanalysis I.................. 49 9.2 Eigenanalysis II................. 5 9.3 Advanced Topics in Linear Algebra..... 522 9.4 Kepler s laws................... 537

More information

MATH 583A REVIEW SESSION #1

MATH 583A REVIEW SESSION #1 MATH 583A REVIEW SESSION #1 BOJAN DURICKOVIC 1. Vector Spaces Very quick review of the basic linear algebra concepts (see any linear algebra textbook): (finite dimensional) vector space (or linear space),

More information

Lec 2: Mathematical Economics

Lec 2: Mathematical Economics Lec 2: Mathematical Economics to Spectral Theory Sugata Bag Delhi School of Economics 24th August 2012 [SB] (Delhi School of Economics) Introductory Math Econ 24th August 2012 1 / 17 Definition: Eigen

More information

6 EIGENVALUES AND EIGENVECTORS

6 EIGENVALUES AND EIGENVECTORS 6 EIGENVALUES AND EIGENVECTORS INTRODUCTION TO EIGENVALUES 61 Linear equations Ax = b come from steady state problems Eigenvalues have their greatest importance in dynamic problems The solution of du/dt

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

More information