Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas


 Doreen Roberts
 1 years ago
 Views:
Transcription
1 Finding Eigenvalues Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas plus the facts that det{a} = λ λ λ n, Tr{A} = λ +λ + +λ n the eigenvalues of a triangular matrix are the diagonal elements similar matrices B = S AS have the same eigenvalues the eigenvalues of a real symmetric matrix are real the eigenvalues of an orthogonal matrix have λ =. The first fact can be generalized to block triangular matrices. If M is block upper triangular [ A B M = 0 C the eigenvalues of M are the eigenvalues of A plus the eigenvalues of C since [ A λi B 0 = det{m λi} = det = det{a λi}det{c λi}. 0 C λi Here each identity matrix I has the appropriate dimensions to match its partner. A similar statement holds for block lower triangular M. Thus for block triangular matrices, the eigenvalue problem can be broken up into smaller subproblems. (A matrix M is reducible if it can be written in block triangular form by reorderingrowsandcolumnspmp, wherep isapermutationmatrix.) Gershgorin Circle Theorem Also called the Gershgorin Disk Theorem. Theorem statement and Examples and are based on LeVeque s Finite Difference Methods for Ordinary & Partial Differential Equations.
2 Theorem. Let A C n n and let D i be the closed disk in the complex plane centered at A ii with radius given by the row sum r i = j i A ij : D i = {z C : z A ii r i } D(A ii,r = r i ). ThenalltheeigenvaluesofAlieintheunionofthedisksD i fori =,..., n. If some set of k overlapping disks is disjoint from all the other disks, then exactly k eigenvalues lie in the union of these k disks. Note the following: If a disk D i is disjoint from all other disks, then it contains exactly one eigenvalue of A. If a disk D i overlaps other disks, then it need not contain any eigenvalues, although the union of the overlapping disks contains the appropriate number. If A is real, A T has the same eigenvalues as A and the theorem can also be applied to A T (or equivalently the disk radii can be defined by summing the magnitudes of the offdiagonal elements of columns of A rather than rows). (If A is irreducible, a stronger version of the theorem states that an eigenvalue cannot lie on the boundary of a disk unless it lies on the boundary of every disk.) Proof: Ax = λx implies (λ A ii )x i = j i A ij x j λ A ii j i by choosing i such that x i = max j x j. A ij x j x i A ij = r i j i
3 Examples Here we assume all matrices are real example A = The Gershgorin theorem applied to A implies that the eigenvalues lie within the union of D(5,r = 0.7), D(6,r =.), and D(,r = ). There is exactly one eigenvalue in D(,r = ) and two eigenvalues in D(5,r = 0.7) D(6,r =.). All eigenvalues have real parts between and 7. (and hence positive real parts, in particular). The eigenvalue in D(, r = ) must be real, since complex eigenvalues must appear in conjugate pairs. Applying the theorem to A T gives a tighter bound on the single eigenvalue λ near ; λ must lie within D(,r = 0.), so.8 λ.. The actual eigenvalues of A are λ =.9639 and λ ± = 5.580±0.64i.. Second difference matrix ThematrixD () = tridiag[ issymmetric, soallitseigenvaluesarereal. By the Gershgorin theorem they must lie in the circle of radius centered at : 4 λ j 0. We know that D () is nonsingular, so all the eigenvalues of D () are negative. (Also since D () is irreducible and two circles have radii =, 4 < λ j < 0, which proves D () is nonsingular.) The eigenvalues can actually be calculated: λ j = (cos(jπh) ), j =,..., n where h = /(n+), and thus are distributed between 4 < λ j < 0. The Jacobi iteration matrix is B = tridiag[ 0 with < λ j < (since B is irreducible), and Jacobi converges since ρ(b) <. 3. Absolute row sums < Suppose B has absolute row sums <. Then r i = B i + + B i, + B i+, + + B in < B ii 3
4 and by the Gershgorin theorem all λ i < and ρ(b) <. 4. Diagonally dominant matrix Suppose A is diagonally dominant: r i = A i + + A i, + A i+, + + A in < A ii, i =,..., n. Then by the Gershgorin theorem λ i 0 and A is invertible. For Jacobi iteration, B = I D A has all absolute row sums <, so Jacobi converges. GaussSeidel and SOR are also guaranteed to converge. In Examples 5 9, see how much information you can extract about the actual eigenvalues using just the Gershgorin Circle Theorem and (block) triangularity. The actual eigenvalues are given. 5. From HW6 λ = 0, λ ± = ± /. 6. From HW7 λ ± = (± 5)/. A = A = [ 0 Last examples are from Theory of Iterative Methods notes 7. For B GS = B J = [ A = [ 0 [ , λ ± = ±, ρ J =, λ = 0, λ = 4, ρ GS = 4 8. Example where Jacobi converges but GaussSeidel diverges 0 A =, B J = 0 0 4
5 λ = λ = λ 3 = 0, ρ J = 0, Jacobi converges. 0 B GS = λ = 0, λ = λ 3 =, ρ GS =, GaussSeidel diverges. 9. Example where Jacobi diverges but GaussSeidel converges A =, B J = λ =, λ = λ 3 = 0.5, ρ J =, Jacobi diverges. B GS = λ = 0, λ ± = 0.35±0.654i, ρ GS = , GaussSeidel converges. 5
Theory of Iterative Methods
Based on Strang s Introduction to Applied Mathematics Theory of Iterative Methods The Iterative Idea To solve Ax = b, write Mx (k+1) = (M A)x (k) + b, k = 0, 1,,... Then the error e (k) x (k) x satisfies
More informationLecture 10  Eigenvalues problem
Lecture 10  Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10  Eigenvalues problem Introduction Eigenvalue problems form an important class of problems
More informationc 1995 Society for Industrial and Applied Mathematics Vol. 37, No. 1, pp , March
SIAM REVIEW. c 1995 Society for Industrial and Applied Mathematics Vol. 37, No. 1, pp. 93 97, March 1995 008 A UNIFIED PROOF FOR THE CONVERGENCE OF JACOBI AND GAUSSSEIDEL METHODS * ROBERTO BAGNARA Abstract.
More informationCHAPTER 5. Basic Iterative Methods
Basic Iterative Methods CHAPTER 5 Solve Ax = f where A is large and sparse (and nonsingular. Let A be split as A = M N in which M is nonsingular, and solving systems of the form Mz = r is much easier than
More informationScientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1
Scientific Computing WS 2018/2019 Lecture 9 Jürgen Fuhrmann juergen.fuhrmann@wiasberlin.de Lecture 9 Slide 1 Lecture 9 Slide 2 Simple iteration with preconditioning Idea: Aû = b iterative scheme û = û
More informationApplied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic
Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of
More informationAlgebra C Numerical Linear Algebra Sample Exam Problems
Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finitedimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric
More informationBindel, Fall 2016 Matrix Computations (CS 6210) Notes for
1 Iteration basics Notes for 20161107 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.
More informationCAAM 454/554: Stationary Iterative Methods
CAAM 454/554: Stationary Iterative Methods Yin Zhang (draft) CAAM, Rice University, Houston, TX 77005 2007, Revised 2010 Abstract Stationary iterative methods for solving systems of linear equations are
More informationJACOBI S ITERATION METHOD
ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes
More informationCS 246 Review of Linear Algebra 01/17/19
1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector
More informationPreliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012
Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.
More informationGershgorin s Circle Theorem for Estimating the Eigenvalues of a Matrix with Known Error Bounds
Gershgorin s Circle Theorem for Estimating the Eigenvalues of a Matrix with Known Error Bounds Author: David Marquis Advisors: Professor Hans De Moor Dr. Kathryn Porter Reader: Dr. Michael Nathanson May
More informationMath 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018
1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)
More informationChapter 12: Iterative Methods
ES 40: Scientific and Engineering Computation. Uchechukwu Ofoegbu Temple University Chapter : Iterative Methods ES 40: Scientific and Engineering Computation. GaussSeidel Method The GaussSeidel method
More informationThe convergence of stationary iterations with indefinite splitting
The convergence of stationary iterations with indefinite splitting Michael C. Ferris Joint work with: Tom Rutherford and Andy Wathen University of Wisconsin, Madison 6th International Conference on Complementarity
More informationSolving Linear Systems
Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationRecall : Eigenvalues and Eigenvectors
Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector
More information9. Iterative Methods for Large Linear Systems
EE507  Computational Techniques for EE Jitkomut Songsiri 9. Iterative Methods for Large Linear Systems introduction splitting method Jacobi method GaussSeidel method successive overrelaxation (SOR) 91
More informationNumerical Methods  Numerical Linear Algebra
Numerical Methods  Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods  Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear
More informationComputational Linear Algebra
Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD
More informationSolving Linear Systems of Equations
November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse
More informationLecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University
Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector
More informationLecture 18 Classical Iterative Methods
Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods PerOlof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,
More informationIterative Methods. Splitting Methods. Numerical Analysis. Thursday, November 7, 13
Iterative Methods Splitting Methods Numerical Analysis 1 1 Direct Methods We have so far focused on solving Ax = b using direct methods. Gaussian Elimination LU Decomposition Variants of LU, including
More informationIterative Methods. Splitting Methods
Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition
More informationNumerical Linear Algebra Homework Assignment  Week 2
Numerical Linear Algebra Homework Assignment  Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.
More informationDepartment of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015
Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two
More informationQuestion: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of AcI?
Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of AcI? Property The eigenvalues
More informationMath 471 (Numerical methods) Chapter 3 (second half). System of equations
Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular
More informationMath 240 Calculus III
The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A
More informationJordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS
Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. ALRABTAH Abstract. The Jacobi and GaussSeidel iterative
More informationChapter 3. Determinants and Eigenvalues
Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory
More informationHere is an example of a block diagonal matrix with Jordan Blocks on the diagonal: J
Class Notes 4: THE SPECTRAL RADIUS, NORM CONVERGENCE AND SOR. Math 639d Due Date: Feb. 7 (updated: February 5, 2018) In the first part of this week s reading, we will prove Theorem 2 of the previous class.
More informationWarmup. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions
Warmup True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be
More informationMAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2.
MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Linear Algebra II Vectors and matrices 1 11 Definition 1 12 Operations 1 2 Linear Algebra III Inverses and Determinants 1 21 Inverse Matrices
More information6. Iterative Methods for Linear Systems. The stepwise approach to the solution...
6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse
More informationEigenvalues and Eigenvectors
Chapter 1 Eigenvalues and Eigenvectors Among problems in numerical linear algebra, the determination of the eigenvalues and eigenvectors of matrices is second in importance only to the solution of linear
More informationComputing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices
Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 9, 2008 Today
More informationIntroduction to Scientific Computing
(Lecture 5: Linear system of equations / Matrix Splitting) Bojana Rosić, Thilo Moshagen Institute of Scientific Computing Motivation Let us resolve the problem scheme by using Kirchhoff s laws: the algebraic
More informationMath/Phys/Engr 428, Math 529/Phys 528 Numerical Methods  Summer Homework 3 Due: Tuesday, July 3, 2018
Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods  Summer 28. (Vector and Matrix Norms) Homework 3 Due: Tuesday, July 3, 28 Show that the l vector norm satisfies the three properties (a) x for x
More informationMath/Phys/Engr 428, Math 529/Phys 528 Numerical Methods  Spring Homework 3 Due: Wednesday, February 27, 2019
Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods  Spring 29. (Vector and Matrix Norms) Homework 3 Due: Wednesday, February 27, 29 Show that the l vector norm satisfies the three properties (a)
More information9.1 Preconditioned Krylov Subspace Methods
Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete
More informationMatrix Operations: Determinant
Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant
More informationNumerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD
Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote
More informationNumerical Programming I (for CSE)
Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let
More informationFoundations of Matrix Analysis
1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations (continued)
1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix
More informationDimension. Eigenvalue and eigenvector
Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, ranknullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,
More information10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method
54 CHAPTER 10 NUMERICAL METHODS 10. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after
More informationComputing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices
Computing Eigenvalues and/or Eigenvectors;Part 1, Generalities and symmetric matrices Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 8, 2009 Today
More informationMath 108b: Notes on the Spectral Theorem
Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator
More informationEigenvalue and Eigenvector Problems
Eigenvalue and Eigenvector Problems An attempt to introduce eigenproblems Radu Trîmbiţaş BabeşBolyai University April 8, 2009 Radu Trîmbiţaş ( BabeşBolyai University) Eigenvalue and Eigenvector Problems
More informationEcon 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis
Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide
More informationChapter 5 Eigenvalues and Eigenvectors
Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n
More informationLecture 4 Eigenvalue problems
Lecture 4 Eigenvalue problems Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn
More informationEigenvalues and Eigenvectors
5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),
More informationEE5120 Linear Algebra: Tutorial 6, JulyDec Covers sec 4.2, 5.1, 5.2 of GS
EE0 Linear Algebra: Tutorial 6, JulyDec 078 Covers sec 4.,.,. of GS. State True or False with proper explanation: (a) All vectors are eigenvectors of the Identity matrix. (b) Any matrix can be diagonalized.
More informationGoal: to construct some generalpurpose algorithms for solving systems of linear Equations
Chapter IV Solving Systems of Linear Equations Goal: to construct some generalpurpose algorithms for solving systems of linear Equations 4.6 Solution of Equations by Iterative Methods 4.6 Solution of
More informationMath Matrix Algebra
Math 44  Matrix Algebra Review notes  (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:
More informationChapter 7 Iterative Techniques in Matrix Algebra
Chapter 7 Iterative Techniques in Matrix Algebra PerOlof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition
More informationA NEW EFFECTIVE PRECONDITIONED METHOD FOR LMATRICES
Journal of Mathematical Sciences: Advances and Applications Volume, Number 2, 2008, Pages 3322 A NEW EFFECTIVE PRECONDITIONED METHOD FOR LMATRICES Department of Mathematics Taiyuan Normal University
More informationExample: Filter output power. maximization. Definition. Eigenvalues, eigenvectors and similarity. Example: Stability of linear systems.
Lecture 2: Eigenvalues, eigenvectors and similarity The single most important concept in matrix theory. German word eigen means proper or characteristic. KTH Signal Processing 1 Magnus Jansson/Emil Björnson
More informationEcon Slides from Lecture 7
Econ 205 Sobel Econ 205  Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for
More informationDeterminants by Cofactor Expansion (III)
Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...
More informationvibrations, light transmission, tuning guitar, design buildings and bridges, washing machine, Partial differential problems, water flow,...
6 Eigenvalues Eigenvalues are a common part of our life: vibrations, light transmission, tuning guitar, design buildings and bridges, washing machine, Partial differential problems, water flow, The simplest
More informationLecture 13 Eigenvalue Problems
Lecture 13 Eigenvalue Problems MIT 18.335J / 6.337J Introduction to Numerical Methods PerOlof Persson (persson@mit.edu) October 24, 2007 1 The Eigenvalue Decomposition Eigenvalue problem for m m matrix
More informationChap 3. Linear Algebra
Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions
More informationEIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers..
EIGENVALUE PROBLEMS Background on eigenvalues/ eigenvectors / decompositions Perturbation analysis, condition numbers.. Power method The QR algorithm Practical QR algorithms: use of Hessenberg form and
More informationSolving Linear Systems
Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Linear Systems Fall 2015 1 / 12 Introduction We continue looking how to solve linear systems of
More informationc c c c c c c c c c a 3x3 matrix C= has a determinant determined by
Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.
More informationChapter 2. Square matrices
Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a
More informationThe Eigenvalue Problem: Perturbation Theory
Jim Lambers MAT 610 Summer Session 200910 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just
More informationand let s calculate the image of some vectors under the transformation T.
Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =
More informationMath Introduction to Numerical Analysis  Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.
Math 5620  Introduction to Numerical Analysis  Class Notes Fernando Guevara Vasquez Version 1990. Date: January 17, 2012. 3 Contents 1. Disclaimer 4 Chapter 1. Iterative methods for solving linear systems
More informationCLASSICAL ITERATIVE METHODS
CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped
More informationDominant Eigenvalue of a Sudoku Submatrix
Sacred Heart University DigitalCommons@SHU Academic Festival Apr 20th, 9:30 AM  10:45 AM Dominant Eigenvalue of a Sudoku Submatrix Nicole Esposito Follow this and additional works at: https://digitalcommons.sacredheart.edu/acadfest
More informationComputational Methods. Systems of Linear Equations
Computational Methods Systems of Linear Equations Manfred Huber 2011 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations
More informationConjugate Gradient (CG) Method
Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous
More information9.1 Eigenvectors and Eigenvalues of a Linear Map
Chapter 9 Eigenvectors and Eigenvalues 9.1 Eigenvectors and Eigenvalues of a Linear Map Given a finitedimensional vector space E, letf : E! E be any linear map. If, by luck, there is a basis (e 1,...,e
More informationChapter 5. Eigenvalues and Eigenvectors
Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the
More informationA LINEAR SYSTEMS OF EQUATIONS. By : Dewi Rachmatin
A LINEAR SYSTEMS OF EQUATIONS By : Dewi Rachmatin Back Substitution We will now develop the backsubstitution algorithm, which is useful for solving a linear system of equations that has an uppertriangular
More informationAMS526: Numerical Analysis I (Numerical Linear Algebra)
AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis
More informationComputational Methods. Systems of Linear Equations
Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations
More informationClassical iterative methods for linear systems
Classical iterative methods for linear systems Ed Bueler MATH 615 Numerical Analysis of Differential Equations 27 February 1 March, 2017 Ed Bueler (MATH 615 NADEs) Classical iterative methods for linear
More informationSyDe312 (Winter 2005) Unit 1  Solutions (continued)
SyDe3 (Winter 5) Unit  Solutions (continued) March, 5 Chapter 6  Linear Systems Problem 6.6  b Iterative solution by the Jacobi and GaussSeidel iteration methods: Given: b = [ 77] T, x = [ ] T 9x +
More informationAMS526: Numerical Analysis I (Numerical Linear Algebra)
AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue
More informationIterative Methods for Solving A x = b
Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http
More informationNotes on Linear Algebra and Matrix Theory
Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a
More informationLinear Algebra: Matrix Eigenvalue Problems
CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given
More informationMatrices and Linear Algebra
Contents Quantitative methods for Economics and Business University of Ferrara Academic year 20172018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2
More informationToday s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn
Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear
More informationMATH 1553C MIDTERM EXAMINATION 3
MATH 553C MIDTERM EXAMINATION 3 Name GT Email @gatech.edu Please read all instructions carefully before beginning. Please leave your GT ID card on your desk until your TA scans your exam. Each problem
More informationMAT 610: Numerical Linear Algebra. James V. Lambers
MAT 610: Numerical Linear Algebra James V Lambers January 16, 2017 2 Contents 1 Matrix Multiplication Problems 7 11 Introduction 7 111 Systems of Linear Equations 7 112 The Eigenvalue Problem 8 12 Basic
More informationName: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.
Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.
More informationLINEAR ALGEBRA SUMMARY SHEET.
LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linearalgebrasummarysheet/ This document is a concise collection of many of the important theorems of linear algebra, organized
More informationMath 315: Linear Algebra Solutions to Assignment 7
Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are
More informationThe amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.
AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative
More informationELE/MCE 503 Linear Algebra Facts Fall 2018
ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2
More information